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Abstract 

  

Several types of tube-like fibre-reinforced tissue, including the layers of arteries and veins, different kinds 

of muscle, biological tubes as well as plants and trees, are reinforced by a pair of helical fibres wound 

symmetrically around the tube axis in opposite directions. In many cases, this kind of biological structures 

grow in an axially symmetric manner that preserves their own shape as well as the direction and shape of 

their embedded pair of helical fibres. This study considers and investigates the influence that preservation of 

fibre direction exerts on pseudo-elastic (elastic-like) mass-growth modelling of the described fibre-

reinforced structure. Complete sets of necessary conditions that enable the implied axisymmetric tube mass-

growth to take place are sought, found and presented. These hold in addition to, and simultaneously with 

standard kinematic relations and equilibrium equations met in conventional hyperelasticity. They thus 

render this mass-growth mathematical model the properties of an apparently overdetermined boundary value 

problem. However, the additional information they provide leads to identification of admissible classes of 

strain energy densities for growth that enable realisation of the implied type of tube mass-growth. The 

analysis is applicable to several different types of mass-growth of tube-like tissue reinforced by a pair of 

symmetrically wound helical fibres. This is demonstrated with an application which considers that mass-

growth of the fibre-reinforced tube takes place in an incompressible manner; namely, in a non-isochoric 

manner that along with fibre direction, it also preserves the material density of the growing tube.       

 

Keywords: Anisotropic mass-growth, Elastic-like mass-growth, Growth of cylinders and tubes, Helical 

fibres, Mass-growth modelling, Pseudo-elastic mass-growth. 

 

 

1. Introduction 

 

Fibres of helical shape are met in several different 

kinds of plant and bone structures (e.g., [1-3]), as 

well as in various forms of tube-like soft 

biological tissue. Arteries and veins (e.g., [4-7]), 

muscles (e.g., [8]), and even living creatures of 

tubular shape [9] are referred to as well-known 

relevant examples. In most cases, these structures 

grow in time by preserving their tubular shape as 

well as the shape/direction of their helical fibres. 

The latter grow with and within the tube that they 

are embedded in, and are usually met in the form 

of two fibre families wound symmetrically about 

the tube axis in opposite directions. The axially 

symmetric shape of the tube is thus also preserved 

during the observed mass-growth deformation, 

along with the shape and direction of either fibre 

family.        

It was recently shown [10] that, if mass-

growth preserves the direction and shape of a 

single family of fibres embedded in, and growing 

with and within the tube, then the corresponding 

set of pseudo-elasticity type equations appears 

overdetermined. However, the extra equations that 

emerged in the model enabled formation of one or 

more linear relationships between the strain energy 

density for growth, W, and its derivatives with 
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respect to the principal deformation invariants of 

the growing system. These relationships were thus 

regarded as partial differential equations (PDEs) 

for the unknown function W, and their solution 

provided valuable information regarding 

admissible classes or forms of W that enable the 

tube to grow without disturbing the shape or the 

direction of its fibres.  

The outlined new development [10] and 

its concepts are generally expected to apply further 

to hyperelastic mass-growth problems of several 

different types of soft or hard biological tissue. 

Such problems include fibre-reinforced tissue of 

different geometrical shapes and features, and/or 

tissue reinforced by more than one family of 

unidirectional fibres. They thus also include the 

case of present interest, where a growing 

hyperelastic tube is reinforced by two families of 

fibres wound symmetrically about its axis. A 

proper mathematical formulation of this problem 

is presented in Section 2, which resembles closely 

its Reference [10] counterpart. Section 3 derives 

then the necessary conditions which guarantee that 

both families of helical fibres embedded in, and 

growing with the tube preserve their direction 

during the axially symmetric deformation of 

interest. These conditions hold regardless of the 

tube constitution but attention next focuses on 

cases that the tube mass-growth can be 

characterised as elastic-like or pseudo-elastic.   

It is recalled in this context that when the 

number of fibre families embedded in a 

hyperelastic material is bigger than one, the 

classical deformation invariants involved in the 

strain energy density of the fibrous composite are 

not any more independent [11, 12]. It follows that 

relationships between W and its derivatives, which, 

in analogy with [10], would reflect mass-growth 

ability of some relevant fibre-reinforced tissue to 

preserve fibre direction, can be considered as 

PDEs for W only after: (i) the exact number of 

independent invariants is identified; (ii) a complete 

basis of precisely the same number of independent 

invariants is formed; and (iii) W is considered and 

treated as a function of those independent 

invariants only. Part (i) of this challenge is already 

dealt with in [11, 12].  

As is also shown in [11, 12], only seven 

invariants can be independent in the particular case 

of two families of unidirectional fibres and, among 

those seven, six are strain invariants while the 

remaining one is a non-strain invariant. Such a set 

of seven independent invariants have most 

recently identified in [13].  

With the help of an Appendix, this set of 

independent invariants is also introduced in 

Section 4, which considers non-isochoric, 

incompressible tube growth and extends the 

theoretical analysis presented in [10] towards the 

present case of principal interest. Comparisons can 

thus be made against corresponding modelling 

features and analytical results detailed in Section 7 

of [10], which dealt with incompressible mass-

growth of a corresponding tube reinforced by a 

single family of helical fibres.  

