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Effective metal-insulator nonequilibrium quantum phase transition
in the Su-Schrieffer-Heeger model
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We consider the steady-state behavior of observables in the Su-Schrieffer-Heeger (SSH) model and in
the one-dimensional transverse field quantum Ising model after a sudden quantum quench of the parameter
controlling the gap. In the thermodynamic limit, and for times t → ∞, we find nonanalyticities even in simple
local observables as a function of the quench parameter, that is, a nonequilibrium quantum phase transition. We
trace the appearance of this nonequilibrium quantum phase transition to an effective metal-insulator transition
which occurs on the level of the generalized Gibbs ensemble (describing the steady state of the equilibrated
system). Studying whether these transitions are robust, we find, in the paradigmatic case of the SSH model, that
they persist for both quantum quench protocols of finite duration in time as well as thermal initial states, while
they are washed out in the presence of fermion-fermion interactions and for finite system size.
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I. INTRODUCTION

Recently, technological advances in the experimental con-
trol of ultracold gases [1,2], trapped ions [3], and nitrogen-
vacancy centres in diamonds [4] allowed one to probe the
time evolution of isolated quantum systems. Since, in such
systems, the time evolution is unitary, no information about
the initial state is lost. However, most often, this information
spreads over the whole system, so that, at long times, it is
challenging to recollect it. The origin of this behavior lies
in the eigenstate thermalization hypothesis (ETH) [5–7], that,
qualitatively speaking, states that, in the thermodynamic limit,
the expectation value of local observables over any eigenstate
with finite energy density can be well approximated by the
average over a properly defined thermal density matrix. In
this sense, most isolated systems (assuming ETH) thermalize.
There are exceptions to this paradigm [8]. For example, in
the Fibonacci chain describing Rydberg atoms [9,10], most
eigenstates do follow ETH, while some do not. This phe-
nomenon opened the field of “quantum many-body scars”
[11]. A stronger violation of ETH is provided by many-body
systems that have an extensive amount of local or quasilocal
conserved quantities. In this case, in fact, the local information
stored in the initial wave function is preserved by the time
evolution. Consequently, systems exhibiting such a behavior
can have interesting applications in the field of quantum infor-
mation [12]. A first class of systems with quasilocal conserved
quantities are many-body localized systems [13–17]. In this
case, the quasilocal integrals of motion arise due to real space
localization and are robust with respect to weak perturbations.
In these systems, there is no simple guideline for building a

sensitive effective density matrix for the local observables. A
second class of such systems is given by the so-called inte-
grable models [18]. In this case, while the violation of ETH is
not stable with respect to generic perturbations [19–21], it is
indeed possible to build a statistical ensemble capturing the
long time expectation value of the local observables. Such
an ensemble is called generalized Gibbs ensemble (GGE)
[22–31]. Conceptually speaking it is obtained by maximizing
the entropy while taking into account the constraints posed
by the local conserved quantities. From the formal point of
view, the GGE density matrix could be an exceptionally useful
tool, since concepts such as nonequilibrium phase transitions
[32–42] (nonanalytical dependencies of long time expectation
values as a function of the quench parameter) in integrable
systems could be made universal, in this framework, in the
very same way transitions in equilibrium are described within
the canonical ensemble. However, GGE density matrices are
in general difficult to obtain and no systematic link between
them and nonequilibrium phase transitions has been per-
formed.

In this article, we begin to address this issue in two
paradigmatic cases: The Su-Schrieffer-Heeger (SSH) model
[43,44], which represents a starting point for the study of
topological phases of matter and the appearance of fractional
charges in one dimension [45–57], and the transverse field
one-dimensional quantum Ising (QI) model, whose simplicity
has opened the way to countless insights in the theory of
quantum quenches [58–60]. Moreover, the QI model can
be mapped onto the Kitaev chain and hence encodes the
physics of the so-called Majorana bound states [61]. First,
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FIG. 1. (Bottom) Density plot of M̄ as a function of δ0, δ1 for a
sudden quench and the corresponding typical effective band structure
ξν,k (see text). (Top) Plot of M̄ as a function of δ1 for δ0 = 2w. Here,
δμ is in units w.

we consider the steady state of a quenched Su-Schrieffer-
Heeger model. Quenches from an initial Hamiltonian with a
hopping imbalance δ0 to a final one with δ1 are considered.
In the thermodynamic limit, nonanalyticities in observables
such as the amount of dimerization M̄ (see below) can
occur as a function of δμ (μ = 0, 1), signaling nonequilibrium
quantum phase transitions (QPT). These transitions occur at
the same parameter values of δ where also in equilibrium
QPTs (nonanalyticities in M̄ in dependence of the hopping
imbalance) can be found, but there only at zero temperature.
In this regard this finding is remarkable, because the quench
injects energy into the system [58], and is in accordance
with the findings described in [62]. As we will demonstrate,
the GGE density matrix is equivalent to a grand canonical
density matrix of free fermions, with effective Hamiltonian
H̄ , at finite temperature. Interestingly, tuning the quench
parameters, an effective metal-insulator transition (MIT) in
H̄ is achieved in concurrence with the nonequilibrium QPTs.
The generic scenario is summarized in Fig. 1, which shows M̄
for a sudden quench δ0 → δ1 and the typical band structure of
H̄ occurring in each region of the parameter space spanned
by the pre-quench and post-quench value of the gap δ0 and δ1,
respectively. As we will show, the nature of this effective MIT
explains the robustness of the nonequilibrium QPT against the
initial preparation of the system and finite-duration quench
protocols. The robustness of the nonanalytic signatures and
the effective MIT render this model a very promising candi-
date for experimental investigations. We also show that when
the model is perturbed in such a way that the GGE does not
provide a good description of the long time dynamics, the

