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Abstract 

Neuroblastoma is the most common childhood solid tumor, yet the prognosis for high-risk 

disease remains poor. We demonstrate here that arginase 2 (ARG2) drives neuroblastoma cell 

proliferation via regulation of arginine metabolism. Targeting arginine metabolism, either by 

blocking cationic amino acid transporter 1 (CAT-1)-dependent arginine uptake in vitro or 

therapeutic depletion of arginine by pegylated-recombinant arginase BCT-100, significantly 

delayed tumor development and prolonged murine survival. Tumor cells polarized infiltrating-

monocytes to a M1-macrophage phenotype, which released IL-1β and TNF-α in a RAC-alpha 

serine/threonine-protein kinase (AKT)-dependent manner. IL-1β and TNF-α established a 

feedback loop to upregulate ARG2 expression via p38 and extracellular regulated kinases 1/2 

(ERK1/2) signalling in neuroblastoma and neural crest-derived cells. Proteomic analysis 

revealed that enrichment of IL-1β and TNF-α in stage IV human tumor microenvironments 

was associated with a worse prognosis. These data thus describe an immune-metabolic 

regulatory loop between tumor cells and infiltrating myeloid cells regulating ARG2, which can 

be clinically exploited.  

Significance  

Findings illustrate that cross talk between myeloid cells and tumor cells creates a metabolic 

regulatory loop that promotes neuroblastoma progression. 
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Introduction 

The consumption and metabolism of diverse nutrients by cancer cells is recognised as a key 

regulator of immunity. Glucose metabolism by cancer cells generates a tumour 

microenvironment that has low levels of glucose, leading to inhibition of T cell cytotoxicity 

through the accumulation of lactate, microenvironment acidification, and reduced aerobic 

glycolysis (1-3). Tumour infiltrating monocyte differentiation and cytokine release may be 

similarly affected, leading to perturbation of their role in coordinating the surrounding 

immune response (4, 5). Amino acid metabolism also plays a critical role in the function of 

both normal and malignant cells. Although whole body amino acid homeostasis is regulated 

through restricted inter-organ enzyme expression, at the cellular level enzyme expression is 

controlled in the intracellular compartment to maintain metabolic precursor supplies and 

regulate the wider tissue microenvironment (6). 

Arginine is a semi-essential amino acid which is metabolised into ornithine and urea by the 

expression of cytoplasmic Arginase 1 (ARG1) and mitochondrial Arginase 2 (ARG2), or Nitric 

Oxide Synthase (NOS) enzymes into reactive nitric oxide species (7). These metabolites feed 

forward into diverse roles in cell signalling, proliferation and protein synthesis. Cellular 

breakdown of arginine also plays a critical role in regulating the immune response, a process 

which has been capitalised on by malignant cells to contribute to their immune escape (8). 

We recently identified that Acute Myeloid Leukaemias (AML) and neuroblastoma, two of the 

most common and devastating cancers of childhood create a potent immunosuppressive 

microenvironment through the expression of ARG2 enzyme which suppresses T-cell immunity 

(9, 10).  
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Although the metabolic effect of cancer cells on shaping the responsiveness of surrounding 

immune populations is increasingly well described, the reciprocal effects of immune cell 

populations on modulating cancer cell amino acid metabolism have not previously been 

reported. In particular the role of arginine metabolism in this process is unknown and the 

signals which regulate ARG2 in cancer are not well  understood. Here we demonstrate how 

myeloid cells within the tumour microenvironment and tumour cells engage in reciprocal 

cross-talk to regulate the expression of ARG2 in neuroblastoma cells, and how this arginine 

metabolism plays a central role in neuroblastoma pathogenesis. Importantly, this study 

identifies arginine metabolism as a clinically relevant therapeutic target. 
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Materials and Methods  

Patient Samples 

Heparinised blood and tumour samples were obtained from 50 patients with neuroblastoma 

treated at the Birmingham Children’s Hospital and Children’s Hospital Oxford. Samples were 

obtained from patients with newly diagnosed neuroblastoma, at the time of diagnostic biopsy 

or before the start of treatment. GD2+ neuroblastoma cells were isolated from bone marrow 

aspirates taken from patients with stage IV disease.   

 

Neuroblastoma murine model 

Transgenic Tg(TH-MYCN)41Waw mice were genotyped to detect the presence of human MYCN 

transgene or the Chromosome 18 insertion site, using an allelic discrimination methodology 

(11, 12). Specific assays were designed to measure the presence of the MYCN transgene 

(forward primer 5’-CGACCACAAGGCCCTCAGTA; reverse primer 5’-

CAGCCTTGGTGTTGGAGGAG; probe 6FAM-CGCTTCTCCACAGTGACCACGTCG TAMRA; 

Eurofins) or to the site of the transgene on chromosome 18 which is disrupted during insertion 

(forward primer 5’- CCACAAAAATATGACTTCCTAAAAGATTT; reverse primer 5’- 

CATGGGACTTCCTCCTTATATGCT; probe VIC-5’-AACAATTATAACACCATTAGATATG TAMRA). 

After weaning, TH-MYCN mice were palpated for intra-abdominal tumours twice weekly. 

Mice with palpable tumours ranging in size between 5-20mm in diameter were then 

humanely sacrificed. At sacrifice, unheparinised and heparinised whole blood, as well as 

tumour tissue were obtained for further ex vivo analyses. Tumour tissue was processed as 
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above. Tumour tissues were stained with anti-mouse GD2 (BioLegend) on ice for 30 minutes. 

The expression of these markers was then assessed by flow cytometry.  