In a particular application, Section 5 

considers purely dilatational mass-growth and 

describes the influence that the aforementioned 

newly introduced set of invariants and relevant 

findings exert on the tube constitutive and 

equilibrium equations. That Section also 

demonstrates the manner in which the presented 

mathematical model identifies specific 

(admissible) relevant forms of the strain energy 

density that enable realisation of the assumed 

pattern of tube mass-growth.  

The outlined theoretical developments are 

similarly applicable to further particular cases of 

axisymmetric mass-growth of tube-like tissue 

reinforced by a pair of symmetrically wound 

helical fibres. Several of those cases are referred to 

in the concluding Section 6, which summarises the 

progress made so far in this subject and outlines a 

number of important, relevant research challenges 

that need to be dealt with in the near future.    

 

 

2. Problem formulation 

 

At t = t0, where t denotes time, an un-deformed 

circular cylindrical tube of finite axial length, 2H, 

and constant mass density, ρ0, occupies the region 

,   ,20   , HZHΘBRA              (2.1) 

where, R, Θ and Z are standard cylindrical polar 

coordinate parameters (Figure 1). The non-

negative constant parameters A and B (0 ≤ A < B) 

represent the inner and the outer radii of the tube, 

respectively. If A = 0 this representation 
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corresponds to the particular case of a non-hollow 

(solid) cylinder.  

At t > t0, the tube grows in a manner that is 

independent of its azimuthal coordinate parameter. 

The most general form of such an axially 

symmetric deformation pattern is as follows: 

),;,(   ),;,(   ),;,( tZRzztZRgΘtZRrr    (2.2) 

where r, θ and z represent cylindrical polar 

coordinate parameters in the current, continuously 

deforming configuration. The implied dynamic 

combination of tube radial and axial expansion 

with azimuthal and axial shear strains depends on 

the form of the functions r(R, Z; t), g(R, Z; t) 

= ĝ (r, z; t) and z(R, Z; t), which are to be 

determined subject to the initial conditions  

0 0 0

0

ˆ( , ; ) ,    ( , ; ) ( , ; ) 0,   

( , ; ) ,

r R Z t R g R Z t g r z t

z R Z t Z

  


   (2.3) 

that preserve consistency between (2.2) and (2.1).  

 

2.1 Kinematics 

 

The basic features of the deformation pattern (2.2) 

are captured by the relevant deformation gradient 

tensor, customary denoted with F. In the particular 

cylindrical polar co-ordinate system implied in 

(2.1), this will be over-signed with a so-called 

“hat” and, for the axially symmetric deformation 

(2.2), will accordingly by given as follows:  
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r r r

R R Z

r r r

R R Z

z z z

R R Z

  

 
  

  

 

   
   

  
      

    
       

    

F
, (2.4) 

where, the appearing amounts of radial, azimuthal 

and axial stretch are as follows: 

ZzRr zRrr ,,    ,/   ,    ,                  (2.5) 

and the associated amounts of shear are 

RzrZzRrZrz zrgrgr ,,,,    ,   ,   ,    .(2.6) 

Here, as well as in what follows, a comma denotes 

partial differentiation with respect to the indicated 

suffice(s).  

The radial, azimuthal and axial 

components of the velocity vector, v, are  

zvgrrvrv zr
    ,   , 
,                           (2.7) 

respectively, where a dot denotes differentiation 

with respect to time. The assumed axial symmetry 

implies that the rate of deformation tensor obtains 

the simplified form                                                                            

, , ,

,

, ,
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2 2

1ˆ    /        0
2

1
       0         

2

r r r

r

r z

r rg z

rg r r

z z

 
 
 
 
 
 
 
  

d
,                                (2.8) 

which yields the volumetric rate of deformation as  

, ,
ˆtr  /r zr r r z    v d .                               (2.9) 

 The deformation and equilibrium concepts 

outlined in this Section, as well as the fibre 

deformation conditions detailed afterwards in 

Section 4 hold regardless of the cause of the 

assumed axisymmetric deformation. However, 

attention will next focus on dynamic deformation 

which is solely due to action of the rate of growth, 

rg. This scalar quantity is here considered as 

known function of space and time, and maintains 

mass-growth through its non-zero contribution in 

the continuity equation with growing mass,   

gr v ,                                              (2.10) 

where ρ represents the mass density of the growing 

continuum. In the present case of interest, 

admissible forms of the function rg are evidently 

only those ones that enable the tube to attain and 

maintain axially symmetric deformation patterns 

of the form (2.2).  

 

2.2 Equilibrium and boundary conditions 

 

It is assumed that stress equilibrium prevails at all 

times and, in the absence of body forces, is 

governed by the quasi-static equations of motion, 

0 σ ,                                                        (2.11) 

where σ is the Cauchy stress tensor. Due to the 

prevailing axial symmetry, the relevant cylindrical 

polar coordinate version of the corresponding 

radial, azimuthal and axial equations of motion are 

respectively simplified as follows:  

 

 

 

, ,

2

,2 ,

, ,

1
0,

1
0,    

1
 0.

rr r zr z rr

r z zr

zz z rz r

r

r
r

r
r



 

   

 

 

   

 

 

                     (2.12)              

The number of equations (2.12) matches 

the number of the principal unknown functions 
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r(R, Z; t), g(R, Z; t) and z(R, Z; t) appearing in 

(2.2). Solution of these PDEs may be attempted 

only after material constitution is specified, and a 

relevant constitutive equations is thus determined. 