nonequilibrium QPT is washed out. With this respect, we
analyze finite size systems and, in a model which is very
similar to the SSH model, nonintegrable interaction effects.
We then consider quantum quenches in the transverse field QI
model. Here, again, the entropy shows kinks as a function of
the quench parameter in correspondence to the gapless points.
As in the case of the SSH model, this nonequilibrium phase
transition occurs together with an effective MIT in the GGE
density matrix.

Our results suggest that the presence of an effective MIT in
the GGE density matrix in connection to an equilibrium QPT
leads to a nonequilibrium QPT.

The outline of the article is the following. In Sec. II, we
inspect the quantum quench dynamics characterizing the SSH
model and, in Sec. III, we discuss the same physics in the
context of the transverse field QI model. Finally, in Sec. IV,
we draw our conclusions.

II. QUANTUM QUENCH IN THE SSH MODEL

A. Sudden quench

The momentum space Hamiltonian for the quenched SSH
model (on a finite ring of length L with N unit cells and lattice
constant set to one in the following) is given by [44] H (t ) =∑

k �
†
k{σx[w + w cos(k) + δ(t )] + wσy sin(k)}�k . Here,

�
†
k = (c†k,A, c

†
k,B ) is a Fermi spinor, A and B the two sublattice

labels, and k = 2πj/N with |j | � N . Furthermore, σi are
Pauli matrices and w is the hopping energy. The hopping
imbalance term δ(t ), which in equilibrium determines the
gap, encodes the quench details: In most of the paper a sudden
change δ(t ) = δ0θ (−t ) + δ1θ (t )—with θ (t ) the Heaviside
step function—is considered. The SSH Hamiltonian is
diagonalized as

Hμ =
∑

k

εμ,k[d†
μ,c,kdμ,c,k − d

†
μ,v,kdμ,v,k], (1)

with μ = 0 (μ = 1) for t < 0 (t > 0), dμ,ν,k

fermionic operators for the ν = c, v bands, and εμ,k =√
δ2
μ + 2(w2 + wδμ)[1 + cos(k)]. In the initial state (t < 0)

the system is prepared in the ground state |G0〉 of H0.
In the thermodynamic limit, the quantum average of local

observables O(t ) = 〈G0|O(t )|G0〉 approaches a steady value
Ō = O(t → ∞) with a typical ∝ t−1 power-law decay (not
shown). Since the system is integrable, this steady value can
also be obtained as the trace Ō = 〈O〉 ≡ Tr{O(0)ρG} over
the GGE density matrix [22] constructed via the conserved
charges Nν,k = d

†
1,ν,kd1,ν,k as

ρG = e− ∑
ν,k λν,kNν,k

ZG

, ZG = Tr
{
e− ∑

ν,k λν,kNν,k
}
, (2)

where λν,k = log(nν̄,k/nν,k ), with nν,k = 〈G0|Nν,k|G0〉 and
ν̄ = v/c if ν = c/v.

A physically interesting way of building the Lagrange
multipliers giving the GGE density matrix in the case of
sudden quench from the ground state is by the transformation
U1

0,k = ei 	Dk ·	σ connecting post-quench Fermi operators d1,ν,k to
the pre-quench ones d0,ν,k , with 	σ the vector of Pauli matrices.

The norm | 	Dk| = arctan {
√

4−(1−�k )2

1−�k
} plays a central role in
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defining the behavior of the quench. In fact, the function �k

is such that [cf. (A22) and (A23)]

nc/v,k = 1 ± �k

2
, λc/v,k = ± log

(
1 − �k

1 + �k

)
, (3)

and thus directly controls the GGE. One finds |�k| � 1 with
0 � | 	Dk| � π/2. Furthermore, |�k| = 1 only for k = 0,±π :
In particular one has

�0 = −s(δ0 + 2)s(δ1 + 2), �±π = −s(δ0)s(δ1), (4)

with s(x) = |x|/x the sign function. When �k = −1,
the transformation reduces to the identity U1

0,k = σ0 and
the quench does not affect the populations, while for �k =
1 the transformation U1

0,k = iσy induces a swap of the c, v

states. The value of �k at k = 0,±π is constant and insen-
sitive to variations of the quench parameters provided they
remain within one of the nine regions bounded by the lines
δμ = 0,−2w (see lower panel of Fig. 1). On the other hand,
crossing one of the boundaries results in a sharp, nonanalytical
jump in �k . Thus, the center and edges of the Brillouin zone
(BZ) act for the quench as fixed points, whose character is
determined by the quench parameters. A detailed study of �k

(see Appendix A) allows us to identify four noncontiguous
regions out of the nine defined above: Here, when �0�π < 0,
a nontrivial inversion of population [63], characterized by
nν,0nν̄,±π = 0, takes place.

