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Abstract 
 
Computer based discrete event simulation (DES) is one of the most commonly used aids for the design of 
automotive manufacturing systems. However, DES tools represent machines in extensive detail, while only 
representing workers as simple resources. This presents a problem when modelling systems with a highly 
manual work content, such as an assembly line. This paper describes research at Cranfield University, in 
collaboration with the Ford Motor Company, founded on the assumption that human variation is the cause 
of a large percentage of the disparity between simulation predictions and real world performance. The 
research aims to improve the accuracy and reliability of simulation prediction by including models of 
human factors. 
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1. Introduction 
 
Organisations face constant pressure to improve products, facilities, technologies, methods, and work 
practices, and hence, the design and redesign of manufacturing systems is an on-going and complex task. 
Industrial environments are designed and created by engineers who use a combination of judgement, 
bargaining and analysis to assess the designs they create. However, although the theoretical steady state 
performance of a system can be easily calculated, interaction of resources and the time dependency of 
activities means that the dynamic behaviour of a system is much more difficult to determine. Computer 
based simulation enables systems to be modelled, and so allows better predictions of performance. 
 
Computer simulations have traditionally focussed on the technological aspects of systems (e.g. machines, 
conveyors), and represented these with deterministic and stochastic data [2]. Such simulations however, 
frequently overestimate the production capacity of manufacturing systems. This can cause serious problems 
when the proposed system is implemented, and then fails to meet expectations. Our view is that the 
difference between predicted and actual performance is largely due to these models failing to adequately 
incorporate some key relationships. One such omission is the relationship between the performance of a 
person and factors impacting on this performance. This is particularly apparent when modelling 
manufacturing systems that have a high proportion of manual operations [1]. Hence to improve the 
accuracy of simulation it is necessary to realistically represent people, their behaviour and subsequent 
performance. 
 
The research described in this paper has set out to illustrate the possible extent of error that occurs in 
manufacturing system simulation models due to poor representation of people. To do this, two 
contemporary models of human performance are first identified. These models represent performance 
reduction due to ageing, and performance variation caused by biorhythms. These models have then been 
incorporated in a Discrete Event Simulation (DES) model of a manufacturing system, and subsequent 
execution of the models helps to illustrate the benefits of representing human behaviour more precisely in a 
typical simulation model. 
 
The paper is structured as follows. Section 2 provides the background to this research, explaining the 
challenge in greater detail. Section 3 outlines the aim of the work and the method employed. Section 4 
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outlines the models of human factors, while Section 5 describes the implementation of these into a DES 
model. Section 6 presents the results from experimentation, following which conclusions are drawn. 
 
 
2. Simulation within a process of manufacturing system design 
 
Simulation is a technique of constructing a model that describes the behaviour of a real world system, and 
the resulting model can then be used to test how the performance of a proposed system alters over differing 
operating conditions. Discrete event simulation appears to be the standard tool used in the design of 
different automotive manufacturing systems [6]. DES is concerned with modelling a system by a 
representation in which state variables change instantaneously at separate points in time, directly associated 
with the beginning and end of events within a system [9]. 
 
Witness [8] typifies simulation software currently available to model manufacturing systems. Such tools 
are very well suited to modelling the technological component of a manufacturing facility. For example the 
‘‘bath tub’’ distribution is usually incorporated as a standard feature for modelling the probability of 
machine failure [9]. Such a distribution is well accepted as being appropriate for representing machine 
breakdown behaviour. Conversely, the human element of a manufacturing system is poorly supported. 
People are treated as a pseudo-technological element and expected to behave in much the same fashion as 
an item of equipment. In practice, people’s behaviour is far from this, and this could help to explain why 
simulation models do not model reality as well as could be expected. 
 
The resource element concept is limited in its application for modelling human behaviour and performance. 
This problem is especially acute when modelling a system with a high proportion of manual work, such as 
an assembly line. Humans conducting such tasks do not lend themselves to simulation in the same way as 
machines; they are inherently unstable, unpredictable, and capable of independent action. For example, the 
performance of an individual will fluctuate depending on such factors as their ability, training and 
education, along with their physiological and psychological states and traits [3]. In addition, the physical 
and organisational environment created by the designer will also affect their performance. 
 
Generally engineers are largely unaware of the social, psychological and physiological behaviours and 
needs of the workforce with which they interact. This is despite the fact that the social sciences contain an 
inordinate amount of information about workers, their behaviours and their lifestyles, which could be 
applied to improve the process of manufacturing system design. There are many reasons why 
manufacturing has not assimilated social science knowledge e.g. differences in language and methods and 
lack of predictive empirical relationships. The inclusion of human performance models in DES provides an 
opportunity to make system designers aware of both the importance and the impact of human factors. 
 