However, solution of s specific boundary value 

problem requires further specification of an 

associated set of boundary conditions.  

A deformation pattern of the form (2.2) 

may generally be unsustainable if not some or all 

of the curved and flat boundaries of the tube 

(denoted at t > t0 with r = a, r = b and z = ±h) are 

supported by some set of externally applied 

normal tractions, 

   ; ,    ; ,

,

rr r a a rr r b b

zz z h h

q z t q z t

q

 



 

 

 


,              (2.13) 

which may be determined in an a-posteriori 

manner. In the same context, the presupposed 

axisymmetric deformation may not be sustainable 

without appropriate external support of the type 

     

 

   

   

ˆ, ; , ; ; ,  
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; ,   ; ,

; ,   ; ,
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Θ g A Z t g a z t z t

z t

z t z t

r t r t
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 

 
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 

 

        (2.14) 

which accommodates possible shear type of 

boundary growth. 

Satisfaction of several of the non-

homogeneous traction boundary conditions (2.13) 

and (2.14) is often required when deformation is 

due to externally applied loading. However, unless 

necessary, the homogeneous version of any of 

those traction boundary conditions (where the 

corresponding q- and τ-quantity is zero) should be 

given priority in problems that the deformation 

pattern (2.2) is totally due to mass-growth activity. 

 

  

3. Growth/deformation patterns that preserve 

the direction of two families of helical fibres 

 

Consider that the material of the tube is reinforced 

by two families of continuously distributed helical 

fibres wound about the tube axis symmetrically in 

opposite directions. In the reference configuration 

(t = t0), the fibre directions are determined by the 

unit vectors  

   (1) (2)ˆ ˆ ˆ ˆ ˆ ˆ0, , ,    0, , ,
T T

Z ZA A A A   A A (3.1) 

where 

ˆ ˆcos ,    sin ,ZA A                                  (3.2) 

and Φ denotes the angle that either family forms 

with the Z-axis of the adopted cylindrical polar co-

ordinate system.  

Axially symmetric deformations of the 

form (2.2) require from the directions of both fibre 

families and, therefore, from Φ to be independent 

of the azimuthal coordinate parameter, Θ. Both 

families are also required to have the same fibre 

density and, except for their directions, to be 

essentially indistinguishable. For simplicity, it is 

also assumed that Φ is constant. Hence, 2Φ is the 

constant angle that the regular helices of those 

families form at each material point of the tube.  

Standard rules of vector transformation in 

continuum mechanics reveal that, at t > t0, the unit 

vectors (3.1) transform into the following: 

 

 

 

 

(1) (1) (1) (1) (1)

(2) (2) (2) (2) (2)

ˆˆ, ,

ˆ ˆ ˆ ˆ      ,    ,    ,

ˆˆ, ,

ˆ ˆ ˆ ˆ      ,  ,   ,

T

r z

T

rz Z z Z z Z

T

r z

T

rz Z z Z z Z

b b b

A A A A

b b b
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
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

 

   
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



 

 

 

  

b FA

b FA

        (3.3) 

which define the direction of the deformed fibre 

families. Interest here focuses into the case that 

fibre directions and, therefore, the angles they 

form with any of the cylindrical polar coordinate 

directions remain unchanged during deformation.  

This requirement imposes on fibre 

directions the following restrictions: 

   (1) (1) (2) (2)

1 2
ˆ ˆ,    t A t A  b b ,              (3.4) 

where, 1  and 2  represent fibre growth-stretch in 

the first and second family, respectively. Upon 

assuming that 

ˆ ˆ 0ZA A  ,                                                       (3.5) 

(3.4) may alternatively be written as follows: 

   

(1) (2)

(1) (2)(1) (2)

1 2

0,    

,    .
ˆ ˆ ˆ ˆ

r r

z z

Z Z

b b

b bb b
t t

A A A A

  
 

 

    
(3.6) 

 Nevertheless, (3.4) make also clear that 
(1) (2)ˆ ˆ/ /z Z z Z zb A b A   ,                               (3.7)  

which, compared with (3.6b, c), lead to the 

following results:  
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     

 

1 2 ,

(1) (2)

,   0,

ˆ ˆ/ / .

z z Zt t t rg

b A b A t



  

    

  

    

   
(3.8) 

The first of these relationships reveals that both 

fibre families experience identical fibre growth-

stretch,  t . Hence, connection of (3.8a) with 

(2.5c) yields axial placement in the form  

       0 0
ˆ ˆ; ;    , 0,    1z t Z z R t z R t t     , (3.9) 

which also satisfy the initial conditions (2.3a, c).  

Similarly, connection of (3.8b) with (2.5b) 

yields the radial placement as follows: 

 r t R ,                                                   (3.10) 

and, as , 0rz Zr   , the restrictions (3.6a) are 

satisfied identically. Finally, (3.8c) reveals that the 

most general form of the azimuthal placement is 

   0; ;    ; 0g g R t g g R t   ,                      (3.11) 

where the initial condition (2.3b) is also taken into 

consideration.  