As mentioned, the transformation is directly linked to the
GGE, since, in the sudden quench case from the ground state,
one has n−1

ν,k = 1 + eξν,kβ
∗

where ξν,k = wλν,k and β∗ = w−1

is an inverse temperature. One can hence exactly rephrase the
GGE density matrix as the Grancanonical ensemble of free
fermions with the Hamiltonian,

H̄ =
∑
ν,k

ξν,kd
†
1,ν,kd1,ν,k, (5)

inverse temperature β∗, and zero chemical potential. Combin-
ing the above analysis and Eq. (3) one can conclude that when
a nontrivial inversion of population of the bands εν,k of the
post-quench Hamiltonian is present, the effective bands ξν,k

cross zero energy and thus have a metallic character, while
no crossing occurs in all other cases and the bands ξν,k have
an insulating character. When quench parameters cross one
of the boundary lines described above, thus an effective MIT
in H̄ occurs. This is exemplified as black graphs in the nine
different tiles of Fig. 1 separated by δμ = 0,−2w. We stress
here that the MIT is an effective one showing up in the GGE.
How this reflects in physically relevant (local) observables is
a priori unclear, but in our case we will show explicitly in the
following that its imprint is quite pronounced.

Next we analyze how the effective MIT influences observ-
ables of interest. The most intuitive one to investigate is the
average level of dimerization M̄, given by the expectation
value of M(x) = �

†
xσx�x with �x = ∑

k eikx�k/
√

L. Note
that translational invariance implies that the expectation value
is independent of the position. The main panel of Fig. 1 shows
a density plot of M̄ as a function of δμ. Crossing any of the
transition lines δμ = 0,−2w, a kink in M̄ is encountered. The
top panel shows results for δ0 = 2w > 0: The discontinuity
in ∂δ1M̄ at δ1 = 0,−2w is evident. These kinks represent a

FIG. 2. (a) Plot of σ̄0 (units w2); (b) plot of σ̄ (units w2); (c) plot
of S as a function of δ1 (units w) for δ0 = 2w.

signature of the occurrence of the effective MIT. Their origin
is the nonanalytic dependencies of the populations at k =
0,±π combined with the fact that, in the thermodynamic
limit, the density of states of such points diverges as the cur-
vature of ε1,k vanishes at these points. Several other quantities
show a similar behavior.

Given the presence of the effective MIT in the GGE,
we inspect the fluctuation of the space-averaged effective
“current” J0 = ∑

ν,k (∂kξν,k )Nν,k . Such fluctuation is defined
using the phase velocity of the effective bands [64,65], and in
the steady-state limit one has σ̄0 = 〈J 2

0 〉 (see Appendix A 7 b).
This quantity is shown in Fig. 2(a) for δ0 > 0. For δ1 =
0 (and δ1 = −2w) it diverges ∝ |δ1|−1 (and ∝ |δ1 + 2|−1).
Furthermore, fluctuations are larger in the effective metallic
phase, while they tend to vanish in the insulating one, as one
would expect [64]. Although σ̄0 is not a directly accessible
quantity, signatures of the effective MIT are present also in
the steady-state fluctuations σ̄ = 〈J 2〉 of the space-averaged
physical current J = ∑

k (∂kεν,k )Nν,k , shown in Fig. 2(b). In
contrast to the current fluctuations in the effective picture
though, here no marked differences in the magnitudes are
found in the different phases. However, kinks occur at the
boundaries between the phases. As a third example, Fig. 2(c)
shows the thermodynamic entropy (see Appendix A 7 b) S̄ of
the system for δ0 > 0: It is largest in the metallic phase and
displays kinks for δ1 = 0,−2w. This quantity is particularly
interesting, since it is intrinsic to thermodynamics.

B. Robustness

As shown above, signatures of the effective MIT occur in
a vast array of quantities. It is important to establish how
robust the results are. We will consider M̄ as an example
but the conclusions drawn below apply to all quantities dis-
cussed above. We begin by discussing deviations from the
thermodynamic limit. With a finite number of lattice sites,
averages do not converge to a steady value for long time but
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FIG. 3. Plot of M̄ as a function of δ1 (in units of w) for different
(a) number of lattice sites: solid the thermodynamic limit, dashed
N = 80, and dotted N = 20. The last two curves are averaged over
a period (see text). (b) Temperature of the initial state: solid T = 0,
dashed T = 5, and dotted T = 20. (c) Duration of the quench ramp:
solid τ = 0, dashed τ = 2, and dotted τ = 10. (d) Strength of the
fermion-fermion interaction (see text): solid U = 0, dashed U = 1,
and dotted U = 2, T = 0. Here, δ0 = 5w in (a)–(c) and δ0 = w in
(d), T is in units of wk−1

B with kB the Boltzmann constant, τ is in
units of h̄w−1, and U is in units of w.

oscillate with a finite recursion time; the GGE hypothesis fails
altogether. Figure 3(a) shows the quantum and time average
over a period of M(t ) near δ1 = 0. Dashed and dotted curves,
calculated with a finite number of lattice sites, show that kinks
are smoothed out as the number of sites decreases. This con-
firms the thermodynamic limit as a crucial ingredient for the
nonanalyticities to arise in the GGE predictions. Interestingly,
though, even for N as small as 20 one can still observe a
distinct imprint of the nonanalyticities found for N → ∞ in
the time-averaged M̄.

