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Abstract17

This study has for the first time shown that complex food emulsifiers such as starch and protein can18

be applied to produce stable w/o/w emulsions with the membrane emulsification technology. Using19

a microporous metal membrane with a 20 µm pore size, 2% of polyoxyethylene (20) sorbitan20

monolaurate (Tween 20), 4% of octenyl succinic anhydride (OSA) starch or 1.5% of pea protein isolate21

(PPI) in the external water phase respectively was the minimum concentration necessary to stabilise22

the w/o/w droplets. Uniform with a span as low as 0.45 and for at least 13-day stable w/o/w emulsions23
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of droplets between 35 and 320µm were obtained. The release of a magnesium tracer from the24

internal water phase of xanthan gum-thickened w/o/w emulsions, when OSA starch and PPI were used,25

was found to be limited to around 3% after 13-day storage. However, w/o/w emulsions stabilised with26

Tween 20 were less stable with magnesium showing a release of 27% on day 13.27

28

Keywords: membrane emulsification; w/o/w emulsion; food; OSA starch; pea protein; delayed29

magnesium release.30

1 Introduction31

Water-in-oil-in-water (w/o/w) emulsions are aqueous emulsions where the included oil droplet phase32

contains small water droplets in a water-in-oil emulsion. Such emulsion microstructure offers the33

opportunity to entrap in a food systems materials for targeted release in the internal aqueous phase,34

for example, micronutrients such as metal supplements, flavours and vitamins during consumption35

(Herzi and Essafi, 2018, Manickam et al., 2018). The release profiles of those components will depend36

on the oils and surfactants used as well as the droplet size of the w/o/w emulsion (Leadi Cole and L.37

Whateley, 1997, Oppermann et al., 2018, Schuch et al., 2014, Schuch et al., 2013). Lower38

encapsulation efficiency of the inner water phase in w/o/w emulsions stabilised with polyglycerol39

polyricinoleate (PGPR) and egg yolk powder were found to correlate with smaller double emulsion40

droplet size independent of two emulsification methods (Schuch et al., 2014). On the contrary,41

Oppermann et al. (2018) showed that greater encapsulation efficiency of the inner water phase in42

w/o/w emulsions was correlated to smaller double emulsion droplet size. Tween 20, sodium caseinate43

and Whey protein isolate were used as stabilizers of the external water phase. Consequently, it is44

appropriate to seek a tool to control the droplet size of w/o/w emulsions independent of the45

hydrophilic emulsifier type and to investigate the impact of the hydrophilic emulsifier alone on46

encapsulation efficiency.47
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w/o/w emulsions are usually manufactured using a conventional two-step emulsification method48

based on high-pressure or high shear. However, these conventional methods rely on high energy49

input to disrupt the dispersed phase and form droplets (Schubert et al., 2003). The mechanical stress50

during processing tends to disrupt the emulsion droplets leading to a reduction in the encapsulation51

efficiency of the w/o/w emulsions (Kim et al., 2017). In contrast to this top-down processing approach,52

bottom-up processing technologies such as membrane emulsification and microchannel53

emulsification have been described in the literature as ways of obtaining a controllable droplet size54

while processing at much lower mechanical stress input (Schröder et al., 1998, Walstra and Smulders,55

1998, Joscelyne and Tragardh, 2000, Schubert and Ax, 2003, Spyropoulos et al., 2014). Others often56

cited the advantages of bottom-up or mild emulsification processes to include increased energy57

efficiency as less energy is lost as frictional energy (Walstra, 1993, Joscelyne and Tragardh, 2000) and58

prevention of degradation or loss of functionality of heat and shear sensitive ingredients used to59

stabilise the emulsions, for example starch and protein (van der Graaf et al., 2005). In this research60

membrane emulsification, specifically stirred cell membrane emulsification (Kosvintsev et al., 2005,61

Dragosavac et al., 2008), was investigated as a process to generate similarly sized w/o/w emulsions of62

narrow droplet size distribution stabilised with different food emulsifiers.63

PGPR, oil soluble surfactant, is commonly used in the oil phase of w1/o/w2 emulsions to stabilize the64

internal water phase (w1) via top-down processing (Silva et al., 2018, Chen et al., 2018). The primary65

emulsion (w1/o) is then applied to further top-down or alternatively bottom-up processing to create66

the final w/o/w emulsion where water soluble surfactant (most commonly Tween 20) must be present67

in the outer water phase (w2). Another group recently reported on Tween 20 applied in the external68

aqueous emulsion phase to successfully stabilise w/o/w emulsions with encapsulated garlic extract via69

stirred cell membrane emulsification (Ilić et al., 2017, Nikolovski et al., 2018). Tween 20 is a small70

molecular weight surfactant with higher mobility compared to the macromolecules octenyl succinic71

anhydride starch (OSA) and pea protein isolate (PPI). OSA starch is native starch, often of the waxy type,72
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i.e., majorly consisting of amylopectin, that has been chemically modified to contain the anionic and73

nonpolar group – octenyl succinic anhydride. PPI mainly contains two globular proteins, legumin and vicilin74