 It is pointed out that (3.10) provides 

already the form of the radial placement for 

growth while (3.9) is on course to do the same for 

the axial placement. Despite that the functions 

 t ,  ;g R t  and  ˆ ;z R t  are still to be 

determined, it is anticipated that, after constitutive 

equations for growth are introduced, the 

corresponding complete set of governing equations 

will appear overdetermined. It will be shown 

though in Sections 4 and 5 below that the extra 

information provided through the use of the 

equilibrium equations (2.12) can be used to 

feedback and, hence, elucidate particular features 

of the adopted type of mass-growth constitution. 

 The deformation features of the growing 

tube can now be updated and captured by the 

following simplified form of the deformation 

gradient and Cauchy-Green deformations tensors: 

,

,
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     (3.12)                                                                                     

where (2.5) and (2.6) still hold. It is thus noted 

that, regardless of the final form of the unknown 

functions  ;g R t  and  ˆ ;z R t , the components of 

both F̂  and Ĉ  are at most functions of the radial 

co-ordinate parameter, R, and the time, t.      

Finally, the rate of deformation tensor 

(2.8) obtains the simplified form 

 

, ,

,

,
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d ,                  (3.13) 

and yields the volumetric rate of deformation as 
ˆtr  3 /   v d .                                         (3.14) 

 

 

4. Incompressible mass-growth 

 

In [10, 13. 14], the term incompressible mass-

growth is associated with a particular class of non-

isochoric, processes that preserve material density 

(ρ/ρ0 = 1 ≠ detF) and enable (2.10) to split into   

0 0,    / 0gr     v .                              (4.1) 

Hence, nonnection of (4.1b) with (3.14) yields 

 /3 0
gr .                                               (4.2) 

By virtue of (3.8), such incompressible 

mass-growth patterns of the fibre-reinforced tube 

are possible if rg depends only on time. Integration 

of (4.2) with respect to time yields thus the fibre 

growth-stretch parameter as follows:   

  









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t

t
g dtrt

0
03

1
exp


 ,                                 (4.3) 

where use is made of the initial condition (3.9c). 

 

4.1 Material constitution 

 

The relevant constitutive equation [10, 13, 14],  

IF
CC

Fσ
T

T
W

WW


















 ,                        (4.4) 

describes a kind of purely elastic mass-growth 

behaviour. Here, W represents the strain energy 

density for growth, while the deformation gradient 

tensor, F, and the right Cauchy-Green deformation 

tensor, C, are measured in some arbitrary 

orthogonal co-ordinate system.  

The constitutive equation (4.4) may thus 

be regarded as a superposition of the term WI on 
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the standard constitutive equation met it 

conventional hyperelasticity. It is, however, 

recalled [10] that the strain energy density for 

growth is not necessarily identical with its 

conventional hyperelasticity counterpart. 

The form (4.4) of the constitutive equation 

implies that the initial values that W and σ acquire 

at t = t0 are interconnected, and potentially 

influenced by earlier mass-growth stages [14, 15]. 

Hence, (4.4) is associated with the initial 

conditions   

,

,

00

0

00

0
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σ
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T
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















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





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
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            (4.5) 

where W0 and T0 denote the initial value of W and 

the prestress tensor, respectively. This set of initial 

conditions is of importance in mass-growth 

problems that require from the initial configuration 

to be updated at regular time intervals. However, 

the influence that potential prestress may exert on 

the present analysis is disregarded in what follows, 

where, for simplicity, it is assumed that 

00T .                                                             (4.6) 

 The form of W must be an isotropic 

invariant of C and two unit non-parallel vectors, 

A(1) and A(2). Such a form of W is expressible in 

terms of an appropriate set of deformation 

invariants, such as the classical set   
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10

1
tr ,     tr tr ,    det ,

2

,    ,

,    ,    

,    cos 2 ,    

.

T T

T T
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T

I I I
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I
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 

   



2
C C C C

A CA A C A

A CA A C A

A C A A A

A C A

  (4.7) 

If the sense of the fibres is not significant, then I8 

and I10 are customarily multiplied by I9 and, hence, 

become even in both A(1) and A(2) (e.g., [11, 12, 16, 

17]). It will be seen later though (see Appendix) 

that this modification is not necessary, at least in 

cases of a tube reinforced by a pair of equivalent 

fibre families wound symmetrically about its axis. 

 Due to certain syzygies that exist among 

the invariants listed in (4.7) (e.g., (30) in [12]), I10 

is long known and/or claimed redundant (e.g., [16-

19]). In this context, [11] and [12] show further 

that only seven of the deformation invariants listed 

in (4.7) can be independent, while only one among 

those seven, notably I9, is a non-strain invariant.  

The latter observations create a 

mathematical conflict in the present mass-growth 

problem. This conflict emerges from the fact that, 

in analogy with [10], the extra information 

involved in the partially known from (3.9) and 

(3.10) of the placement functions is expected to 

transform some of the equilibrium equations into 

relationships between W and its derivatives with 

respect to the employed deformation invariants. 

Such relationships need then to be regarded as 

PDEs, and solved for the unknown function W. 

 However, the implied relationships can be 

regarded as PDEs for W only if a set of precisely 

seven independent invariants is identified and used 

in the description of W, instead of the full classical 

set of non-independent invariants listed in (4.7).  