To apply human performance modelling to DES requires both valid models of human factors and rigorous 
techniques. These elements, however, do not currently exist in the manufacturing arena. Models and 
techniques are emerging within the military and social science domains that clearly indicate valid 
modelling of worker performance is possible [13]. Hence, one solution to the problem of developing HPM 
capabilities within DES is to examine the work of the social sciences, and attempt to incorporate valid 
models into manufacturing simulation packages. 
 
 
3. Aim and method 
 
The aim of the work described in this paper has been to investigate the feasibility and impact of 
incorporating existing models of human performance into a typical DES model. Here, our intention has not 
been to suggest an idealised form of human performance model, but rather to explore and illustrate the 
extent to which the performance of a quite simple simulation can be altered by the inclusion of such 
models. To realise this aim, the methodology has been quite straightforward. First, it has been necessary to 
identify a typical simulation model that contains a variety of human and technological components. This 
has been achieved by selecting an assembly line model that has a relatively large number of manual 
operations, yet is not overly complicated with control rules and interdependencies. 
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The model selected was of the after test dress area of an automotive engine assembly line. This is the last 
section of the line prior to shipping and so is isolated from downstream disturbance. It is also isolated from 
upstream disturbance as the previous activities are well balanced. Similarly, a repair loop is sited just 
before the area so virtually no damaged or incomplete engines enter the dress area. Lastly, it is a small and 
thus manageable part of the line with only nine manual operations. A Witness model of the area had 
already been developed during the system design process. This then formed the test-bed simulation. 
 
The second step has been to identify a number of human performance models to incorporate within the test-
bed simulation. This has been achieved through a review of the literature, and two specific models have 
been identified which relate human factors to changes in manual cycle times, described in detail in Section 
4. The first model combines current estimates of the performance decrement caused by ageing with 
estimates of the mediating effects of training and experience. The second model defines how performance 
alters over the period of a day due to biorhythms, also known as circadian rhythms. These have then been 
incorporated into the test model. A series of simulation runs have been conducted to assess the sensitivity 
of the simulation to the models. Section 5 presents the results of these experiments. 
 
 
4. Selection and description of the human performance models 
 
This section describes the selection of the human performance models, along with 
the subsequent models chosen. 
 
Selection of the models was based on three criteria. Firstly, the models should be valid in the context in 
which they were originally derived. Secondly, there should be sufficient literature to indicate that the factor 
represented by the model would be present in a manufacturing context. Thirdly, that the inputs required for 
the models should be easy to obtain. It was also desirable that the models would consist of mathematical 
functions. 
 
Generally, two types of human performance models can be identified in the literature. Model of high-level 
factors usually deal with complex interactions of psychological mechanisms. For example job satisfaction 
is known to impact work performance, but it is mediated by psychological and environmental factors [5]. 
Such models are inherently complex, context specific and dependent on individual differences between 
people. The combination of low contextual validity and complexity makes such models unsuitable for 
manufacturing simulation. 
 
Models of low-level factors represent basal physiological mechanisms. For example models of dehydration 
provide estimates of performance changes, mediated by environmental conditions [20]. In contrast to high-
level models, such models are relatively simple and can be applied to any individual. These models are 
hence particularly suited to simulation. The two models selected represent low-level basal factors. The first 
represents performance changes caused by ageing, and the second represents the effects of daily biological 
rhythms. 
 
 
4.1. Human performance model 1: age related performance theory 
 
Much evidence exists to suggest that performance decreases with increasing age [7,18]. Both cognitive and 
physical faculties display a decrease in maximal performance of approximately 1% per year of age, after 
the age of about 20 [15]. Up to 20 years of age the human body is still developing, and performance 
increases until this ‘‘over the hill’’ point, which varies between individuals. Basic cognitive functions of 
the human body such as short term memory, processing speed, and decision making as well as gross 
physical faculties such as aerobic fitness, oxygen uptake, and maximal muscle strength have been shown to 
decrease in a linear fashion when considered in isolation [12,17]. These effects are all mediated by, and can 
be significantly reduced by, increases in technical and interpersonal skills, experience, physical fitness 
training, lifestyle and the development of personal coping mechanisms [4,16]. 
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According to Warr [21], these effects mask the decrease in performance due to ageing. In an attempt to 
represent such masking mechanisms a model was developed based on the assumption that where a task 
requires significantly less than maximal performance the effective change in performance is not linear. The 
model assumes that age decrements are not measurable until after age 30 and that masking effects linearly 
reduce the impact of ageing until age 65 when the full impact of age is felt. It was assumed that the rate of 
performance decrement due to age (d) is not a constant 1% per year of age, but increase linearly from 0% at 
age 30, to 1% at age 65. Hence, for the age range 30 to 65, d is given by 
 
(4.1)  d = (a - 30) / 35 
 
where d = rate of change of performance decrement due to age (%); a = age in years. 
 