Furthermore, the features are robust in the case of a ther-
mal preparation of the initial state [66]. Figure 3(b) shows
M̄ obtained for an initial state at different temperatures T :
Although the curves are quantitatively different, with a global
suppression of the dimerization, nonanalyticities are always
present. The origin of the robustness is that, for an initial
temperature T , one has nc,k − nv,k = fT,k�k with fT,k =
sinh(ε0,k/kBT )/[1 + cosh(ε0,k/kBT )] > 0 [cf. (A29)]. This
result means that the effective MIT occurs in the same pa-
rameter regions as in the T = 0 case [67]. Note that the
robustness of the nonanalyticity with respect to temperature is
particularly intriguing since it is not present in the equilibrium
QPT characterizing the model.

We then consider the case of a quantum quench of finite
time duration τ , where the quench protocol is described by
a linear ramp. Typical results are shown in Fig. 3(c). The
nonanalytic behavior persists, although results again differ

quantitatively. This is due to the robustness of the effective
MIT, that can be demonstrated by showing that the fixed
points of the quench transformation only differ by an addi-
tional phase shift with respect to the case of sudden quench
(see Appendix A).

Finally, we address the effects of static interparticle inter-
actions. We consider here a very similar model which—in the
absence of interactions—displays the same qualitative behav-
ior than the one discussed so far, but it is easier to simulate.
The Hamiltonian is given by H (t ) = ∑N

i wc
†
i ci+1 + H.c. +

δ(t )(−1)ini + Unini+1 and we consider M̄ = 〈n0 − 1/2〉 as
an observable. c

(†)
i annihilates (creates) a spinless fermion on

lattice site i. The model thus describes spinless fermions on a
one-dimensional chain with staggered field δ(t ) and nearest-
neighbor interaction U . At time t = 0 the staggered field
is subject to the quench δ(t ) = δ0θ (−t ) + δ1θ (t ), abruptly
changing its value from δ0 to δ1. This model can be simulated
with relative ease using standard density matrix renormaliza-
tion group techniques based on matrix product states [68–70].
The time scales which can be reached are bound within this
approach by the entanglement growth of the system and, thus,
the steady-state behavior has to be read off at large but finite
times. For U = 0 strong oscillations in the dynamics after
the quench render such an extrapolation difficult, but for this
particular parameter value exact methods can be employed
to extract the asymptotic behavior. At finite U these oscilla-
tions are strongly damped out allowing for a straightforward
extrapolation to long times (see Appendix B). The inclusion
of the interaction term makes the model nonintegrable, which
in turn is believed to destroy the GGE picture. Figure 3(d)
shows results for different values of the interaction strength:
Nonanalyticities are washed out, as would be expected, by a
thermal redistribution of the excitation energy in the long-time
limit.

III. QUANTUM QUENCH IN THE ISING MODEL

In this section, we consider the transverse field QI model.
The Hamiltonian is

HI (t ) = −
N∑

j=1

1

2

[
σx

j+1σ
x
j + h(t )σ z

j

]
, (6)

where σα
j , α = x, y, z, are the Pauli matrices at site j of a

chain of N sites with periodic boundary conditions, and h(t )
is the transverse field. We consider sudden quantum quenches,
so that h(t ) = h0θ (−t ) + h1θ (t ), and we impose the system
to be in the ground state |0I 〉 for t < 0, and to evolve unitarily
for t > 0. Note that the state |0I 〉 is uniquely defined, even in
the thermodynamic limit, since we consider h0 > 1.

The Hamiltonian HI (t ) can be diagonalized at any time
by means of a Wigner-Jordan transformation onto spinless
fermions, followed by a Bogoliubov transformation [60]. In
the even parity sector, relevant for the case inspected since
we perform a quantum quench from the ground state at h0 >

1, the diagonal forms of the pre(t < 0)/post(t > 0) quench
Hamiltonians H

(i)
I (i = 0/1, respectively) read as

H
(i)
I =

N−1∑
k=−N

ξ
(i)
k

(
b

(i)†
k b

(i)
k − 1

2

)
, (7)
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FIG. 4. (a) Plot of S̄I as a function of h1, for h0 = 0. (b) Plot of
ε

(I )
k , as a function of k, for h0 = 2 and h1 = 5 (red solid line), h1 = 1

(green dashed line), and h1 = 0 (blue dashed line). The thin black
line corresponds to the chemical potential.

with

ξ
(i)
k =

√
[hi − cos(pk )]2 + sin2(pk ). (8)

Here, pk = 2πk/N and b
(i)
k are fermionic operators. Note that

b
(0)
k |0I 〉 = 0, for every k. For the details of the transformation

rewriting Eq. (6) to Eq. (7), see, for example, Ref. [71].
The fermionic occupation numbers N

(I )
k = b

(1)†
k b

(1)
k and their

averages n
(I )
k = 〈0I |N (I )

k |0I 〉 allow one to define, in the
thermodynamic limit and for times t → ∞, the post-
quench thermodynamic entropy S̄I = −∑

k n
(I )
k ln(n(I )

k ) +
(1 − n

(I )
k ) ln(1 − n

(I )
k ) and the GGE density matrix of the

system. The latter quantity reads as

ρ
(I )
G = e− ∑

k ε
(I )
k N

(I )
k

Z
(I )
G

, Z
(I )
G = Tr

{
e− ∑

k ε
(I )
k N

(I )
k

}
, (9)

with ε
(I )
k implicitly given by

n
(I )
k = 1

eε
(I )
k + 1

. (10)