 

4.2 Constitutive equations in terms of independent 

invariants 

    

Such a set of precisely seven independent 

invariants has been identified in [13] (see also 

Appendix), and is as follows 

   

  

  

  

      

      

12 2

1 1 8 9 4 6 9

1

2 4 6 8 9

1

3 4 6 8 9

1/2
2

4 4 6 9

1/2
1 2 2

5 9 5 7 10 3 4

1/2
1 2 2

6 9 5 7 10 2 4

7 9

2 1 ,  

1 ,

1 ,

2 1 ,

 1 / 2 ,  

 1 / 2 ,

 . 

J I I I I I I

J I I I I

J I I I I

J I I I

J I I I I J J

J I I I I J J

J I













    

   

   

  

        

        



                                                                        (4.8) 

In spite their cumbersome and unattractive 

form, when measured in the cylindrical polar co-

ordinate system implied in (2.1), these invariants 

acquire the following simple values:  

1 11 2 22

3 33 4 23

5 31 6 12

7

ˆ ˆ ˆ ˆ,     ,    

ˆ ˆ ˆ ˆ,    ,    

ˆ ˆ ˆ ˆ,     ,    

cos 2 ,

RR

ZZ Z

ZR R

J C C J C C

J C C J C C

J C C J C C

J







   

   

   

 

             (4.9) 
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where the suffices R, Θ and Z are meant to 

represent their Cartesian parameter counterparts 1, 

2 and 3, respectively.   

Unlike the known weakness of their 

classical counterparts listed in (4.7), these new 

invariants acquire simple physical meaning. 

Indeed, each of J1 – J3 represents amount of stretch 

along one of a corresponding cylindrical polar co-

ordinate direction, while each of J4 – J6 measures 

amount of shear encountered on a relevant 

cylindrical polar co-ordinate surface. The 

independence of J1 – J6 is underpinned by the fact 

that each of these six strain invariants can be 

activated/controlled independently from the others 

by means of appropriately chosen homogeneous 

deformations (e.g., [16, 19]).  

The standard non-stain invariant J7, also 

met in the classical set (4.5), cannot enter the form 

of W on its own, but only through the influence it 

exerts on the remaining strain invariants, J1 – J6. It 

is accordingly evident that the strain energy 

density for growth may be represented in the 

following dual form:   

   1 2 10 1 2 3 4 5 6
ˆ, ,..., , , , ,  W I I I W J J J J J J . (4.10)    

Upon replacing W with Ŵ  in (4.4) and, 

then, developing the latter in the usual manner, 

one obtains the components of the Cauchy stress 

tensor as follows: 

31 2
1 2 3

5 54 4
4 5

6 6
6

ˆ ˆ ˆ2

ˆ ˆ       + +

ˆ ˆ                                            ,

ij iM jN

MN MN MN

iM jN

MN NM MN NM

MN NM

JJ J
F F W W W

C C C

J JJ J
F F W W

C C C C

J J
W W

C C


  

    
   

      
     

       

   
  

   
I

                                                                       (4.11) 

where 

 
ˆ

ˆ ,    1,2,...,6 ,
W

W
J


 


                        (4.12) 

and all remaining suffices take the values 1, 2 and 

3; the standard summation convention of repeated 

indices also applies.   

 The constitutive equation (4.11) holds in 

any orthogonal co-ordinate system, including the 

cylindrical polar co-ordinate system implied in 

(2.1) and (4.9). Hence, use of the notation adopted 

in (4.7), along with the intermediate results:  

1 11
1 1

2 22
2 2

234
2 3

ˆ
,    

ˆ ˆ

ˆ
,...   

ˆ ˆ

ˆ
,...

ˆ ˆ

M N

MN MN

M N

MN MN

M N

MN MN

J C

C C

J C

C C

CJ

C C

 

 

 

 
 

 

 
 

 


 

 

 

one transforms (4.11) into its following cylindrical 

polar coordinate version: 

 

   

 

1 1 1 2 2 2 3 3 3

4 2 3 3 2 5 1 3 3 1

6 1 2 2 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ        + +

ˆ ˆ ˆ ˆ ˆ ˆ                                          .

ij i j i j i j

i j i j i j i j

i j i j

W F F W F F W F F

W F F F F W F F F F

W F F F F W

    

 

  I

                                                                         

                                                                       (4.13) 

When regarded in association with the components 

of σ, suffices 1, 2 and 3 are meant to represent r, θ 

and z, respectively, whereas, if associated with the 

components of Ĉ , they are meant to represent R, 

Θ and Z, respectively.  