For treatment with BCT-100, mice were treated with 60mg/kg BCT-100 or saline, twice a 

week, ip either from weaning in the prophylaxis setting or upon the development of a 5mm 

tumour in the treatment setting. Mice were treated until the experimental endpoint of a 

10mm abdominal tumour. In the prophylaxis experiment, mice were bled before the start of 

treatment, midway through the treatment, 24 hours after the fifth dose of either saline or 

BCT-100, and at tumour endpoint. All experimental protocols were monitored and approved 

by either The Institute of Cancer Research Animal Welfare and Ethical Review Body, in 

compliance with guidelines specified by the UK Home Office Animals (Scientific Procedures) 

Act 1986 and the United Kingdom National Cancer Research Institute guidelines for the 

welfare of animals in cancer research or the University of New South Wales Animal Care and 

Ethics Committee and conducted according to the Animal Research Act, 1985 (New South 

Wales, Australia) and the Australian Code of Practice for Care and Use of Animals for Scientific 

Purposes (2013). 

GD2+ tumour cell and myeloid cell isolation 

For isolation of GD2+ tumour cells from human and murine tumours were digested using Type 

II collagenase, labelled with anti-GD2-PE antibody (BioLegend) and bound to anti-PE coated 

magnetic beads (Miltenyi Biotec, Bisley, UK). Cells were enriched according to manufacturer’s 

instructions to be >98% GD2+ cells as confirmed by flow cytometry using a PE conjugated anti-

human GD2 antibody. For isolation of primary GD2+ cells from the bone marrow of diagnosed 

stage IV patients, bone marrow aspirates were collected in RPMI 1640 media containing 10% 
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FCS. Cells were lysed using erythrocyte lysis buffer (Qiagen) and the white cell fraction 

isolated by centrifugation. The neuroblastoma cells were labelled with purified mouse anti-

human GD2 Clone 14.G2a (BD Pharmingen) and bound to anti-mouse IgG2a/b microbeads 

(Miltenyi Biotec).  Cells were enriched according to manufacturer’s instructions (Miltenyi 

Biotec). For isolation of monocytes, peripheral blood was collected from healthy donors. 

Monocytes were separated using a Lymphoprep gradient (STEMCELL Technologies) and 

enriched by positive selection using anti-human CD14 MicroBeads (Miltenyi Biotec). 

Cell lines and cultures 

Human primary, untransformed, embryonic neural crest (R1113T) or dorsal root and/or 

sympathetic ganglion-derived stem cells (SZ16) were obtained and cultured as previously 

described (13-15). Neuroblastoma cell lines (SKNAS, KELLY, IMR-32, LAN-1),  the Ewing’s 

sarcoma cell line SKNMC which has high ARG2 expression, and primary GD2+ neuroblastoma 

cells were cultured in RPMI 1640 medium (Sigma) supplemented with 10% v/v foetal bovine 

serum (FBS, Sigma), 100 U/mL penicillin and streptomycin (Gibco), 1mM sodium pyruvate 

(Gibco) and 2mM L-Glutamine (Gibco). All cell lines were originally obtained from ATCC and 

validated for authenticity by DNA short tandem repeats in line with American National 

Standards Institute ASN-0002-2011 (Northgene). All experiments were performed between 

passages 3-9, and cells were confirmed as Mycoplasma negative by PCR analysis (LookOut, 

SIGMA. Latest testing date September 2018). The effects of arginine deprivation were tested 

on cells cultured in arginine-free RPMI 1640 for SILAC (ThermoFisher Scientific) supplemented 

with 10% v/v arginine-free dialysed FBS (ThermoFisher Scientific). Cells were maintained in 

an incubator at 5% CO2 in air and at 37oC.  
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Arginase activity assays 

The activity of arginase 2 present within cells was determined by measuring the conversion 

of arginine into urea, as previously described (10). 

Antibody microarray analysis 

Human stage I neuroblastoma tissue samples (n=13), human stage IV neuroblastoma biopsies 

(n=9) were analysed using scioDiscover antibody microarrays (Sciomics) which targets 900 

cancer-related proteins (16). After sample homogenisation, proteins were extracted with 

scioExtract buffer (Sciomics) and labelled at an adjusted concentration with scioDye 2 

(Sciomics) according to the manufacturer´s instructions. A pool of all protein samples was 

labelled with scioDye1 and used as a reference for all experiments, allowing competitive dual-

colour measurements. Array production, blocking and sample incubation were performed in 

compliance with strict quality control procedures as reported previously. The arrays were 

scanned with identical instrument laser power and adjusted PMT setting using a 

Powerscanner (Tecan). Spot segmentation was performed with the software GenePix Pro 6.0 

(Molecular Devices).  

Enzyme-linked Immunosorbent Assays (ELISA) 

The concentrations of cytokines IFN-, IL-1β, TNF-α, TGF-, IL-6, IL-4, IL-13 and GM-CSF in 

plasma and cell culture media were measured by sandwich-ELISA kit according to specific 

manufacturer’s instructions.  
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Monocyte-driven proliferation assays 

Neuroblastoma cells suspended at a density of 1 x 106 cells/mL in PBS were labelled with 

1µM CellTraceTM FarRed staining solution (Molecular Probes, ThermoFisher Scientific) at 

37oC for 20 minutes. Stained cells were washed three times in RPMI-1640 and rested for 10 

minutes in complete media. Labelled neuroblastoma cells were then cultured in 

supernatants from neuroblastoma-induced macrophages (75% final volume), with or 

without 1µg/mL anti-IL1 (R&D Systems, Catalog #MAB201) and 1ng/mL anti-TNF (Cell 

Signalling, Catalog #7321s) neutralising antibodies. Cells were harvested 5 days later and 

analysed on a CytoFLEX Flow Cytometer (Beckman Coulter). Histograms representing 

distinct generations of proliferation cells were generated using the FlowJo Software 

(TreeStar Inc.). 