(O' Kane et al., 2005). Globular proteins are rigid molecules and rearrange at the interface slowly (Stauffer,75

1999). The starch and protein sorb slower at the droplet surface compared to Tween 20 but develop a thick76

and viscoelastic layer and stabilise the droplets through steric and electrostatic repulsion (Bhosale and77

Singhal, 2006, Dickinson, 2010). Therefore, comparison of drop stabilisation and encapsulation/release78

properties of starch, protein and Tween 20 would be beneficial.79

However, to the best of our knowledge, there are no publications on the use of complex food80

emulsifiers such as starches and proteins to stabilise w/o/w emulsions via membrane emulsification.81

We were particularly interested in designing process conditions that would impart a comparable and82

narrow droplet size spectrum for both types of hydrophilic emulsifier, to then independently assess83

the release of magnesium encapsulated in the internal water phase. Magnesium was selected for84

convenient detection of release following previously published method (Bonnet et al., 2009). The85

emulsions, generated by stirred cell membrane emulsification, were thickened with the hydrophilic86

food hydrocolloid xanthan gum post emulsification to alleviate the impact of creaming on the results87

of the release measurement. Based on predictive modelling (Dragosavac et al., 2012), a formulation88

and processing protocol enabling the independent study of the impact of the choice of hydrophilic89

emulsifier on the release properties of a w/o/w emulsion, applicable to a broader choice of90

encapsulates than just magnesium, provided they will not alter the physico-chemical properties of the91

emulsion system, is introduced.92

93

2 Materials and methods94

2.1 Materials and emulsion phases95



5

All used materials were food grade and were used without modifications. To match the osmotic96

pressure NaCl (Fisher Scientific, Loughborough, UK) was used both in the internal (w1) and the external97

water phase (w2) of w1/o/w2 emulsions. NaCl was selected as it enhances the adsorption of PGPR at98

the oil-water interface thus providing superior stability (Pawlik et al., 2010). NaCI, within the internal99

water phase (w1), was replaced with MgCI2·6H2O (Sigma Aldrich, Dorset, UK) for easier and accurate100

detection of encapsulation efficiency or release. Internal water droplets (w1) were stabilised in the oil101

phase (sunflower oil, purchased from local supermarket) with PGPR (PGPR 90; DuPont Danisco,102

Kettering, UK). Tween 20 (Sigma Aldrich, Dorset, UK), octenyl succinic anhydride (OSA) starch (N-103

creamer 46, Univar, Widnes, UK) and pea protein isolate (PPI) (MyProtein, Northwich, UK) were104

applied as a hydrophilic emulsifier. Xanthan gum (CP Kelco, San Diego, USA) was used as a thickening105

agent. Deionized (DI) water, produced on site, was used throughout this study, and sodium azide106

(Sigma Aldrich, Dorset, UK) was added to all aqueous phases to suppress microbial spoilage. Acetone107

(Sigma Aldrich, Dorset, UK) was used as a solvent for a membrane wetting agent (Micropore108

Technologies Ltd., Redcar, UK). All concentrations are provided on a weight by weight basis, unless109

stated otherwise.110

The external water phases (w2) were prepared by mixing the appropriate amount of hydrophilic111

emulsifier with 0.1M NaCl solution. For investigating the impact of emulsifier concentration on stirred112

cell membrane emulsification 0.5%, 1%, 2% and 4% Tween 20; 2% and 4% OSA starch; and 0.5%, 1.5%,113

3% and 6% PPI were applied.114

For encapsulation efficiency and release measurement, 1600 ppm Mg2+ (MgCI2·6H2O, vacuum-dried115

overnight at 95°C to remove free moisture), was dissolved in water to constitute the internal aqueous116

phase (w1) of the w1/o/w2 emulsions instead of 0.1 M NaCI. The outer water phase (w2) consisted of117