 In the present case of interest, F̂  and Ĉ  

obtain the forms shown in (3.12), and, hence, 

(4.11) produces the normal stress components:  

 

 

2

1

2

1 , 6 , 2

2

1 , 5 , 3

ˆ ˆ2 ,

ˆ ˆ ˆ ˆ2 ,

ˆ ˆ ˆ ˆˆ ˆ2 ,

rr

R R

zz R R

W W

W Rg W Rg W W

W z W z W W



 

 

  

 

    
 

    
 

 

                                                                     (4.14) 

along with the following set shear stresses: 

 

 

 

1 , 5 , 4 6 ,

1 , 5

2

1 , 6

ˆ ˆ ˆ ˆˆ ˆ2 ,

ˆ ˆˆ2 ,

ˆ ˆ2 .

z z R R R

zr rz R

r r R

W z W Rg W W z

W z W

W Rg W

 

 

    

   

  

     
 

  

  

                                                                      (4.15) 

 

4.3 Equilibrium 

 

The components of F̂  and Ĉ  defined in (3.12) 

are at most functions of R and t. Hence, 

expressions (4.9) imply that Ŵ  and, therefore, all 

stresses defined in (4.14) and (4.15) are at most 

functions of R and t as well. It follows that, while 

(3.10) also implies that R is proportional to r, the 

equilibrium equations (2.12) simplify as follows:     
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 

   

,

2

,,

1
0,   

1
0,     0.

rr r rr

r rz rr

r

r r
r





  

 

  

 

                      (4.16)  

Direct integration of (4.16b, c) yields 

    
2

2

( ) ( )
; ,    ; ,b h

r rz

b t h t
r t r t

r r

 


 
         (4.17)   

where unique specification of the appearing 

arbitrary functions of time, τbθ and
h 

, is linked 

with satisfaction of the corresponding pair of 

boundary condition listed in (2.14).  

However, the expressed priority on the 

homogeneous version of those boundary condition, 

namely   

    0,b ht t                                            (4.18) 

is found compatible with the assumed 

incompressible mass-growth if   

   ; ; 0r rzr t r t                                      (4.19) 

throughout the body of the growing tube.  

Connection of (4.19) with the last pair of 

(4.15) requires  

1 , 5 1 , 6
ˆ ˆ ˆ ˆˆ2 0,    2 0R RW z W RW g W    ,       (4.20) 

and these conditions are satisfied if  

5 6
, , 1

1 1

ˆ ˆ
ˆˆ ,    ,    0

ˆ ˆ2 2
R R

W W
z g W

W RW


     ,       (4.21) 

or 

1 5 6 , ,
ˆ ˆ ˆ ˆ0,    0R RW W W z g    ,                     (4.22) 

or  

1 5 6 , ,
ˆ ˆ ˆ ˆ 0R RW W W z g    .                          (4.23)           

In any of these three cases, use of the 

ultimate form of the normal stresses (4.14a, b) will 

convert the last remaining equilibrium equation 

(4.16a) into a PDE for the unknown strain energy 

density for growth, Ŵ . Potential solutions of that 

PDE are expected to provide admissible forms of 

Ŵ  that enable realisation of the incompressible 

mass-growth implied by (4.1).  

The most general form which that PDE 

may attain is associated with certain mass-growth 

patterns that enable validity of (4.21) in 

association with , ,
ˆ 0R Rz g  . That form of a PDE is 

highly non-linear and cumbersome and, since it is 

also particularly lengthy, is not cited here 

explicitly. Instead, a relatively simple example 

application detailed next, and this demonstrates the 

manner in which admissible forms of Ŵ  are meant 

to be determined. 

 

 

5. Application: Dilatational mass-growth  

 

Consider an incompressible process of mass-

growth which is purely dilatational, in the sense 

that 0r zr    or, equivalently,  

, ,̂ 0R Rg z  .                                                 (5.1) 

In this particular case, the deformation gradient 

and Cauchy-Green deformation tensors acquire 

diagonal form, namely 

      

 2 2 2

ˆ , , ,   

ˆ , , .

diag t t t

diag

  

  





F

C

                         (5.2) 

 By virtue of (5.1), (4.14) and (4.15) enable 

the nonzero stresses to simplify as follows: 
2 2

1 2

2 2

3 4

ˆ ˆ ˆ ˆ2 ,    2 ,

ˆ ˆ ˆ2 ,    .

rr

zz z z

W W W W

W W W



 

   

    

   

   
    (5.3) 

Moreover, (5.2) enables the six independent strain 

invariants (4.9) to becomae  

 
2

1 2 3 4 5 6,   0,J J J t J J J               (5.4) 

and, as a result, Ŵ and its derivatives, as well as all 

nonzero stresses, are functions of the time only. 

As (5.1) implies that , ,
ˆ 0R Rz g   the 

present application fall into a category of problems 

that require satisfaction of the (4.21) or (4.23). 

These two cases are accordingly considered 

separately in what follows. It is however noted 

that, in either case, it is 

5 6
ˆ ˆ 0W W  .                                                 (5.5a) 

Moreover, priority in the homogeneous 

form of traction boundary conditions requires that, 

in either case,  ; 0h r t   in the last of (2.14). It 

follows that 

4
ˆ 0z W   ,                                            (5.5b) 

 and, hence, (4.10) obtains the simplified form      

   1 2 10 1 2 3
ˆ, ,..., , ,W I I I W J J J .                (5.6) 

 

5.1 Forms of the strain energy density consistent 

with (4.23) 
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In the case that (4.23) holds, its combination with 

(5.5b) reveals that (5.6) simplifies further into   

   1 2 10 2 3
ˆ, ,..., ,W I I I W J J ,                        (5.7)  

and the nonzero stress components become  
2

2

2

3

ˆ ˆ ˆ,    2 ,

ˆ ˆ2 .

rr

zz

W W W

W W

  

 

  

 
                    (5.8) 

The last remaining equilibrium equation 

(4.16a) requires though that rr   . This is 

possible only if 2
ˆ 0W  , and (5.6) reduces to  

   

    
1 2 10 3

12 2

1 8 9 4 6 9

ˆ, ,...,

              2 1 ,

W I I I W J

W I I I I I I




    
                                                                        

                                                                        (5.9) 

which also shows that, when expressed in terms of 

the classical deformation invariants, the admissible 

form sought of the strain energy density becomes 

unconventionally complicated.   