 

Reverse transcriptase polymerase chain reactions  

Total RNA was extracted from cells using either the RNEasy Kit (Qiagen) according to the 

manufacturer’s specifications. Extracted RNA was quantified on a NanoDrop ND-1000 

spectrophotometer (ThermoScientific). First strand complimentary DNA (cDNA) was 

generated by incubating 1µg of extracted RNA with 500ng of random primers (Promega), 

0.5mM dNTP (Promega), 1x reverse transcriptase buffer (Promega), 40U RNAse inhibitors 

(RNAsin, Promega) and either 100U MMLV RNAse H+ or 15U AMV reverse transcriptase 

(Promega). For endpoint PCR reactions, up to 100ng of sample cDNA was incubated in 5µL of 

10X PCR reaction buffer (Invitrogen), 0.5mM dNTPs, one unit of Taq polymerase (Invitrogen), 

1.5mM MgCl2, 0.5µM of each forward and reverse primer and nuclease free water up to a 
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final reaction volume of 50 µL. Human primer sequences are listed in Table S1. All quantitative 

PCR (RT-qPCR) reactions were conducted on a Fast 7500 real-time PCR thermal cycler (Applied 

Biosystems).  

TaqMan Assays 

RNA was isolated using the miRNeasy Mini Kit (Qiagen) and RNA concentration determined 

by spectrophotometry (NanoDrop 1000, ThermoFisher Scientific). RNA (10 ng per replicate) 

was reverse transcribed using Superscript™ III Reverse Transcriptase (ThermoFisher Scientific) 

according to manufacturer’s instructions with random hexamer primers (0.3 µg, 

ThermoFisher Scientific) and RNasin Plus RNase Inhibitor (20 units, Promega). Samples were 

analysed in triplicate. Samples analysed in the absence of RT enzyme or without RNA were 

included as negative controls. cDNA was amplified using TaqMan Gene Expression Assays for 

each target (Table S1, ThermoFisher Scientific) according to manufacturer’s instructions. 

Expression of the housekeeping gene PPIA was determined for each sample using sequence 

specific reverse and forward primers (200nM forward primer GGACCCAACACAAATGGTTCC, 

200nM reverse primer CTTTCACTTTGCCAAACACCA, 100nM FAM labelled probe 

ATGCTTGCCATCCAACCACTCAGTCTTG). mRNA expression was calculated using the 

comparative Ct method relative to PPIA. RNA from Cell lines known to express genes of 

interest were included as control (Table S1) 

Study approval 

In accordance with the Declaration of Helsinki, patient samples were obtained after written 

informed consent prior to inclusion in the study. Primary human neural crest-derived stem 

cell lines were obtained under ethical committee approval PFS14-011 from the French 
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Biomedical Agency for the use of embryonic material. Regional Ethics Committee (REC 

10/H0501/39) and local hospital trust research approval for the study was granted for United 

Kingdom hospitals. The Institute of Cancer Research Ethics Committee approved all animal 

protocols in this study. Collection of diagnostic bone marrow aspirates from Stage IV patients 

was performed under ethical approval of the Medical Research and Ethics committee 

(MREC/98/4/023).  Procedures were carried out in accordance with UK Home Office 

Guidelines. 

 

Antibody microarray normalisation and statistical analysis 

The acquired raw data were analysed using the linear models for microarray data (LIMMA) 

package of R-Bioconductor after uploading the median signal intensities. As described 

previously, a specialised invariant Lowess method was applied for normalisation.(17) For the 

differential analysis of protein expression, a one-factorial linear model was fitted with 

LIMMA resulting in a two-sided t-test or F-test based on moderated statistics. Differences in 

protein abundance between sample groups are presented as log-fold changes (logFC) 

calculated for the basis 2. The presented p-values were adjusted for multiple testing by 

controlling the false discovery rate according to Benjamini and Hochberg. In all comparisons, 

proteins were defined as significantly differential with a log-fold change above 0.5 or below 

−0.5 and an adjusted p-value below 0.05. Functional enrichment analyses were conducted 

with the STRING software (https://string-db.org) for the proteins with significantly 

differential abundance between groups, whereby up- and downregulated proteins were 

analysed separately.  
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Arginase 2 Fluorescence Intensity 

Quantification of cell-by-cell fluorescence intensity for Arginase 2 expression across 

treatment conditions were performed using ImageJ software (National Institute of Health, 

USA). Briefly confocal image stacks were converted to single channel images. Pixel intensity 

measurements were determined form single channel Images representing Arginase 2 

staining with Image thresholds set to match positive structures within defined cell 

boundaries. 

 

Statistical analysis 

Parametric student t-tests were used to determine the statistical significance of the 

difference in paired observations between groups (GraphPad Prism, USA). All p values are 

two-tailed and p values <0.05 were considered to represent statistically significant events. 

Significance was recorded as * p<0.05, ** p<0.01, ***p<0.001, ****p<0.0001. 
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Results  

Neuroblastoma conditioned macrophages release IL-1  and  TNF- in the tumour 

microenvironment 

Myeloid cells are a major orchestrator of cancer-related inflammation with the potential to 

support tumour growth, invasion and metastasis. In neuroblastoma we have previously 

shown a significant increase of immunosuppressive myeloid cells in peripheral blood of   

patients and in the tumour tissue of the transgenic neuroblastoma TH-MYCN murine model. 

However the role of intratumoral myeloid cells in human neuroblastoma tumours is not well 

understood. To understand the landscape inside human tissue at diagnosis, we first 

investigated the proteomic profile of 23 human neuroblastoma tumours  (9 Stage I and 14 

Stage IV) using a novel antibody array (18). Non-metric multidimensional scaling from protein 

array for all analysed samples based on the complete protein expression data revealed 

separate clustering of Stage I and Stage IV tumours (Figure 1A). Analysis of human 

neuroblastoma proteomes showed increased expression of the monocyte/macrophage 

marker CD14 and the granulocytic cell marker CD15 in high stage disease (Figure 1B). 