0.5% xanthan gum and 2% Tween 20, 4% OSA starch or 1.5% PPI. To maintain the osmotic pressure118
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balance between two aqueous phases of the w/o/w emulsions, Mg2+ concentration was calculated119

according to Equation 1:120

CMg2+ + 2CCI- = CNa+ + CCI- = 2CNaCI = 3CMgCI2
= 0.2 M Eq.1121

where CMg2+, CCI-, CNa+, CNaCI and CMgCI2
are molar concentrations of Mg2+, CI-, Na+ ions, NaCI and MgCI2122

present in w1. It was checked that the addition of MgCI2 to the w/o/w emulsions instead of NaCI had123

no influence on the microstructure and droplet size distribution. The oil phase contained 4% PGPR and124

was prepared by stirring for at least 30 min on a magnetic stirrer at room temperature.125

The w1/o emulsions, as the internal emulsion phase of the w/o/w emulsions, were produced by slow126

addition of internal water phase (w1) into the oil phase containing 4% PGPR under high shear mixing127

(Ultra Turrax, model T25, IKA Works, Staufen, Germany) operating at 24000 rpm for 5 min.128

Emulsification was performed in an ice bath to avoid overheating. These process conditions have129

previously been reported to generate a droplet size of around 0.5 µm (Vladisavljevic and Schubert,130

2003). Final concentration of internal water phase (w1) within the oil phase was 40%.131

132

2.2 Stirred cell membrane emulsification133

For the preparation of the w1/o/w2 emulsions stirred cell membrane emulsification was used. A134

hydrophilic nickel membrane with 4 cm diameter (Micropore Technologies Ltd., Redcar, UK),135

containing uniform straight through 20 µm cylindrical pores with 200 µm pore spacing, was used (see136

Figure A1 in the Appendix). Based on these two parameters, the porosity of the membrane137

(Dragosavac et al., 2008) was calculated to be 0.91%. To increase the hydrophilicity of the membrane138

and to avoid the spreading of the dispersed phase (w/o emulsions) over the membrane surface, the139

membrane was pre-soaked for 30 min in 2% wetting agent (Micropore Technologies Ltd., Redcar, UK).140
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For a set-up the membrane was placed in the base of the Dispersion Cell (Micropore Technologies Ltd.,141

Redcar, UK) filled with continuous phase.142

After preparation of the base, a cylinder glass cell (125 cm3 volume) was fitted over the membrane and143

filled with continuous phase (outer water phase (w2)). A two-blade paddle stirrer, driven by a 24V DC144

motor and power supply (INSTEK Model PR 3060, UK), was fixed on the top of the cell. Maximum shear145

stress was controlled by rotational speed and ranged between 200 and 1500 rpm corresponding to a146

maximum shear stress at the membrane surface between 1 and 51 Pa depending on a continuous147

phase used. The dispersion phases (primary w1/o emulsions) were injected through the microporous148

membrane surface using a syringe pump (AL-1000, World Precision Instrument, Hitchin, UK) fitted with149

a glass syringe of 29 mm inner diameter at constant injection rate in the range of 1 to 15 ml min-1150

corresponding to a transmembrane flux between 70 and 1150 L h-1 m-2. The experiments were151

continued until the dispersed phase volume fraction reached 10 or 30 vol.%. Once the desired amount152

of the w1/o emulsion had passed through the membrane, the pump and the stirrer were switched off153

followed by transferring the w/o/w emulsion into a glass beaker (100 ml of w/o/w emulsion was154

prepared). Finally, 1 ml aqueous sodium azide solution was added to w/o/w emulsions to obtain a final155

sodium azide concentration of 0.02% to prevent microbial spoilage. The beaker was then covered with156

cling film and stored at room temperature (21 ± 5 °C) until further analysis.157

After each use, the membrane was cleaned for 1 min with detergent solution in an ultrasonic bath158

followed by cleaning with acetone and DI water before drying using compressed air.159

Injection speed and maximum shear stress applied to the membrane surface was varied depending160

whether the impact of formulation (type and concentration of hydrophilic emulsifier) or processing161

parameters on emulsion characteristics was evaluated. Emulsions were also produced to assess their162

microstructure stability and encapsulation or release properties. Parameter settings are evident from163

the presentation of the results.164
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165

2.3 Methods for acquisition of parameters required for the droplet diameter predictive model166

To predict the droplet diameter (x) produced with the Dispersion Cell, a conventional shear force167

model (Kosvintsev et al., 2005, Dragosavac et al. 2008) based on the balance between the capillary168

force (function of equilibrium interfacial tension (γ) and pore size (rp)) and the drag force (function of169

a maximum shear stress (τmax) and the droplet size (x)) acting on a strongly deformed droplet at a single170

membrane pore was applied. The droplet diameter can be estimated according to Equation 2.171

x =
ටଵ଼ఛ௠ ௔௫

ଶ௥௣
ଶାଶඥ଼ଵఛ௠ ௔௫

ସ௥௣
ସାସ௥௣

ଶఛ௠ ௔௫
ଶఊଶ

ଷఛ௠ ௔௫
Eq.2172

Thus, to calculate the predicted droplet diameter, the interfacial tension between the w1/o phase and173

w2 phases, the viscosity and the density of w2 were measured as follows. All samples for these analyses174

were prepared in triplicate and analysed once.175

Equilibrium interfacial tension (γ) data at the interface between all the external aqueous emulsion176

phases and the w1/o emulsion was measured with a force tensiometer (DB2KS, White Electric177