Again, we can interpret the GGE density matrix as a
Grancanonical density matrix, at temperature set to unity and
at zero chemical potential, for fermions with the effective
Hamiltonian,

H̄ (I ) =
∑

k

ε
(I )
k b

(1)†
k b

(1)
k . (11)

As in the case of the SSH model, the entropy shows kinks
as a function of the quench parameter, in correspondence
to the gapless points of the dispersion relation signaling the
equilibrium QPT between the paramagnetic and the ferro-
magnetic phase. Correspondingly the effective Hamiltonian
H̄ (I ) undergoes a metal-insulator transition. The analogy to
the behavior in the SSH model is hence complete. Examples
are given in Fig. 4. In Fig. 4(a), the entropy S̄I is plotted as a
function of h1, for h0 = 10. S̄I is shown to have nonanalytic-
ities in correspondence to the equilibrium QPTs occurring at
h1 = ±1. In Fig. 4(b), the effective energies ε

(I )
k are plotted,

as a function of k, for h0 = 2 and h1 = 5 (red solid line),
h1 = 1 (green dashed line), and h1 = 0 (blue dashed line). As
in the case of the SSH model, these effective bands undergo
an effective MIT in correspondence to the equilibrium QPT.

In fact, for h1 > 1 the dispersion does not cross the chemical
potential (zero in this case), while for h1 < 1 it does.

IV. CONCLUSIONS

While in a previous work [62] the highly nontrivial relation
between equilibrium and nonequilibrium QPT was inspected
with reference to the topological nature of the equilibrium
QPT, we have here adopted a different perspective, more suit-
able to generalizations in the context of integrable systems.
We have observed that, in the paradigmatic cases of the SSH
model and of the transverse field QI model, the nonequilib-
rium QPTs appear in connection to both an equilibrium QPT
and an effective MIT in the GGE density matrix of the system.
By direct inspection in the case of the SSH model, we have
also shown that the nonequilibrium QPT is indeed robust with
respect to those perturbations that do not spoil the validity of
the GGE, and hence the presence of the effective MIT.

The phenomenology we describe appears general and
should hold true also for higher dimensional systems. An
interesting extension to our work includes the discussion of
terms that break integrability only weakly. The results we
report should carry over to the prethermal state reached in
these situations.
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APPENDIX A: QUANTUM QUENCH AND
GEOMETRICAL INTERPRETATION

1. Quench-induced transformation in the SSH model

We start this section by giving, as stated in the main text,
the Hamiltonian of the Su-Schrieffer-Heeger model [43,44]:

H (t ) =
∑

k

�
†
k{σx[w + w cos k + δ(t )] + wσy sin k}�k,

(A1)

where �
†
k = (c†k,A, c

†
k,B ) is a two-component momentum re-

solved Fermi spinor, A and B represent the two sublattices of
the unit cell, and the hopping between the same and different
cells is staggered. This difference is encoded in the quantity
δ(t ), which measures the amplitude of the gap in the spectrum
of the system. In the context of sudden quantum quenches,
δ(t ) abruptly changes its value, namely

δ(t ) = δ0θ (−t ) + δ1θ (t ). (A2)

Here, we conveniently use the index 0 or 1 for the pre- or post-
quench quantity, respectively, and the symbol θ denotes the
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Heaviside step function. The Hamiltonian, accordingly, can
be written as

H (t ) = H0θ (−t ) + H1θ (t ). (A3)

It is useful, at this point, to diagonalize both the pre- and post-
quench Hamiltonians, by means of a unitary transformation,
to obtain (μ = 0, 1)

Hμ =
∑

k

εμ,k (d†
μ,c,kdμ,c,k − d

†
μ,v,kdμ,v,k ), (A4)

where the subscripts c and v are associated with the conduc-
tion and valence bands, respectively, and

εμ,k =
√

δ2
μ + 2(w2 + wδμ)(1 + cos k) (A5)

is the energy spectrum. The transformation, which relates the
lattice and the diagonal bases, is defined as

�μ,k =
(

dμ,c,k

dμ,v,k

)
= Uμ,k�k, (A6)

where

Uμ,k =
(

Aμ,k Bμ,k

−B∗
μ,k Aμ,k

)
, (A7)

and

Aμ,k = 1√
2
, Bμ,k = 1√

2

w(1 + e−ik ) + δμ

εμ,k

. (A8)

One can easily compose these transformations to get the
unitary matrix which connects the two diagonal pre- and
post-quench bases. It has the following form:

�1,k = U1,kU
†
0,k�0,k = U1

0,k�0,k. (A9)

2. General properties

To get more insight about the quench-induced transforma-
tion, it is instructive to rewrite U0

1,k in the following form:

U0
1,k = exp(i 	Dk · 	σ ), (A10)

where 	σ is the vector of Pauli matrices and 	Dk = | 	Dk| 	nk . By
exploiting the properties of Pauli matrices one obtains (from
here on we set w = 1 for simplicity)

| 	Dk| = arctan

[√
4 − (1 − �k )2

1 − �k

]
, (A11)

	nk = 1√
4 − (1 − �k )2

⎛
⎜⎜⎝

− sin k
(

1
ε1,k

+ 1
ε0,k

)
1+δ1+cos k

ε1,k
− 1+δ0+cos k

ε0,k

δ0−δ1
ε0,kε1,k

sin k

⎞
⎟⎟⎠, (A12)

�k = −1 + (1 + δ0)(1 + δ1) + (2 + δ0 + δ1) cos k

ε0,kε1,k

. (A13)

The function �k introduced above emerges naturally from
the transformation, i.e., from the sudden quench: Note that,
indeed, | 	Dk| only depends on the momentum via �k . The
following general properties hold.