Immunohistochemistry of tissue microarrays of 27 tumours, revealed CD14+ cells infiltrated 

the tumour tissue (Figure 1C upper panels with histoscore Fig 1D, Supp Fig 1A) whilst CD15 

staining localised around vasculature (Figure 1C lower panels with histoscore Fig 1D, Supp Fig 

1A). Together these findings highlight the potential role of myeloid cells in tumourigenesis. 

Monocyte function may be modulated by their environment. To investigate the influence of 

neuroblastoma tumour cells on monocytes, monocytes enriched from healthy donor blood 

were co-cultured with sorted Ganglioside G2 (GD2)+ neuroblastoma cells from patients or cell 
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lines. We observed that neuroblastoma conditioning led to upregulation of the macrophage 

marker CD68 and only a minority of cells upregulated CD206 (M2 marker) (Figure 1E and  Supp 

Figures 1B and 1C). In addition, myeloid ARG1 activity was down-regulated (Figure 1F) 

consistent with polarisation to a M1-phenotype. Importantly immunohistochemistry of 

neuroblastomas  at diagnosis confirmed the infiltration of these CD68+ macrophages within 

the tumour tissue (Figure 1G and Supp Figure 1D). 

Tumour infiltrating myeloid cells can shape the immune response through cytokine release 

within tumour tissue (19). To  investigate the cytokine profile of neuroblastoma induced 

macrophages, a broad panel of cytokines was analysed in culture supernatants. Tumour-

conditioning led to an increased release of IL-1  and TNF- with undetectable levels of IL-

13, IL-6, IFN-, IL-4, TGF- and GM-CSF consistent with a M1-phenotype (Figure 2A and B, 

Supp Figure 2A).  Tumour cells alone released minimal cytokines (<8 pg/ml, Supp Figure 2B). 

Although CD15+ granulocytes released IL-8, they did not release either IL-1  or TNF- 

following tumour co-culture (Supp Figure 2C). To prove that the release of IL-1  and TNF- 

was from the macrophages, intracellular staining for cytokines was performed.  

Neuroblastoma conditioning led to an increased frequency of  IL-1  and TNF- positive 

macrophages at 24hours and 48hours (Figure 2C, Supp Figure 3Aand 3B). Using confocal 

microscopy we confirmed CD14+ cells sorted from patients expressed IL-1  and TNF- (Supp 

Figure 3C) and immunohistochemistry of tissue microarrays of 27 tumours confirmed the 

expression of IL-1  and TNF- in the tumour-infiltrating macrophages. (Fig 2D; Supp. Figure 

4A).  
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IL-1 and TNF- secretion from myeloid cells may be regulated by AKT signalling (20). Co-

culture of healthy donor monocytes with neuroblastoma led to AKT phosphorylation(Figure 

2E) and AKT inhibition with MK-2206 prevented IL-1  and TNF- release (Fig 2F and G). No 

evidence for STAT3, NF-kB, or PI3K pathway activation was identified (Supp Fig 4B). Therefore 

neuroblastoma cells polarise surrounding monocytes to M1-macrophages which release IL-

1  and TNF-. 

 

Neuroblastoma cell proliferation is dependent on arginine metabolism  

Previously we established that that neuroblastoma cells consume arginine from the 

microenvironment and catabolise this amino acid by ARG2 to create an immunosuppressive 

microenvironment contributing to immune escape and suboptimal immunotherapy 

responses (9). However, the role of ARG2 in neuroblastoma development and more widely in 

human cancers has only received limited study. Arginine metabolism can contribute to cell 

proliferation. To investigate the role of ARG2 in tumour cell proliferation, we first performed 

shRNA knock-down for ARG2. ARG2 knock-down led to a significant reduction in cell 

proliferation (Figure 3A, Supp Figure 4C) confirming the key role of this enzyme. We next 

blocked uptake of arginine from the microenvironment via Cationic Amino Acid Transporter-

1 (CAT1), which we showed is expressed in the majority of neuroblastoma cell lines (Supp 

Figure 4D). N-nitro-L-arginine (L-NAME) inhibitor led to a significant decrease in tumour cell 

proliferation (Figure 3B). Culture of tumour cells in the absence of arginine similarly inhibited 

tumour cell metabolic activity (Figure 3C). BCT-100 is a PEGylated recombinant human 

arginase that can deplete arginine to undetectable levels in cancer patients leading to clinical 
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responses in adult trials (21).Culture of neuroblastoma with BCT-100 led to a rapid inhibition 

of cell proliferation (Supp Figure 4E), and tumour cell death characterised by PARP cleavage 

(Supp Figure 5A). Electron microscopy of sorted tumour cells from cell lines and patients 

confirms loss of cell membrane integrity, and cellular fragmentation (Figure 3D). 

 

To investigate the in vivo dependence of tumour growth on arginine we used the 

immunocompetent TH-MYCN transgenic mouse model which spontaneously develop 

neuroblastoma tumours .(11) These murine tumour cells also express ARG2 (Supp Figure 5B). 