Instrument, Malvern, UK) using the Du Nouy ring method at room temperature (21 ± 5 °C). The178

viscosity (20oC) of all the external aqueous emulsion phases was measured using a rotational179

rheometer (MCR 301, Anton Paar, Graz, Austria) fitted with a concentric cylinder double gap geometry180

(DG26.7/T200). Shear rate was stepped up at 5 points/decade between 0.1 and 1000 s-1 and a total181

number of 21 points were acquired every 5 s. The density of external aqueous emulsion phases was182

measured using a density meter (DMA 5000, Anton Paar, Graz, Austria).183

184

2.4 Analysis of emulsion characteristics185
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The visual microstructure appearance and droplet size distribution of the produced emulsions were186

analysed up to 13 days after processing (immediately after production; on day 1, 2, 6 and 13) to gain187

insight into their microstructure stability.188

The microstructure of the w/o/w emulsions was visualised using an epifluorescence microscope189

(L3201LED, GT Vision Ltd., Suffolk, UK) operated in bright field illumination mode. Slides were190

prepared by pipetting a few drops of the continuous phase (w2) first, to reduce the influence of the191

surface tension on drops, and then a few drops of emulsion onto a glass slide followed by carefully192

sliding over a glass cover slip. At least three randomly selected areas of each slide were imaged at a193

lower and a higher magnification (x4 and x20 objective) and three slides were prepared for each194

emulsion.195

The droplet size distributions were analysed with a laser diffraction particle size analyser (Malvern196

Mastersizer 2000, Malvern Panalytical Ltd, Malvern, UK). The Dispersion cell was filled with deionized197

water as the dispersing medium. Measurement set up and analysis was controlled by the instrument’s198

software package. The refractive index of the dispersion medium (water) and the dispersed phase (oil)199

was set to 1.33 and 1.47, respectively. The absorption value of the dispersed phase was set to zero.200

Once the emulsion was dispersed in the water, three measurements were taken, and the raw data201

was fitted with a general model. Measurement was carried out in triplicate.202

203

2.5 Preparation of xanthan gum thickened emulsions204

To prevent creaming during encapsulation or release measurements, xanthan gum was added to the205

emulsion after manufacturing. 1% xanthan gum solution was prepared by dispersing the xanthan gum206

powder into water pre-heated to 80°C, while mixing at 1500 rpm with an overhead mixer (RW20 fitted207

with a 4-bladed propeller stirrer, IKA, Staufen, Germany) for 1 h. The solution was left overnight to208

cool down to room temperature (21 ± 5 °C) and to reach complete hydration before use. 70 g of209
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xanthan gum solution was added to 100 g of emulsion and mixed at 600 rpm on a magnetic stirrer for210

30 min obtaining a final xanthan gum concentration in the external aqueous phase of the w/o/w211

emulsions of 0.5%. Using the particle sized analyser and microscope, it was confirmed that the droplet212

size and their distribution of the w/o/w emulsions did not change due to these mixing conditions.213

214

2.6 Assessing magnesium (Mg2+) encapsulation and release215

An Atomic Absorption Spectrophotometer (Spectra AA-200 Varian, UK), operating at the wavelength216

of 285.2 nm, was used to detect Mg2+ concentration during the encapsulation and release study.217

Standard calibration curves with the Mg2+ concentration as a function of the measurement signal218

(absorbance) for different w2 solutions are shown in Figure A2 in the Appendix. The absorption219

obtained from the spectroscopy increased with increasing magnesium concentration. The220

relationships were linear and repeatable.221

To assess w2 for leakage of w1 and magnesium into w2, the concentration of magnesium in w2 was222

calculated based on the standard calibration curve. Magnesium release percentage was calculated as223

follows (Bonnet et al. 2009):224

Mg (%) = (CMg · w2
) / (Ct · w1

)) * 100 Eq.3225

where CMg is the magnesium concentration in w2, which was calculated from the corresponding226

calibration curves, made for each release media used. w2
is the volume fraction of w2 in final w1/o/w2227

emulsion (0.8), w1
is the volume fraction of w1 in w1/o emulsion (0.4) and Ct is the total Mg2+228

concentration initially added in the internal water phase (1600 ppm). From the amount of Mg2+229

released in the w2 phase immediately after production (Figure 5; day 0) it is also possible to estimate230
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Magnesium encapsulation efficiency (EE) EE (%) = 100 – (CMg/ Ct) ·(1 – w2
)/ w1