As 
rr  are 

zz  are generally non-zero, the 

assumed mass-growth process becomes possible 

only if supported by appropriate sets of externally 

applied normal tractions. However, by setting 

0hq  , (2.13c) reveals that homogeneous 

boundary conditions on the tube flat ends are still 

applicable if  

0zz  .                                                        (5.10) 

Connection of this condition with (5.8c) 

requires 

3 3
ˆ ˆ2 0J W W  .                                          (5.11) 

Hence, solution of this differential equation 

specifies the strain energy density for growth (5.9) 

as follows: 

   

   

1/2

1 2 10 3 3

1/2
12 2

1 8 9 4 6 9

ˆ ˆ, ,...,

ˆ             2 1 ,

W I I I W J cJ

c I I I I I I


 

     
  

                                                                        

                                                                       (5.12) 

where ĉ  is an arbitrary constant.  

 

5.2 Forms of the strain energy density consistent 

with (4.21) 

 

In the alternative case where (4.21) is valid, (5.6) 

holds still, and (5.8) are replaced by 

2

1

2 2

2 3

ˆ ˆ2 ,

ˆ ˆ ˆ ˆ2 ,    2 .

rr

zz

W W

W W W W

 

   

 

   
   (5.13) 

Satisfaction of the last remaining 

equilibrium equations (4.16a) requires again 

that
rr    or, equivalently, 

1 2
ˆ ˆW W .                                                      (5.14) 

It follows that  1 2 3
ˆ , ,W J J J  should also be 

symmetric in J1 and J2. 

 As 
rr  are 

zz  are generally non-zero, this 

type of mass-growth is again possible only if 

supported by appropriate sets of externally applied 

normal tractions. However, by requiring from one 

or both of 
rr  are 

zz to be zero, one identifies 

several particular cases in which homogeneous 

boundary conditions are applicable in the flat ends 

or on the curved boundaries of the growing tube.     

 By requiring, for instance, that 0zz  , 

someone enables the flat ends of the tube to be 

traction free. Use of (5.13c) leads then again to 

(5.11) which, however, is now regarded as a PDE 

rather than as an ordinary differential equation. Its 

solution thus yields the following class of 

admissible strain energy densities:   

    1/2

1 2 3 1 2 3
ˆ , , ,W J J J c J J J ,                     (5.15) 

where  1 2,c J J  represents a symmetric but, 

otherwise, arbitrary function of its arguments.  

In a similar manner, by requiring 0rr  , 

one obtains the PDE  

1 1
ˆ ˆ2 0J W W  .                                             (5.16) 

A solution of this equation, which is also 

symmetric in J1 and J2, is as follows: 

    1/2 1/2

1 2 3 3 1 2
ˆ , ,W J J J c J J J ,                  (5.17) 

where c  is an arbitrary function of  J3. Such a 

form of a strain energy density for growth implies 

that, while it is also 0  , the curved tube 

boundaries are free from traction. Hence, zz  is 

the only non-zero stress acting throughout the 

growing tube. 

Same features of tube mass-growth are 

observed with use of the alternative class of strain 

energy densities 
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    1 2
1 2 3 3

3

ˆ , , exp
2

J J
W J J J c J

J

 
  

 

,        (5.18) 

which are symmetric in J1 and J2; here,  3ĉ J  is 

an arbitrary function of J3.  This class satisfies 

simultaneously the differential equations 

3 1 3 2
ˆ ˆ ˆ ˆ2 0,    2 0,J W W J W W                   (5.19) 

and, by virtue of (5.13a, c), returns 

0rr    .                                              (5.20) 

Finally, stress-free mass-growth is also 

possible ( 0rr zz     ) in cases that Ŵ  

satisfies either the set of simultaneous PDEs 

1 1

2 2

3 3

ˆ ˆ2 0,    

ˆ ˆ2 0,    

ˆ ˆ2 0,

J W W

J W W

J W W

 

 

 

                                         (5.21) 

or the alternative set 

 

 

1 2 1

1 2 2

3 3

ˆ ˆ 0,    

ˆ ˆ 0,    

ˆ ˆ2 0.

J J W W

J J W W

J W W

  

  

 

                                (5.22) 

It can readily be verified that forms of 

Ŵ which are symmetric in J1 and J2 and consistent 

with the latter alternative sets of PDEs are  

   1/2 1/2 1/2

1 2 3 1 2 3
ˆ , , ,W J J J c J J J            (5.23) 

and  

   
1

1/2

1 2 3 1 2 3
ˆ , , ,W J J J c J J J


                (5.24) 

respectively, where c  is an arbitrary constant.  

 

 

6. Conclusions 

 

This study built up on an earlier, pioneering step 

[10] of modelling mass-growth of a tube 

reinforced by embedded fibres that grow, with and 

within the tube, without changing shape/direction. 