We first demonstrated that ex vivo treatment of murine GD2+ tumour cells with BCT-100 led 

to a significant reduction in viable cells (Figure 3E). Treatment of TH-MYCN mice with twice-

weekly BCT-100 led to a sustained drop in plasma arginine to almost undetectable levels 

(Figure 3F). To understand if tumour initiation could be delayed or prevented in the absence 

of arginine, mice were treated prophylactically from the time of weaning at 3 weeks of age, 

when the tumours were 1-2 mm in size. Neuroblastoma development was significantly 

delayed and mice survived for significantly longer in the BCT-100 treated group compared to 

control (p=0.0001, Figure 3G). Following this, we investigated the effect of BCT-100 on 

established tumours. Here we showed that murine tumour progression was significantly 

delayed compared to the saline control and overall survival was significantly extended 

(p=0.0181, Figure 3H). Arginine re-synthesis pathway enzymes ArgininoSuccinate Synthase 

(ASS) and Ornithine Transcarbamylase (OTC) were not upregulated in GD2+ cells from murine 

tumours as mechanisms of resistance (Supp Fig 5C). No evidence for BCT-100 drug toxicity in 

terms of weight or clinical features were identified.   
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Macrophage Il-1 and TNF- drive tumour ARG2 expression via p38/ERK signalling 

As ARG2 contributes to tumour cell proliferation, we hypothesised that these macrophage-

derived cytokines may reciprocally regulate ARG2 expression. We first showed that the 

treatment of neuroblastoma cells with low basal expression of ARG2 (SKNAS and IMR32) with 

IL-1  and TNF- either alone or in combination, resulted in upregulated ARG2 expression 

(Figure 4A and B). Sorted human GD2+ neuroblastoma cells similarly upregulated ARG2 in 

response to cytokines (Figure 4C).Consistent with this finding, supernatant from tumour-

induced macrophages upregulated ARG2 in neuroblastoma cells (Figure 4D, Supp Figure 5D). 

To investigate whether the M1-macrophages would therefore enhance neuroblastoma cell 

proliferation via ARG2, we cultured neuroblastoma cells with induced-macrophage 

supernatants. Supernatants led to increased cell proliferation in neuroblastoma cells (Figure 

4E – red) compared to the untreated cells (Figure 4E-black). The phenotype was partially was 

reversed by the addition of IL- and TNF- neutralising antibodies (Figure 4E-green, and Supp 

Fig 5E).  

Neuroblastoma is a pathological derivative of trunk-level neural crest cells, which normally 

develop into diverse populations including catecholamine-secreting cells of the adrenal 

medulla, sympathetic, parasympathetic and sensory neurons, and multipotent Schwann cell 

precursors (22, 23). We hypothesised that a microenvironment containing similar factors to 

postnatal inflammation may contribute to tumour initiation by upregulating ARG2 in these 

embryological cells. Analogous to neuroblastoma, treating cultures of normal human 

embryonic ganglion precursors with IL-1  and TNF- led to a significant upregulation of 
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ARG2 protein expression (Figure 4F), demonstrating the inherent responsiveness of neural 

crest progenitors to these signals before oncogenic transformation. 

We determined that neuroblastoma express the receptors for IL-1  and TNF- (Figure 5A). 

The Interleukin 1 Receptor 1 (IL1R1) and Tumour-Necrosis Factor Receptor 1 (TNFR1) 

receptors can induce a signalling cascade that both converge on a common final effector 

pathway through ERK1/2 and p38 activation, and Ribosomal Protein S6 Kinase A5 (MSK1) 

activation (Figure 5B) (24-26). Treatment of neuroblastoma cells with IL-1 and TNF-α leads 

to NFB phosphorylation by 0.5 hours and subsequent phosphorylation of ERK1/2 from 1 

hour onwards (Figure 5C). Simultaneously, the cytokines also induced p38 phosphorylation at 

0.5 hours (Figure 5C). PD98059 binds inactive ERK and prevents phosphorylation and 

activation by upstream mediators, while SB20308 inhibits p38 catalytic activity but does not 

affect phosphorylation. The resulting inhibition of p38 or ERK1/2 signalling leads to 

subsequent downregulation of ARG2 expression in SKNAS neuroblastoma cells (Figure 5D). 

Blockade of either p38 or ERK1/2 in isolation is insufficient to prevent ARG2 upregulation by 

cytokines due to compensation by the other side of the pathway (Fig 7B and Supp Fig 5F). 

MSK1 is at crossroads of the common downstream cascade and can be auto-regulated by 

kinases including ERK1/2 and p38. SB747651A blockade of MSK1 activity, which is 

phosphorylated from 0.5 hours onwards (Figure 5C), similarly prevented cytokine-induced 

ARG2 upregulation (Figure 5E).  
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The 1  and TNF-  enriched intra-tumoural microenvironment is associated with high-

stage disease 

We previously showed that ARG2 expression is highest in Stage IV tumours and is associated 

with a worse overall survival (9). Cytokines may be functional either within the tumour 

microenvironment or released into the blood to induce systemic effects. Analysis of blood 

from 25 neuroblastoma patients at diagnosis revealed that the majority of patients did not 

have significantly increased TNF- and IFN- compared to healthy controls, although in 9 

cases circulating levels of IL-1 and IL-6 were significantly higher (p=0.042) (Figure 6A).  

We hypothesised that the intratumoral cytokines driving arginine metabolism in 

neuroblastoma would promote high stage human neuroblastoma development.  To 

investigate this we further analysed the proteomic profile inside 23 human neuroblastoma 

tumours. Heat-map representation of protein signals reveal that Stage I and Stage IV tumours 

show distinct molecular proteomic subgroups, with 7 Stage IV tumours (P21-27) forming a 

distinct group, while 3 others (P10,P15,P16), had proteomes more similar to Stage I tumours 

(Figure 6B). Consistent with our in vitro findings, characterisation of the Stage IV tumours 

identified significantly higher levels of the M1-macrophage derived cytokines IL-1 and TNF-

 than Stage I tumours (Figure 6C). In contrast, Stage I tumours had increased expression of 

the M2-related cytokines TGF-, IL-10, and IL-4 (Figure 6D). No significant differences in IL-6 

and IL-13 expression were identified. Consistent with this, analysis of the expression profile 

of 88 neuroblastomas (GEOID: GSE16476) revealed high expression of IL-1  or TNF- within 

tumours is associated with a significantly worse overall survival for neuroblastoma patients 

(p=0.012 and p=0.027 respectively, Figure 7A and B). 
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Discussion 