·w2
(Dragosavac et al.,231

2012).232

To prepare the samples for release analysis, a w1/o/w2 emulsion was centrifuged for 30 min at 3500233

rpm (Heraeus Labofuge 400R, Thermo Scientific, Germany). The bottom layer was then carefully taken234

out by pipette and centrifuged again at the same conditions to ensure that w2 was void of oil droplets.235

Via microscopic observation and droplet size analysis of the creamed emulsion droplets it was verified236

that the chosen centrifugation conditions had not changed the droplet size distribution. All237

measurements were taken over 13 days at the same days as emulsion droplet appearance was238

checked.239

240

3 Results and discussion241

3.1 Effect of emulsifier concentration242

The effect of the surfactant concentration (Tween 20, OSA starch and PPI) and maximum shear stress243

on the w/o/w emulsions droplet size and span have been jointly reported in Figure 1. Having in mind244

that the model used to predict the droplet size using the Eq. 1 does not take into consideration the245

injection rate, the experimental data are shown for the injection rate of 1 ml min-1 corresponding to246

the lowest meaningful injection rate applicable in the experimental set-up. Increasing emulsifier247

concentration led to a decrease in droplet size for the larger molecular weight emulsifiers PPI and OSA248

starch, but not for Tween 20. At the same time, droplet size decreased considerably when the249

maximum shear stress was stepped up from a low level (1 Pa) to a mid and high level (6 and 20 Pa),250

where the droplet size was comparable. These findings were independent of emulsifier type. In the251

case of the Tween 20 stabilised w/o/w emulsions (Figure 1A), the increase in emulsifier concentration252

from 0.5% to 4% had little impact on the droplet size, as could be expected based on the much lower253
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literature value for this emulsifier’s CMC reported in Table 2. On the other hand, the increase in Tween254

20 concentration led to an improvement in the span for the intermediate maximum shear stress (6255

Pa). This could be due to the presence of excess emulsifier molecules in the continuous emulsion256

phase protecting the formed droplets against coalescence. In literature, 2% Tween 20 is often257

reported for the production of uniform and stable w/o/w emulsions (Pawlik and Norton 2012,258

Dragosavac et al., 2012 and Pradhan et al., 2014), and was therefore chosen as a constant in the259

investigation of the other processing parameters on emulsion microstructure. For OSA starch260

stabilised w/o/w emulsions (Figure 1B), the droplet size decreased when increasing OSA starch261

concentration from 2% to 4%. This was accompanied with a span reduction to 0.53 for maximum262

shear stress of 51 Pa. Further increase in starch concentration did not allow the formation of uniformly263

sized w/o/w emulsions, potentially due to the associated large increase in external phase viscosity.264

Therefore 4% OSA starch was used in further experiments. For PPI stabilised w/o/w emulsions (Figure265

1C), a decrease in the droplet size was observed with increasing PPI concentration from 0.5% to 1.5%.266

Once the PPI concentration was above 1.5%, no further decrease of the droplet size, while span267

increased, was observed. Thus, 1.5% PPI was selected further on.268

It is worth noting that the Tween 20 stabilised w/o/w emulsions had a smaller droplet size and slightly269

better emulsion uniformity (lower span) compared to the OSA starch and PPI stabilised emulsions.270

This can be explained by the higher surface activity of this low molecular weight emulsifier, as reported271

in Table 2, and the faster adsorption rate at the interface compared to the complex emulsifiers starch272

and protein (Bos and van Vliet, 2001, Kralova and Sjöblom, 2009). Nevertheless, values of span never273

exceeded 1 when complex food emulsifiers were used.274

275

3.2 Effect of maximum shear stress and injection rate276

Both injection rate (1-15 ml min-1) and maximum shear stress (1-51 Pa) have been proven in literature277
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to influence the mean droplet size and uniformity of w/o/w emulsions. Therefore, their joint influence278

was studied experimentally within the Dispersion cell. Concentration of emulsifiers was optimised and279