(1) �k is a periodic and analytic function of the momentum
k, with �k = �−k due to time-reversal symmetry.

(2) −1��k �1, which in turns implies 0� | 	Dk|�π/2.
Moreover, the unit vector 	nk shows a clear symmetry with

respect to the parameter k, such that for k → −k the vector
	Dk gets mirrored about the y axis. In view of the properties

outlined above let us study �k over half of the BZ, namely
on I = [0, π ], where one finds that the equation |�k| = 1 has
solutions only if k = 0, π . More specifically, denoting s(x) =
x/|x| the sign function, one finds

�0 = −s(δ0 + 2)s(δ1 + 2); �π = −s(δ0)s(δ1). (A14)

Clearly, as a function of the quench parameters, �k is not
analytic but exhibits jumps when the critical lines δμ = 0
and δμ = −2 are crossed, while for all other values of k, �k

is instead a continuous and analytic function of the quench
parameters. Note that at δμ = 0,−2 the equilibrium SSH
model presents two quantum critical points (QCPs) associated
with a quantum phase transition (QPT). This defines nine
regions in the (δ0, δ1) plane: Within each region the values of
�0 and �π are constant and independent of the quench. One
finds

�k = −1 ⇒ U0
1,k =

(
1 0

0 1

)
, (A15)

�k = 1 ⇒ U0
1,k =

(
0 1

−1 0

)
. (A16)

When �k = −1 the c, v states are unchanged, while for �k =
1 the c, v states are essentially swapped. In addition, �k =
1 ⇒ 	nk = (0,−1, 0). Therefore, the transformation U0

1,k has

two fixed points, namely 	Dk = (0, 0, 0) (henceforth called
I) where it reduces to the identity and 	Dk = (0,−π/2, 0)
(henceforth called R), where bands are swapped.

3. Occupation numbers and GGE weights

In this section we introduce the generalized Gibbs en-
semble (GGE) [31] which, in the thermodynamic limit, re-
produces the long-time limit of the expectation value of the
system observables. We start by presenting the GGE density
matrix, obtained by maximizing the entropy while keeping
into account the conservation of the occupation number op-
erators Nα,k = d

†
1,α,kd1,α,k ,

ρG = e− ∑
α,k λα,kNα,k

Tr
{
e− ∑

α,k λα,kNα,k
} , (A17)

where α = c, v and λα,k are the corresponding Lagrange
multipliers, obtained by imposing

Tr{Nα,kρG} = 〈G0|Nα,k|G0〉 = nα,k, (A18)
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with |G0〉 the pre-quench ground state. One has

〈G0|Nc,k|G0〉 = |A0,kB1,k − A1,kB0,k|2, (A19)

〈G0|Nv,k|G0〉 = |A0,kA1,k + B∗
1,kB0,k|2, (A20)

and

λc,k = ln

(
nv,k

nc,k

)
= −λv,k. (A21)

Interestingly, by recalling Eq. (A19), we observe that

�k = nc,k − nv,k, (A22)

and

λc,k = ln

(
1 − �k

1 + �k

)
. (A23)

Equation (A22) is particularly interesting since it links the
imbalance between c and v states to the function �k , which,
in turn, is directly connected with the presence of the quench.
With |G0〉 as the pre-quench state, �k = 1 implies a complete
inversion of population. Three different scenarios can occur,
according to the quench parameters.

If �0 = −1 and �π = −1, the function �k must have at
least one maximum in each half of the BZ. It is easy to prove
that in this situation �k < 0 always. As a result, no inversion
of population occurs.

If �0 = ∓1 and �π = ±1, the function �k must have at
least one zero in each half of the BZ. Indeed, there is exactly
one zero per half, located at

k∗ = − arccos

(
2 + δ0 + δ1 + δ0δ1

2 + δ0 + δ1

)
. (A24)

In this situation a nontrivial inversion of population occurs for
−π � k < −k∗ and k∗ < k � π .

If �0 = 1 and �π = 1, the function �k must have at
least one minimum in each half of the BZ and one can prove
that �k > 0 always. As a result, a complete inversion of
population in the whole BZ occurs. Formally, this last case
can be analyzed by simply swapping the role of the c and v

states throughout the entire BZ, thus we label this a “trivial”
inversion of population.

4. Effective GGE energy bands

Upon defining εα,k = wλα,k and introducing a fictitious
effective inverse temperature β∗ = w−1 we can rewrite

nα,k = 1

1 + eβ∗εα,k
. (A25)

Thus, the occupation numbers nα,k correspond to a thermal
distribution of free fermions with effective energy bands εα,k

and zero chemical potential. By exploiting this analogy, from
the above discussion and Eq. (A23), we can conclude the
following.

If �0�π = 1, the two effective bands never touch nor
cross the chemical potential and thus describe an effective
insulating configuration.

If �0�π = −1, the two effective bands cross precisely at
chemical potential, exactly once per half of the BZ, and thus
describe an effective metallic configuration.