Although it is well established that amino acid metabolism can regulate anti-cancer immunity, 

the capacity of the immune system to regulate cancer amino acid metabolism has rarely been 

characterised.  In this study we identify a key reciprocal regulation between tumour cell 

arginine metabolism and intra-tumoural macrophages in neuroblastoma. The regulators of 

ARG2 expression in cancer are poorly understood despite abundant data on its cytoplasmic 

counterpart ARG1. ARG2 can be upregulated by hypoxia in osteosarcoma cells and non-

malignant cells, whilst in pancreatic ductal adenocarcinoma models obesity correlated with 

increased ARG2 levels and enhanced tumour growth (27, 28)(29, 30). Studies of cytokine 

regulation of Arginase 2, are limited to non-malignant cells with reports that Th1 or Th2 

cytokines have no effects on murine myeloid cells or can modulate ARG2 expression in murine 

neural stem cells.(31) In humans IL-10 may regulate ARG2 in combination with isoproterenol 

in macrophages.(32)   

We and others have previously reported the ability of neuroblastoma to modulate circulating 

monocytes into an immunosuppressive phenotype on T cells and NKT cells. (33) Here we 

demonstrate that the tumour cells also polarise intratumoral monocytes to M1-macrophages, 

which express and release IL-1 and TNF- after AKT signal transduction. AKT inhibitors, such 

as Perifosine, have recently undergone early phase clinical trial development including 

evaluation in refractory neuroblastoma, with initial results suggesting that targeting this 

pathway could prolong progression-free survival (34).  We show that tumour-polarised 

macrophages act back to regulate cancer cell arginine metabolism through IL-1 and TNF-

 and drive tumour cell proliferation. Recently murine macrophages were shown to increase 
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neuroblastoma proliferation in  association with STAT3 phosphorylation, although the factor 

responsible was not identified.(35) We demonstrate that ARG2 expression is under the 

control of both p38 and ERK1/2 in human neuroblastoma cells, which lie downstream of the 

receptors for IL-1 and TNF- (IL1R1 and TNFR1 respectively). The role of these cytokine 

pathways in cancer cell expression of ARG2 has not previously been reported. Some 

redundancy in the signalling cascade is evident, such that inhibition of both receptor 

pathways, or of their common effect on MSK1, is required to inhibit enzyme expression.  

We showed that the Stage IV intratumoural microenvironment is enriched in the expression 

of IL-1 and TNF-  whilst the converse is true for Stage I tumours. To date, the role of IL-

1  and TNF- in neuroblastoma has primarily centred around the effects of these cytokines 

on neuroblastoma cell lines used as models of neurodegenerative disease, such as 

Alzheimer’s disease.  In terms of its effects on the malignant phenotype, recombinant TNF- 

has been shown to be a growth factor for neuroblastoma cell lines, although the mechanism 

of action was unknown (36). A minor subset of neuroblastoma cells within tumours, may 

themselves express TNF- intracellularly or on the cell membrane, but they do not release 

the cytokine into the microenvironment (33). For IL-1 little is known in the context of 

neuroblastoma, although it is reported to drive cyclo-oxygenase (COX-2) expression in 

neuroblastoma Alzheimer’s disease cell line models (37). Importantly, we identified that 

levels of IL-1  and TNF- proteins in the plasma are not significantly greater than in healthy 

donors, indicating that it is the intra-tumoural interactions that are key. 

Clinically it is clear that Stage I and Stage IV neuroblastomas are distinct at the levels of 

tumour dissemination, responses to chemotherapy, and patient outcome.  Inter-cellular 
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signalling within tumours remains difficult to characterise, although much has been learned 

from transcriptomic and epigenetic profiling of these tumours (38, 39).  The functional 

interaction of proteins within the cellular ecosystem must be contributing to variation in 

tumour aggressiveness, although analysis of multiple proteins inside tumours is challenging. 

To our knowledge, this study is also the first proteomic characterisation of human 

neuroblastomas at diagnosis and the findings suggest that array-based proteomic profiling 

can lead to new insights into tumour immunobiology.  It has been hypothesised that an 

immune-stimulatory event, such as infection in early childhood could contribute to the 

development of childhood cancers either through a normal or aberrant response. Indeed a 

‘delayed infection’ hypothesis had been suggested for childhood acute lymphoblastic 

leukaemia (40).  Although specific infections like Epstein-Barr Virus are directly linked to 

malignant transformation of cells in Hodgkin’s Lymphoma or nasopharyngeal carcinoma, in 

the majority of paediatric malignancies no evidence of clearly defined cause and effect have 

been found (41, 42). It is possible that an isolated pro-inflammatory response within a tissue 

microenvironment could potentially lead to a cytokine profile that drives metabolism in 

malignant or pre-malignant cells, giving them a survival advantage, allowing development 

into a frank malignancy. The inflammation could be secondary to very specific infectious 

agents or an abnormal, pathological response due to immune defects. 

Neural crest cells are highly multipotent stem cells in the embryo which give rise to diverse 

cell types such as melanocytes, odontoblasts, peripheral neurons and support cells, including 

those of the dorsal root, sympathetic and parasympathetic ganglia, and specific endocrine 

cells in the thyroid and parathyroid glands and the adrenal medulla(22). We found that neural 
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crest-derived primary cells are enriched in ARG2 protein, relative to ARG1. The role of ARG2 

in embryological processes is not well understood. Neonatal CD71+ erythroid cells express 

ARG2, which may affect the response to commensal bacteria in the developing baby, while 

dendritic cells in the developing foetus also express ARG2 to modulate immune responses in 

utero (43, 44). That the expression of ARG2 in untransformed neural crest-derived stem cells, 

can be upregulated by immune cytokines IL-1β and TNF-α  points to the potential for 

metabolic changes to occur during malignant transformation or expansion. We have 

previously shown that AML blasts have similarly upregulated ARG2 in comparison to their 

non-malignant haematopoietic counterparts (10). Indeed, knock-down of ARG2 significantly 

reduces the ability of both types of tumour cells to proliferate, suggesting this enzyme 

provides an advantage to cancer growth and dissemination. 