2% Tween 20, 4% OSA starch and 1.5% PPI was used to evaluate the maximum shear stress and280

injection rate influence. Produced emulsions showed the characteristic appearance of a w/o/w281

emulsion, namely dark appearance of the dispersed droplets. For illustration, one representative282

image of one emulsion each stabilised with Tween 20, OSA starch and PPI at the lowest and the highest283

maximum shear stress is shown in Figure 2.284

Mean droplet size and span of the emulsions are presented in Figure 3 along with the model285

predictions for droplet size (Equation 1). The experimental droplet sizes were larger than the predicted286

data but followed the same decreasing trend with increasing maximum shear stress. As expected,287

experimental data was closest to the model prediction at the lowest injection rate of 1 ml min-1, and288

findings agree with literature (Vladisavljevic and Schubert, 2003, Dragosavac et al., 2012, Holdich et289

al., 2010).290

When 2% Tween 20 was used as emulsifier, drops between 50 and 250 µm were produced with a span291

below 0.7. At the low maximum shear stress (1 Pa), d4,3 was larger than 200 µm, which is larger than292

the spacing between the pores. This could mean that the newly formed emulsion droplets built up at293

the membrane surface rather than immediately detached. Possibly, the small shear force applied with294

the paddle led to the formation of a droplet layer on the membrane surface, which then slowly295

dispersed into the bulk (Pawlik and Norton, 2012). Besides, it could be that not all of the membrane296

pores were used to produce droplets during emulsification, providing more space for droplets to grow297

on the membrane (Vladisavljevic and Schubert, 2002). When the lowest injection rate of 1 ml min-1298

was applied, uniform emulsion droplets with a span between 0.4 and 0.6 could be obtained. This also299

suggests that not all membrane pores were active. If all membrane pores were active to produce300

droplets, two neighbouring droplets would limit the droplet growth to interpore distance leading to a301
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lower span due to the additional push off force (Kosvintsev et al. 2005). The lowest span for the Tween302

20 stabilised system was 0.49 and recorded for 1 ml min-1 injection rate and 10 Pa maximum shear303

stress. The highest span of approximately 0.65 was found when the highest injection rate of 15 ml min-304

1 and the extreme cases of the low (1 Pa) and high (20 Pa) end of the shear stress range was applied,305

which suggests fewer uniform droplets. This could be due to some large droplets being broken up by306

the paddle stirrer at the high maximum shear stress and droplets creaming at the low maximum shear307

stress or the highest injection rate (Dragosavac et al., 2012, Thompson et al., 2011).308

When PPI was used to stabilise the w/o/w emulsions (Figure 3B) drops between 300 and 60 µm were309

produced with spans below 0.85. For the OSA starch as emulsifier (Figure 3C) drops between 350 and310

65 µm were produced with spans below 1. The viscosity of the OSA starch solution was roughly 10x311

greater compared to the viscosity of the Tween and PPI solutions. Therefore, the greater span and312

larger droplet size of the emulsions stabilised with starch can be explained with the lower diffusivity313

of the molecules and longer time for drop stabilisation leading eventually to coalescence. As found for314

the Tween 20 stabilised system, when the lowest injection rate of 1 ml min-1 was applied, narrow315

droplet size distributions were generally produced with spans around 0.6 for the OSA starch and PPI316

stabilised systems. The lowest span for the OSA starch stabilised system was 0.4 when processed at317

1ml min-1 injection rate and 5 Pa maximum shear stress. The lowest span for the PPI stabilised318

emulsions was 0.4 when processed at 10 ml min-1 injection rate and 1 Pa maximum shear stress.319

The predicted droplet diameter decreased with increasing maximum shear stress for all emulsifiers320

(model line within Figure 3). As expected based on the interfacial tension values (see Table 2), the321

smallest droplet diameter was predicted for the Tween 20 (Figure 3A) stabilised emulsion, followed by322

PPI (Figure 3B) and then OSA starch (Figure 3C) stabilised systems, at all maximum shear stress values.323

The maximum shear stress range was extended to higher values for the OSA starch stabilised w/o/w324

emulsion due to its around tenfold higher viscosity of the continuous emulsion phase compared to the325



15

other two systems (see Table 2). The maximum shear stress range of the predicted droplet diameter326

curve for the Tween 20 and the PPI stabilised systems were very similar.327

A relatively high maximum shear stress in the present set-up (14-51Pa) combined with a low injection328

rate (i.e. 1 ml min-1) yielded w/o/w emulsions for all three emulsifiers with comparable droplet size of329

around 60-70 µm. As our intention for the Mg 2+ encapsulation/release tests was to investigate the330

influence of emulsifier independently of droplet size (to keep the surface area for the release constant)331

droplets with a diameter of roughly 60 µm were produced according to the conditions from Figure 3.332

333

3.3 Mid-term microstructure stability of the w/o/w emulsions334

The coalescence stability of the w/o/w emulsions stabilised with 2% Tween 20, 4% OSA starch and 1.5%335