The performance decrement at any age a is then given by 
 
(4.2)  D = d (a - 30) 
 
where D = performance decrement due to age (%) 
 
Eq. (4.2) provides a percentage decrease in performance, which can be applied directly to the DES test 
model to increase the cycle times at each station that is reliant on labour. The effects of this model are 
shown in Fig. 1. 
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Fig.1: Graph of age related performance model output. 
 
 
4.2. Human performance model 2: circadian rhythm related performance theory 
 
Many of our processes, from basal systems such as hormone production, digestion, and homeostasis, to 
higher-level systems like cognition and locomotion display variations in arousal and efficiency over time 
[11]. Some, like the circadian rhythm (CR), vary with a relatively simple function with a period of 24 h, 
while others show more complex variations over weeks, months and even years. All the rhythms perform 
vital tasks of bio-regulation, and when allowed to perform their tasks unhindered the human body is 
allowed to maintain normal levels of exertion, effort, motivation, and physical and mental health. When the 
rhythms are disrupted, however, performance is degraded and health can be affected sufficiently to cause 
chronic and acute illnesses, such as cardiovascular problems, cancer, and clinical depression [10,14]. 
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The main function of the CR is to prepare our bodies for sleep, through hormonal regulation of our most 
basic functions. At a certain time in the evening, typically over a range from 10:30 pm to 1:00 am, our 
bodies naturally enter sleep. This is usually accompanied by a reduction in core temperature, an increase in 
melatonin (the ‘‘sleep’’ hormone) and characteristic brain wave activity. The CR then causes us to wake 
after an average sleep duration of just over 7 h. The actual preferred sleep and wake times vary between 
individuals. Although the existence of CR is now confirmed, and it is relatively easy to measure, its impact 
on performance is difficult to ascertain since in normal, healthy workers the performance variation over a 9 
to 5 working day is only several percent [9], which is easily masked. 
 
For the purpose of this work the model proposed by Spencer [19] has been identified as providing a 
suitable basis for a micro-model. The work was selected as it is laboratory based, it is a progression of 
previous work of various researchers and it has a relatively large sample size for this kind of study. In 
addition the model proposed is a mathematical function with easily obtained inputs. Spencer’s work studied 
30 students over a 9-day period of irregular spaced work and rest episodes. Based on these results and 
previous studies a model was developed incorporating ‘‘time of day’’ and ‘‘time since sleep’’ effects to 
predict performance for work episodes starting at different times of the day. The assumptions made in the 
construction of Spencer’s model are described in detail in Section 4 of his work [19]. The performance on 
the task used in the study, the digital symbol substitution task (DSST) is predicted for time of day, T, and 
time since sleep, t, by Eq. (4.3). A typical result for a worker who wakes 3 h before the start of each shift is 
shown in Fig. 2. 
 
(4.3) DSST(T, t) = 233.3 + 1.54t – 0.304t2 + 0.0108t3 + 4.97 cos (2π (T - 17.05) / 24) 
 
This equation will be assumed to directly represent the variation in activity time for a worker on any 
assembly task. It should be noted that this equation is based on the original experimental population, and in 
applying it to the population in the current study we are assuming a constancy of the coefficients, with 
individual differences represented only in the time since sleep parameter. In order to improve the 
robustness of the model it would be necessary to conduct the experimental and analysis procedures of the 
original study with a sample of workers, and this is not feasible at the present time. 
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Fig. 2: Spencer’s circadian rhythm model for digital symbol substitution task (DSST): work start time 3 h 
after waking. 
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5. Incorporation of human performance models into manufacturing simulation 
 
This section examines the feasibility of applying micro-models of human performance factors to system 
design. 
 
It is a common observation that the predicted production rate of a simulation is higher than the actual 
output of the real system. This gap increases when looking at a simulation model of labour intensive 
systems like assembly lines. As it is believed that a significant proportion of the gap is due to human 
variation, the micro-models of human performance factors described in Section 4 will be introduced into 
the test simulation to examine if they have any effect on the overall system performance. At this stage of 
the research the absolute magnitude and accuracy of the micro-model output is not significant; rather, the 
intention is to find out if levels of perturbations of the form typically created by models of human 
performance produce significant changes in system performance. In addition, the experiments will verify 
that the method used to integrate human factor micro-models into DES is appropriate. 
 
The assembly line model was constructed in Witness, a DES package widely used within the automotive 
industry for manufacturing system design. It has the capability to access data from Excel spreadsheets, 
which supports the integration of the micro-models in their current form, as initially the micro-models have 
been implemented in Microsoft Excel spreadsheets. 
 
The age models require nothing more than the ages of the workers under study, while the CR model 
requires the normal wake time for each worker, corresponding to each shift, as well as the time of day. The 
output of each model is a cycle time adjustment value, as a percentage of the planned cycle time, for the 
workers activity time at any given time of day for any given shift pattern. 
 