 

Although arginine metabolism under cytokine control can drive neuroblastoma proliferation, 

this axis also provides a potential therapeutic target. Targeting tumour-associated myeloid 

cells has received significant attention to date. Although depletions of myeloid cells can be 

achieved in vivo using anti-GR1 or anti-CR2 antibodies, the effects are very short-lived in mice 

and no human equivalent exists for clinical translation. One approach to target the feedback 

loop we have described is to inhibit Il-1 and TNF- cytokine activity. Anti-TNF- therapy was 

the paradigm for anti-cytokine therapies with the development of anti-TNF- antibody 

(infliximab) and a decoy anti-TNF-A receptor (etanercept). Although these antibodies have 

demonstrated remarkable activity in autoimmune conditions, they have only undergone 

limited study in the setting of cancer therapy. Infliximab has been used as a single agent in 
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patients with advanced cancer, with some patients experiencing disease stabilisation (45). 

The drug has also been trialled to treat renal cell carcinoma and although improvements in 

immune profiles were noted, there were also significant increases in adverse events (46, 47).  

Similar antibodies against IL-1 (canakinumab) and its receptor IL-1R1 (anakinra) also exist. 

Although canakinumab has not been formally tested in patients with an existing cancer, 

administration of this drug has been shown to significantly reduce incidences of lung cancer 

and its mortality in patients with atherosclerosis (48). Future combination clinical trials of 

these agents could represent a novel and potential approach in children with neuroblastoma. 

It is now possible to successfully target cancer arginine metabolism through therapeutic 

arginine depletion with BCT-100, a PEGylated recombinant arginase that induces sustained 

arginine depletion for months in human trials (49, 50). The drug has completed Phase I/II trials 

in adult malignancies with an excellent safety profile (21). In this study we demonstrated that 

BCT-100 not only leads to a decrease in neuroblastoma proliferation with accompanying cell 

death in vitro, but also to delayed progression and prolonged survival in neuroblastoma-

bearing mice. These findings support the testing of BCT-100 in an international Phase I/II 

clinical trial (PARC, NCT03455140) in children with relapsed/refractory malignancies including 

neuroblastoma. The targeting of both immune and metabolic drivers of tumorigenesis as 

presented in this study, is rational and clinically achievable, and could be a new paradigm in 

the treatment of neuroblastoma.  
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Figure Legends 

Figure 1: Neuroblastoma induces M1-macrophages 

A) Non-metric multi-dimension scaling of Stage I (RED) and Stage IV (BLUE) tumours at 

diagnosis shows distinct proteomic profiles for these two stages of tumours B) Proteomic 

analysis of Stage I and IV tumours identifies significantly higher expression of  CD14 and CD15 

in Stage IV tumours C) Immunohistochemical staining of sections from neuroblastomas 

showing infiltration of CD14+ (upper) and CD15+(lower) myeloid cells. Representative 

sections shown of n=27, tissue microarray D)  Histoscores of CD14 and CD15 staining in 

neuroblastoma tissue microarrays of n=27 tumours E) CD14+ monocytes from healthy donors 

co-cultured with sorted GD2+ tumour cells from patients upregulate CD68 expression (upper). 

Minimal CD206 upregulation was seen. Representative flow cytometry shown (n=5) F) CD14+ 

monocytes from healthy donors co-cultured with neuroblastoma have decreased arginase 

activity, as assessed by conversion of ornithine to urea in a colorimetric assay. (n=3) G) 

Immunohistochemical staining of sections from neuroblastomas showing infiltration of 

CD68+ macrophages. Representative sections shown of n=27, tissue microarray 

Figure 2: Tumour-induced macrophages cells release IL-1 and TNF- through p-AKT 

signalling 

ELISA of supernatants following co-culture of healthy donor monocytes with neuroblastoma 

cell lines, showing increased IL-1 () and TNF- (B) (n=7) C) Co-culture of monocytes from 

healthy donors with tumour cell lines for 48hours leads to upregulation of IL-1 and TNF-

 expression, compared to those cultured in RPMI10% media. Flow cytometry staining 

shown, gated on CD14+ cells. Representative staining from 3 independent experiments D) 
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Immunohistochemical staining of sections from neuroblastomas showing infiltration of 

CD33+IL-1+ and CD33+TNF-+ macrophages. Representative sections from n=27 TMA 

shown E) CD14+ myeloid cells from healthy donors were sorted following co-culture with 

neuroblastoma cell lines. Co-culture leads to increased expression of p-AKT, as shown by 

Western blotting (n=3) Addition of AKT inhibitor MK2206 to co-cultures of CD14+ cells and 

neuroblastoma cell lines leads to inhibition of IL-1 (F) and TNF- (G) release (n=3) protein 

expression.  

Figure 3: Neuroblastoma proliferation is dependent on arginine metabolism 

A) shRNA knock-out of ARG2 in SKNMC (high baseline ARG2 expression) decreases cell 

proliferation. Fold change in cell number after 72h compared to baseline. Experiment 

performed in duplicate. Corresponding Western blots for ARG2 in wild-type and knock-down 

cell lines shown below, with actin as a loading control B) Proliferation of tumour cell lines is 

inhibited by CAT1 inhibition with L-NAME, measured by 3H-thymidine incorporation after 72 

hours C) Cell lines were cultured with RPMI+10%FBS (R10%) or arginine-free RPMI+10%FBS 

(R10%-arginine). Metabolic activity was measured by MTT after 72h. n=7 replicates D) Sorted 

GD2+ neuroblastoma cells from patients were treated with BCT-100 (600ng/mL). Analysis of 

cell death was performed by transmission electron microscopy (Representative micrographs 

of 2 out of 6 patients shown). Upper panel show untreated cells. Lower panels show post 

treatment with 600ng/mL BCT-100. Features consistent with organelle enlargement, cell 

membrane permeablisation, and cellular fragmentation with 600ng/mL BCT-100. 