PPI manufactured at 1ml min-1 injection rate and the three maximum shear stress levels (low, mid and336

high) was investigated for up to 13 days after processing.337

Figure 4 shows the corresponding droplet size distributions and micrographs. For each emulsion, the338

droplet size distributions showed no difference over 13 days, which suggests these w/o/w emulsions339

were stable against coalescence independent of emulsifier type and sample age. Although all w/o/w340

emulsions creamed by visual observation, the micrographs show that there was no apparent change341

in microstructure and no emptying out for any of the emulsions over the 13 day period of observation.342

As it can be seen from Figure 4, even on day 13, the emulsion droplets had a dark appearance, which343

demonstrates that there was little or no loss of the inner water droplets from the oil droplets of the344

w/o/w emulsions.345

346

3.4 Effect of continuous phase (w2) on Mg2+ release and encapsulation347
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Magnesium release was tracked over a period of 13 days to explore encapsulation efficiency of348

magnesium or the diffusion of the internal water phase (w1) to the external water phase (w2) of the349

w1/o/w2 emulsions. These emulsions had xanthan gum added post emulsification to eliminate the350

impact of creaming on the release data. According to section 3.2, similarly sized uniform droplets351

(roughly 60 µm diameter), characterised by a low span, independent of emulsifier type were obtained352

when a low injection rate (1 ml min-1) was combined with the maximum shear stress of 14, 16 and 36353

Pa for Tween 20, PPI and OSA starch (see Figure 3). For production of w/o/w emulsions for the release354

measurement sodium chloride was substituted for magnesium as a more convenient marker molecule355

(see section 2.6). To maximise the observation window, the volume fraction of w1/o in w/o/w356

emulsions was increased from 10 vol.% to 30 vol.%. So, initially it was ascertained through microscopic357

inspection and acquisition of droplet size distribution data that these two formulation changes had no358

impact on the microstructure of the w/o/w emulsions. There was no apparent change in the359

microstructure of the w/o/w emulsions when using Mg2+ instead of NaCI in w1 compared to the360

respective microstructure shown in Figure 3 on the day of emulsion processing and on day 13361

(micrographs omitted for sake of brevity).362

Figure 5 shows the release of magnesium from w1 into w2 of the xanthan gum thickened w/o/w363

emulsions over 13 days. It has been widely reported that an increase in the viscosity of aqueous phases364

in w/o/w emulsions by the addition of thickening and gelling agents leads to an improvement in the365

encapsulation efficiency of w/o/w emulsions (Kim et al., 2017, Oppermann et al., 2018). Although366

viscosity change induced by xanthan gum was expected to play a significant role on the encapsulation367

efficiency, there were differences found in the released amount of magnesium from all xanthan gum368

added w/o/w emulsions depending on emulsifier type. Encapsulation efficiency immediately after369

production was 100% for the OSA starch and PPI stabilised w/o/w emulsions. The OSA starch and PPI370

stabilised w/o/w emulsions showed some release only between day 3 and day 6 after emulsion371

preparation. Approximately 1% of magnesium were detected in w2 on day 6. Release continued at a372
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slow rate and reached roughly 3% on day 13. So, these two types of emulsions appeared relatively373

stable against magnesium release from the encapsulated water phase, thus it is assumed that there374

was limited diffusion of w1 into w2 setting on only between 3 and 6 days after emulsion generation.375

The Tween 20 stabilised w/o/w emulsion was less stable against magnesium release. 5% magnesium376

release was noted on the day of emulsion processing meaning that encapsulation efficiency of 2%377

Tween was 95%. This could be indicative of a rapid setting on of diffusion of w1 into w2, or loss of w1378

into w2 during the emulsification process. Magnesium continuously leaked into the external water379

phase albeit at decreasing rate over time. Similar observations for Tween 20 stabilised w/o/w380

emulsions, but manufactured at a higher injection speed (about 5 ml min-1), so having a larger droplet381

size (d3,2 = 107 µm), and encapsulating copper in w1, have previously been reported (Dragosavac et al.,382

2012). In that case around 50% of the encapsulated copper was released and w/o/w drops appeared383

clear within 13 days of emulsion generation. In the current study, there was no apparent change in the384

droplet appearance of Tween 20 stabilised w/o/w emulsions after 13-day storage. However, a loss of385