The cycle times predicted by each model were pre-calculated, and the results formatted as a lookup table. 
The table was then read into the Witness model as part of the simulation initialisation process. Each worker 
entity within the simulation model contains a short section of Witness code that selects the appropriate 
cycle time from the lookup table based on the hour of day and the age of the operator. 
 
The impact of each of the models was assessed independently in order to make interpretation of the results 
easier. For each HPM, a number of simulation runs was performed, each for a simulated run of one year. 
None of the elements in the simulation were modelled stochastically. A warm-up period of one day was 
used to avoid recording transient system behaviour. 
 
Individually human performance models may only improve simulation accuracy by very small increments. 
The accuracy of models applied in isolation is therefore limited. Combining a number of micro-models of 
the most significant factors affecting worker performance should provide greater accuracy. Hence, a HPM 
tool may consist of a number of human performance models that define how worker performance changes 
under different operating conditions, e.g. temperature, lighting, culture, motivation, personality. This 
modelling approach is known as “micro-modelling”, and the individual models are known as “micro-
models” (see Fig. 3). 
 
 
6. Experimental results 
 
The age model was run with all members of the workforce having the same age, to avoid complexity issues 
such as moving bottlenecks. The output of the age model for each individual worker is a single value that 
does not change over the period of the simulation, as shown in Tab. 1. The output of each run using the age 
model is also shown in Tab. 1, with the maximum output, at age 30, coded as 100%, and all other outputs 
expressed as percentages of the maximum. 
 
The CR model was driven with the wake times shown in Tab. 2. All members of the workforce were 
represented using the same wake times, once again to avoid complexity issues. The simulation output with 
the CR model is also shown in Tab. 2, coded as a percentage of the age model maximum. 
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Fig. 3: Interaction of micro-models in Excel and DES labour entities. 
 

Tab. 1: Results from age model tests 
 

Run No. Age (yrs) Age Model Predicted Cycle 
Time Increase (%) Simulation Throughput (%)

1 30 0 100
2 45 6 97
3 50 11 94
4 55 18 89
5 60 26 84
6 65 35 78  

 
Tab. 2: Wake times and simulation outputs for CR model 

 

Run No. Shift 1 Wake 
Time

Shift 2 Wake 
Time

Shift 3 Wake 
Time

Simulation 
Throughput (%)

1 05:30 11:00 14:00 99.4
2 05:15 10:30 13:30 99.3
3 05:00 10:00 13:00 99.1
4 04:45 09:30 12:30 99.0
5 04:30 09:00 12:00 99.0
6 04:15 08:30 11:30 98.8  

 
 
7. Discussion and conclusions 
 
The inclusion of the HPM factors clearly has an impact on the performance of the simulated production 
system. However, there are many issues that need further investigation. In particular, validation of the 
models, collection of real worker data to provide model inputs, comparison of the simulation results with 
the manufacturing system, and further sensitivity analysis. 
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The age model increases cycle times in the simulation by up to 35%, and hence produces a large decrease 
in throughput. Since the age model output results in an equal step change increase in all the cycle times in 
the simulation model, it is reasonable to assume that the simulation output should be reduced by an equal 
amount. Fig. 4 shows the age model output and simulation outputs, and clearly demonstrates that this is not 
the case. The system is thus less sensitive to the age model perturbation than was expected and further 
experimentation is required to investigate the cause of this behaviour. 
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Fig. 4: Graph of changes in simulation throughput and expected throughput decrease due to age model vs. 
operator age. 

 
As the CR model output is cyclic over a 24-h period, resulting in cycle time decreases as well as increases, 
a comparison between the CR model output and the simulation output is not feasible. The small changes in 
simulation output obtained with the CR model suggest that simulations are less sensitive to perturbations 
that are cyclic with a mean value of approximately zero. Further experimentation is required to investigate 
this. 
 
Validation poses several problems when the research incorporates multiple micro-models, as it is almost 
impossible, in a quasi-experimental environment, to maintain stable control variables to assess the accuracy 
of individual micro-models. This problem is multiplied in the ethically sensitive environment of 
manufacturing, as much of the data required for validation would be of a personal nature, and would 
require the close monitoring of the performance of individual employees. One possible solution to this is to 
‘‘mass’’ validate the micro-models, by comparing the performance of a real world system with a Witness 
model incorporating all appropriate micro-models. 
 
To conclude, this work has shown that it is possible to connect external HPM tools to DES tools such as 
Witness, in order to introduce models of human variability. The accuracy of the resulting simulation is 
dependent on the validity and accuracy of the micro-models used, and hence the next stages of the research 
will focus on developing accurate models of appropriate human factors. 
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