Experiments performed on 3 separate occasions E) Sorted GD2+ cells from TH-MYCN murine 

neuroblastomas were cultured with BCT-100 (600ng/mL) for 72 hours. The percentage of 
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viable cells relative to untreated controls was determined by flow cytometry, using propidium 

iodide staining. BCT-100 leads to a decrease in murine neuroblastoma cell viability ex vivo F) 

Plasma from control (saline) and BCT-100 treated TH-MYCN mice was collected at the start 

(PRE), 16 days after (MID), and at tumour end-point (END). The concentration of arginine was 

determined by ELISA. BCT-100 maintains a significant reduction in the plasma arginine 

concentration in vivo. n=6 G) TH-MYCN mice were treated with BCT-100 (60mg/kg) twice 

weekly intraperitoneally (ip) from the time of weaning at 3 weeks of age before overt tumour 

formations (Prophylaxis). Kaplan-Meier curves show that the development of tumours is 

significantly delayed, and that survival is increased in BCT-100 treated mice H) TH-MYCN mice 

were treated with BCT-100 (60mg/kg) twice weekly ip once 5 mm tumours were palpable 

(Treatment). Kaplan-Meier curves show a significant prolongation of survival in BCT-100 

treated mice. 

Figure 4: Il-1 and TNF- upregulate Arginase 2 expression and tumour cell proliferation  

Treatment of neuroblastoma cells SKNAS (A) and IMR32 (B) with recombinant cytokines alone 

or in combination leads to upregulation of ARG2, measured by western blot. Actin is shown 

as a loading control. Corresponding densitometry of ARG2 relative to actin shown. 

Representative of n=6 replicates C) Treatment of sorted GD2+ primary neuroblastoma cells 

(Patient 53 and Patient 54) with cytokines leads to upregulation of ARG2, measured by 

Western blot. Actin is shown as a loading control. Corresponding densitometry of ARG2 

relative to actin shown D) Representative confocal microscopy of neuroblastoma cell line 

SKNAS shows expression of arginase 2 is increased following culture with the supernatants of 

neuroblastoma-induced macrophages. DAPI – blue, ARG2 – green, MitoTracker – red (n=3) E) 
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Neuroblastoma cell proliferation is enhanced in the presence of neuroblastoma-induced 

macrophage conditioned supernatants (MCM). The addition of anti-TNF and IL-1 

antibodies (inhibitors) reversed the  proliferative effects of MCM. Cell proliferation of 

neuroblastoma shown by dilution of Cell Trace reagent, measured by  flow cytometry F) 

Treatment of embryonic dorsal root ganglion stem cell line SZ16 with recombinant cytokines 

alone or in combination leads to upregulation of ARG2, as measured by Western blot. Actin 

is shown as a loading control. Corresponding densitometry of ARG2 relative to actin shown. 

Representative of n=3 replicates. 

Figure 5: Il-1 and TNF- drive Arginase 2 expression in a p38/ERK dependent manner 

A) Neuroblastoma cell lines express the IL-1b and TNF-a receptors on the cell surface as 

assessed by flow cytometry. (n=3) B) Schematic showing the signalling pathway for IL-1 and 

TNF- cytokines, via ERK1/2, p38 and MSK1 C) Time course (hours) in which IL-1 and TNF- 

lead to increased p-NFB (0.5 hours), p-ERK1/2 (from 1 hour onwards), p-p38 (0.5 hours) and 

p-MSK1 (0.5 hours onwards). ERK1/2, p38, and MSK1 activity are inhibited by PD90859, 

SB203508, and SB747651A respectively. Western blot shown. Representative of n=3 

replicates D) Treatment of SKNAS neuroblastoma cells with recombinant cytokines leads to 

upregulation of ARG2, which is inhibited by ERK1/2 and p38 inhibition. Western blot shown 

with actin as a loading control. Corresponding densitometry of ARG2 relative to actin shown 

N=3 replicates E) Treatment of SKNAS neuroblastoma cells with recombinant cytokines leads 

to upregulation of ARG2, which is inhibited by MSK1 inhibition. Western blot shown with actin 

as a loading control. Corresponding densitometry of ARG2 relative to actin shown n=3 

replicates 
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Figure 6: The Stage IV neuroblastoma intratumoural microenvironment is enriched in IL-1 

and TNF A)ELISA Quantification of cytokine titres in neuroblastoma patient plasma (n=26) 

at diagnosis identifies no significant differences in circulating levels of TNF- and IFN-. 

Circulating IL-1 concentrations were significantly higher in some patients at diagnosis.  B) 

Heatmap of Stage I (RED) and Stage IV (BLUE) tumours at diagnosis shows distinct proteomic 

profiles for these two stages of tumours C) Proteomic analysis of Stage I and IV tumours at 

diagnosis identifies significantly higher expression of the IL-1, TNF-,  as well as IFN- in 

Stage IV tumours D) Stage I tumours express significantly higher Th2 cytokines TGF-, IL-10, 

and IL-4 by proteomic analysis 

Figure 7: High IL-1 or TNF- expression in tumours correlate with a worse overall survival 

for patients Kaplan-Meier curves of n=88 neuroblastoma patients at diagnosis identifying 

high IL-1 (A) or TNF- (B) expression in tumours is associated with a worse overall survival. 

All data are analysed in accordance with the public Versteeg database ‘R2: microarray 

analysis and visualization platform’ (http://r2.aml.nl). 
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