27% of internal water phase (w1) into w2 by day 13 has been detected. Nevertheless, this loss might386

not be enough to visibly change the appearance of the droplets, but diffusion of w1 into w2 might still387

have occurred. Water and water soluble material transport in w/o/w emulsions can be explained either388

by a swelling-breakdown mechanism or diffusion and/ or permeation through the oil film (Cheng et389

al., 2007). Specifically, mechanisms behind diffusion and/ or permeation including an osmotic pressure390

gradient between two aqueous phases (Matsumoto et al., 1980), the thin lamellae of surfactant which391

partially form in the oil layer due to fluctuations in its thickness (Jager-Lezer et al., 1997, Garti, 1997b),392

or reverse micelles in the oil phase (Sela et al., 1995) have previously been reported. Since the osmotic393

pressure was balanced in this study, water transport between two aqueous phases and release of394

magnesium might result from the thin lamellae of surfactant forming in the oil film and the PGPR395

micelles and/or Tween 20 reverse micelles in the oil phase.396
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397

4 Conclusions398

This research has for the first time shown that complex food emulsifiers such as starch and protein399

can be applied to produce stable w/o/w emulsions with the technology of stirred cell membrane400

emulsification. One should consider though that stabilisation with a low molecular surfactant such as401

Tween 20 would allow formation of slightly more uniform droplet size distributions (lower span) with402

a lower mean diameter. For the release of magnesium from the internal water phase to the external403

water phase, OSA starch and PPI stabilised w/o/w emulsions thickened by xanthan gum showed a404

better stability against release than Tween 20 stabilised ones. The results reported in this study405

enabled the production of uniformly sized w/o/w emulsions with similar average droplet diameters406

and high encapsulation efficiency using complex food emulsifiers. Immediately after production407

encapsulation efficiency for OSA starch and PPI was 100% while for Tween it was 97%. Delayed release408

was obtained when complex food emulsifiers (starch and protein) were used with almost no release409

up to 2 days. After 13 days, the emulsions stabilised with Tween 20 had released almost 30% of Mg2+410

and for those stabilised with starch and protein Mg 2+ leakage was less than 4%. This study has411

introduced a pathway, beneficial for food and pharmaceutical applications, to enhance the stability412

and encapsulation efficiency of w/o/w emulsions based on the appropriate selection of the413

hydrophilic emulsifier. Low energy membrane emulsification process proved to be a worthy tool to414

control as desired, both the droplet size of w/o/w emulsions independent of the hydrophilic emulsifier.415

Future work will focus on incorporation of volatile flavours within the emulsion matrix stabilised by416

complex food emulsifiers (PPI and starch).417
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Table 1: Averaged interfacial tension, viscosity (at 10 s-1) and density data acquired at 20 °C561

w2
interfacial tension at
w1/o interface (mN/m)

viscosity
(mPa.s)

density (g/cm3)

2% Tween 20 in 0.1 M NaCI 5.9 ± 0.4 1.07 ±0.01 1.0050 ± 0.0000
4% OSA starch in 0.1 M NaCI 13.7 ± 0.2 11.57 ± 0.12 1.0173 ± 0.0000
1.5% PPI in 0.1 M NaCI 10.5 ± 0.4 1.26 ± 0.05 1.0065 ± 0.0002

562

563

564
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Table 2: Physicochemical properties of emulsifiers used in this study. CMC: critical micelle565

concentration .566

Emulsifier

Approxim
ate
molecular
weight
(g/mol)

Approximate
CMC

Structural formula

PGPR

3000
(Ushikubo
and
Cunha,
2014)

1.8 (% w/w)
at 20 °C
(Bahtz et al.,
2016)

A) chemical structure of PGPR. R is a hydrogen, ricinoleic
acid or polyricinoleic acid. The average value of n is about 3.
B) chemical structure of ricinoleic acid. (Ushikubo and
Cunha, 2014)

Tween 20

1228
(Obradovi
ć and 
Poša,
2017)

0.07 (% w/w)
at 25°C
(Cottrell and
Van Peij,
2015)

Dotted box notes the alkyl chain. (Obradović and Poša, 2017) 

OSA
starch

470000
(Kasprzak
et al.,
2018)

0.05 (% w/v)
at 25°C
(Krstonošić 
et al., 2011)

(Shogren et al., 2000)

PPI

Main
compone
nts (O'
Kane et
al., 2005):
legumin,
380000
g/mol;
vicilin,
150000
g/mol.

0.04 (% w/w)
at 20 °C
(Gharsallaoui
et al., 2009)

-
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567

568

569



Appendix:

Figure A1: Micrographs of the membrane with a pore diameter of 20 μm and a pore spacing of 200 

μm. The scale bar in A and B represents 200 μm and 100 μm respectively. 



Figure A2: Standard curves of magnesium in standard solutions with Tween20, OSA starch or PPI.
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