FIG. 5. Three different curves γ described by the vector 	Dk

with k spanning the BZ. Here we set δ0 = 5w and three possible
representations of the different regimes are shown for δ1 = 0.1w

and δ1 = −2.5w, which describe the insulating effective phase (red
curves), and for δ1 = −0.8w, which describes the metallic effective
phase (blue curve).

Therefore, each of the nine regions in the quench parameter
space is associated, in the GGE, with an effective metallic or
insulating “phase,” and transitions occur whenever one of the
δi crosses the critical lines.

5. A geometrical interpretation

We can provide a geometrical interpretation of what was
discussed above. As k sweeps the BZ, the vector 	Dk describes
a closed curve γ in the three-dimensional space, pinned to
either or both the fixed points I and R. To be specific and
without loss of generality, here we consider the case δ0 > 0
only.

For δ1 > 0, one has �0 = �π = −1. Thus, γ passes twice
through the point I.

For −2 < δ1 < 0, one has �0 = −�π = −1. As a conse-
quence, γ passes through both I and R.

For δ1 < −2 and γ passes through both I and R.
In the first and last cases the GGE has an insulating

character and the curve γ describes a butterfly shape pinned
either at the origin (δ1 > 0) or at (0,−π/2, 0) (δ1 < −2). On
the other hand, for −2 < δ1 < 0 the GGE is metallic and γ

describes a closed loop pinned at I and R. A variation of the
quench parameters which does not result in a crossing of the
critical lines does not alter the qualitative features of the curve
γ . The scenario is summarized in Fig. 5.

6. Robustness

In this section we give some details about the robustness
of the effective metal-insulator transition with respect to a
thermal initial state and a finite-duration quench.
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a. Thermal initial state

We start by observing that, given a generic occupation of
the pre-quench states n

(0)
α,k , using the quench transformation

one can promptly obtain

nc,k − nv,k = [
n

(0)
v,k − n

(0)
c,k

]
�k. (A26)

This relationship is very powerful: Let us apply it to the case
of a system prepared at a generic temperature T = (kB β )−1,
with occupation numbers,

n
(0)
c,k = 1

1 + eβε0,k
and n

(0)
v,k = 1

1 + e−βε0,k
. (A27)

One then easily obtains

nc,k − nv,k = fT,k�k, (A28)

with

fT,k = sinh(βε0,k )

1 + cosh(βε0,k )
> 0. (A29)

Equipped with Eq. (A28) one obtains the GGE multipliers,

λc,k = ln

(
1 − fT,k�k

1 + fT,k�k

)
and λv,k = −λc,k. (A30)

The key observation is that for any temperature T the qualita-
tive features of nc,k − nv,k (governing the inversion of popu-
lation) and of the new GGE multipliers (dictating the effective
metal-insulator transitions) remain unchanged since fT,k has
no zeros and thus can neither destroy the insulating phase, nor
distort the metallic one. Thus, all the conclusions obtained in
the T = 0 case, including the presence of nonanalyticities in
the steady state of quantities, still hold.

b. Finite-duration quenches

Turning to the study of the effects of a quench with finite
duration, we introduce a new quench protocol encoded in the
time dependence of the quench parameter δ(t ), defined in
Eq. (A1). Here we consider a linear ramp, namely

δ(t ) =

⎧⎪⎨
⎪⎩

δ0

δ0 + (δ1 − δ0)t/τ

δ1

t � 0

0 < t � τ

t > τ

, (A31)

where τ is the quench duration. By means of the Heisenberg
equation of motion and taking the following ansatz [30,72],(

ck,A(t )

ck,B (t )

)
=

(
fk,A(t ) gk,A(t )

fk,B (t ) gk,B (t )

)(
ck,A

ck,B

)

= Vk (t )

(
ck,A

ck,B

)
, (A32)

where ck,A and ck,B are the Fermi operator in the Schrödinger
picture at t = 0, we can evaluate the time evolution of
the whole Fermi spinor �

†
k = (c†k,A, c

†
k,B ), given the initial

conditions fk,A(t = 0) = gk,B (t = 0) = 1 and fk,B (t = 0) =
gk,A(t = 0) = 0. We obtain that the coefficients of the matrix

Vk (t ) satisfy the following systems of differential equations:(
fk,A(t )

fk,B (t )

)
=

(
0 mk (t )

m∗
k (t ) 0

)(
fk,A

fk,B

)
,

(
gk,A(t )

gk,B (t )

)
=

(
0 mk (t )

m∗
k (t ) 0

)(
gk,A

gk,B

)
, (A33)

where

mk (t ) = 1 + e−ik + δ(t ). (A34)

Therefore, we are able to write the transformation which
connects the pre- and post-quench diagonal bases,

�1,k = U1,kVk (τ )U †
0,k�0,k = V0

1,k (τ )�0,k, (A35)

which represents the generalization to the finite duration
quench of Eq. (A9). Equation (A35) allows us to evaluate the
GGE conserved quantities,

nc,k = |A0,k[B1,kgk,B (τ ) + A1,kgk,A(τ )]

− B0,k[B1,kfk,B (τ ) + A1,kfk,A(τ )]|2
= 1 − nv,k. (A36)

As done above, we focus now on the points k = 0, π , where
the analysis becomes transparent. At these points mk (t ) is real
and the coefficients of the matrix Vk (t ) fulfill the following
differential equation:

∂2
t Vk − δ1 − δ0

τμk (t )
∂tVk + μk (t )2Vk = 0, (A37)

where μ0(t ) = 2 + δ(t ) and μπ (t ) = δ(t ). Solving this equa-
tion and assuming for simplicity δ0 > 0, we obtain for k = π ,

V0
1,π (τ ) = 1 + s(δ1)

2

(
e−iητ 0

0 eiητ

)

− 1 − s(δ1)

2

(
0 eiητ

−e−iητ 0

)
, (A38)

where η = δ0+δ1
2 . Analogous results are achieved for k = 0,

where the sign function is shifted to the second critical point,
i.e., it becomes s(δ1 + 2). In qualitative agreement with the
sudden case, to which the above equation reduces for η → 0,
for δ1 > 0 the c, v bands remain essentially the same with the
exception of an η-dependent phase shift while for δ1 < 0, in
addition to the η-dependent phase shift, the c, v bands swap
their role. Crucially, however, the phase shift is irrelevant in
the evaluation of �k at k = 0, π . As a consequence, the same
qualitative conclusions concerning a nontrivial inversion of
population and an effective metal-insulator transition can be
drawn.

7. Other observables

In this section we provide some details about the steady-
state value of the quantities discussed in the main text.

a. Dimerization

The dimerization operator is defined as [44]

M(x) =
∑
k,k′

ei(k′−k)x�
†
kσx�k′ . (A39)
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Exploiting Eqs. (A6)–(A8) and the definition of the GGE one
finally obtains

M̄ = 〈G0|M (x)|G0〉

= 1

π

∫ π

−π

A1,kRe{B1,k}(nc,k − nv,k )dk. (A40)

b. Entropy

We consider the entropy associated with the GGE, defined
as

S = Tr {ρG ln(ρG)}. (A41)

The quantity S has to be interpreted as the extensive part
of the entanglement entropy of long enough subsystems. Its
evaluation can be performed by standard means by noticing
the formal analogy to a system of free fermions unveiled in
Sec. A 3. We obtain

S = −
∑
α,k

nα,k ln(nα,k ). (A42)

c. Current fluctuations

Here we consider the fluctuations of the spatially averaged
current, related to the dc conductance, both in the real and
in the effective GGE bands. We start by defining the current
operator as the derivative of the energy spectrum with respect
to the momentum k. In the thermodynamic limit,

J(0) =
∑

α

J (0)
α = 1

2π

∑
α

∫ π

−π

j
(0)
α,kNα,kdk, (A43)

with jα,k = ±∂kε1,k (± for c, v) and j 0
α,k = ∂εα,k for the

real (J ) and GGE effective bands (J0), respectively. The dc
fluctuations σ̄(0) = 〈G0|J 2

(0)|G0〉 are thus given by

σ̄(0) = 1

(2π )2

∑
α

∫ π

−π

(
j

(0)
α,k

)2
nα,k (1 − nα,k )dk, (A44)

and, given the relation between the GGE conserved quantities
and the effective bands in Eq. (A22), we obtain

σ̄(0) = 1

(2π )2

∫ π

0

(
j

(0)
c,k

)2 dk

1 + cosh(λc,k )
. (A45)

APPENDIX B: INTERACTING MODEL

To include interactions we concentrate on a model that is
easier to simulate than the SSH model considered in the rest
of the text. The Hamiltonian we want to consider is given by
spinless fermions on a chain where we allow for a staggered

0 2 4 6 8
wt

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

M

U/w=0
U/w=1
U/w=2

FIG. 6. Time evolution of M for different values of the inter-
action strength U , for δ0 = w and δ1 = −0.01w. Increasing the
interaction strength strongly suppresses the transient oscillations.

field, nearest-neighbor hopping as well as interactions,

H (t ) =
N∑

i=1

wc
†
i ci+1 + H.c. + δ(t )(−1)ini + Unini+1.

(B1)

Here c
(†)
i annihilates (creates) a spinless fermion on lattice site

i. The quench is performed at time t = 0, at which the stag-
gered field is is abruptly changed from δ0 to δ1. This model
exhibits the same qualitative behavior of the SSH model in
the absence of interactions. To simulate the dynamics we
use an implementation of the density matrix renormalization
group directly set up in the thermodynamic limit N → ∞.
Here we use an iterative algorithm to prepare the ground
state of H (t < 0) and then propagate the wave function in
real time with respect to H (t > 0) employing a fourth-order
Suzuki-Trotter decomposition. The decomposition time steps
are chosen small enough to yield converged results. We
dynamically increase the so-called bond dimension, the pa-
rameter describing the numerical accuracy, as the simulation
time progress, which allows us to achieve numerically exact
results. By this procedure the truncation error in the wave
function is kept below a 10−7 threshold. As simulation time
progresses the entanglement in the system rises and with it the
bond dimension as well as the numerical effort needed. Entan-
glement growth in simulation time is typically linear leading
to an exponential increase in bond dimension. Therefore, at a
certain time t the numerical resources are exhausted and no
further progress in simulation time can be made. Luckily, at
finite U the dynamics for the observable M̄ = 〈n0 − 1/2〉 of
interest become strongly damped facilitating an extrapolation
to long times (compare Fig. 6). For U = 0, where the strong
oscillations make an extrapolation more difficult, we check
convergence by comparison with exact results obtained from
the GGE directly.
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