While [10] dealt with the general problem of a 

growing tube reinforced by a single fibre family, 

the present investigation advanced further and 

considered that, as is very often observed in 

nature, there are embedded in the tube two 

families of helical fibres which are wound 

symmetrically about the tube axis. 

 The applications detailed in Section 5, 

dealt with relatively simple mass-growth patterns 

of incompressible and, also, dilatational tube 

mass-growth. However, those pilot examples 

demonstrated clearly the manner in which the 

presented analysis enables determination of 

admissible strain energies that render the tube 

ability to grow without disturbing the shape and/or 

direction of the embedded pair of helical fibres.    

 When compared with the results described 

in (3.12) and (3.13) of [10] for a single family of 

helical fibres, their counterparts (3.9) and (3.13) 

obtained in Section 3 reveal that presence of two 

families of helical fibres stabilises considerably 

the tube mass-growth behaviour, in the sense that 

(i) restricts growth into a radially proportional 

pattern, and (ii) decouples axial growth from its 

azimuthal counterpart. Moreover, through extra 

freedom offered by the presence of the arbitrary 

function  ˆ ;z R t , (3.9) reveals that (iii) a pair of 

helical fibres enhances substantially the tube 

ability to grow in a non-dilatational manner (e.g., 

arteries, veins, plants and trees). 

It is pointed out though that the kind of 

incompressible mass-growth considered in Section 

4 refers to a relatively confined set of problems 

that the present model, detailed previously in 

Section 3, can be applied to. There exists, in fact, a 

vast area of relevant applications which is still 

completely unexplored. This refers to 

compressible mass-growth of hard and/or soft 

biological tissue, namely to non-isochoric mass-

growth that allows mass density to vary with time. 

Investigation and proper study of mass-growth 

compressibility is thus regarded as a subject of 

immediate research interest.  

The principal mathematical difficulty 

observed in that case stems from the fact that, in 

general, and regardless of the number of helical or 

other fibre families embedded in the tube, the 

continuity equation with growing mass (2.10) may 

need to be solved simultaneously with the 

equilibrium equations (2.12). In principle, such a 

solution should also be sought for general 

functional forms of the rate of growth, rg, which, 

however, may depend not only on the time and/or 

the spatial parametrisation, but also on the 

observed mass-growth strain and deformation. 

Nevertheless, search for this kind of complicated 

solutions may be simplified by initially 

considering and studying cases of compressible 
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mass-growth which is either nearly incompressible 

or associated with evidence (theoretical or 

experimental) that reveals a-priori the form of the 

volumetric rate of deformation (2.9).           

It is accordingly fitting at this point to 

mention the additional mathematical hurdle which, 

as is mentioned in the Introduction, stems from the 

fact that the classical deformation invariants 

involved in the strain energy density are not 

independent when the number fibre families is 

bigger than one. This well-known fact suggests 

that corresponding relationships between W and its 

derivatives that reflect mass-growth ability of 

tissue to preserve fibre direction cannot be 

considered as partial differential equations for W.  

The mathematical difficulty caused by the 

latter observation has been confronted successfully 

in [13] (see also Appendix) when the growing 

tissue is reinforced by two families of fibres. 

However, there are recently reported examples of 

arterial wall layers which are reinforced not only 

by a pair of symmetrically wound helices, but also 

by a third or even a fourth fibre family [5]. Mass-

growth examples of tissue that preserves the shape 

and direction of more than two families of fibres 

are accordingly emerging in the literature. Their 

potential/future consideration and study will thus 

naturally require appropriate extension of the 

results reported in the Appendix or, more 

generally, in [13].     

 

 

Appendix 

 

The non-zero components (3.2) of the non-parallel 

unit vectors (3.1) are given in terms of the non-

strain invariant I9 = cos2  as follows: 

 

 

1/2

9

1/2

9

1ˆ 1 0,
2

1ˆ 1 0.
2

Z

A I

A I

   

  

                                  (A.1) 

After I2, I3 and I9 are temporarily excluded 

from the discussion, the remaining of the 

invariants listed in (4.7) are evaluated in the 

cylindrical polar co-ordinate system (2.1) and are 

found to be 
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                                                                        (A.2) 

It is initially observed that these classical 

invariants are all quadratic in, and, therefore, even 

functions of the non-zero components of the fibre 

direction vectors, A(1) and A(2). The sense of the 

fibres is thus not significant by default, and (see 

Section 4 above) I8 and I10 need not be multiplied 

by I9. 

By virtue of (A.1), (A.2) are regarded as a 

set of seven simultaneous algebraic equations for 

the six strain components of the symmetric tensor 

Ĉ . However, as is explained in Section 4 (see also 

[13]), I10 is not independent of the remaining 

invariants and, therefore, (A.2) is essentially 

equivalent to a set of six algebraic equations for 

the six components of Ĉ . By solving this set of 

equations, one obtains (4.9) and (4.8), which 

reveal that the components of Ĉ  are also 

invariants of the deformation.  
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FIGURE 1: Nomenclature of a finite hollow circular cylindrical tube and its cross-section in the reference 

configuration. Nomenclature in the current configurations is obtained by replacing capital letters with their 

low case version.  

 

 

 

 

 

 

 

 

 

 

 


