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Abstract 

The dispersion and deposition of nano-particles in laminar flows in the presence of an electric 

field were studied. The Eulerian-Lagrangian particle tracking method was used to simulate 

nano-particle motions under the one-way coupling assumption. For nano-particles in the size 

range of 5 to 200 nm, in addition to the Brownian excitation, the electrostatic and 

gravitational forces were included in the analysis. Different charging mechanisms including 

field and diffusion charging as well as the Boltzmann charge distributions were investigated. 

The simulation methodology was first validated for Brownian and electrostatic forces. For the 

combined field and diffusion charging, the simulation results showed that in the presence of 

an electric field of 10 kV/m, the electrostatic force dominates the Brownian effects. However, 

when the electric field was 1 kV/m, the Brownian motion strongly affected the particle 

dispersion and deposition processes. For the electric field intensity of 1 kV/m, for 10nm and 

100nm particles, the deposition efficiencies for the combined effects of electrostatic and 

Brownian motion were, respectively, about 27% and 161.2% higher than the case in the 
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absence of electric field. Furthermore, particles with the Boltzmann charge distribution had 

the maximum deposition for 20 nm particles.  

 

Keywords: Nano-particles, Lagrangian particle tracking, Electrostatic force, Brownian 

diffusion, Deposition efficiency, Boltzmann charging, Diffusion and field charging. 

 

1. Introduction 

It is well-known that air pollutants have serious adverse health effects (Shy et al., 1978). 

Particulate matter (PM), especially nano-particles, can infiltrate deep into the human lung and 

can cause cancer and other lung diseases (Cohen & Pope, 1995). Therefore, the development 

of air pollution control devices has attracted considerable attention in recent years 

(Talebizadeh et al., 2014). For PM removal from the emissions of various types of engines 

including air breathing engines, there are a number of devices such as filters, cyclones, non-

thermal plasma and electrostatic precipitators (Babaie et al., 2015; Takasaki et al., 2015; Tian 

& Ahmadi, 2007; Tu et al., 2012; Zheng et al., 2004; Zhou et al., 2017). Gas turbine engines 

are a source of PM emissions with diameters less than 2.5 microns, which are subject to 

regulation under the National Ambient Air Quality Standards (George et al., 1969). Effective 

pollution control of gas turbine engines has been a major concern in the design of modern 

aircraft propulsion systems (Schnelle et al., 2015).  

Concerning nano-particles, Brownian diffusion is the main mechanism of particle dispersion 

and deposition (Guha, 2008; Talebizadeh et al., 2015; Zahmatkesh, 2008). The original 

model for simulating Brownian motion in the Lagrangian particle trajectory approach was 

introduced by Li and Ahmadi (1993a) and Ounis et al. (1993).  Charged particles are affected 

by different electrostatic forces in the presence of an electric field (He & Ahmadi, 1999; Kim 

et al., 2006; Malekian et al., 2018; Mayya et al., 2004). Therefore, the mechanisms of 

https://en.wikipedia.org/wiki/Air_pollution
https://en.wikipedia.org/wiki/Environmental_health
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Brownian diffusion and electrophoresis are in competition for transport and deposition of 

charged nano-particles.  

The deposition of charged particles in human airways during inhalation has been extensively 

studied, and it is shown that electrostatic forces increase particle deposition in human airways 

(Chan et al., 1978; Melandri et al., 1983). Aerosol particles naturally carry a certain number 

of electronic units of charge according to the Boltzmann charge distribution.  When aerosols 

carry a high level of charge, the electrostatic forces significantly affect the particle deposition 

rate (Bailey et al., 1998). Cohen et al. (1998) compared the deposition of charged aerosol 

particles in hollow-cast models of human airways due to the image force. They showed that 

the deposition rate of 20nm particles that carry one electronic unit of charge was 3.4 times 

that of the same size particle that carry the average of Boltzmann charge distribution and 5.3 

times the neutral 20nm particles. Furthermore, many studies on the useful effect of 

electrostatic forces on deposition of charged particles with the aim of targeted drug delivery 

were reported in the literature (Koullapis et al., 2016; Majid et al., 2016; Ruzer & Harley, 

2004). 

Charged particle deposition and electrophoretic effects have been also studied extensively in 

other engineering applications including electrostatic precipitators and filters, particle 

separation devices and water purification (Besra & Liu, 2007; Jaworek et al., 2018; Tsai et 

al., 2005). In the filters, the electrostatic charging has been used to increase the collection 

efficiency of particles (Jaworek et al., 2007). In electrostatic precipitators, the electrostatic 

force is the main mechanism for particle removal from the exhaust gas (He et al., 2017). Goo 

et al. (1997) studied particle deposition in a wire-plate electrostatic precipitator using the 

Lagrangian particle tracking method. Dixkens and Fissan (1999) studied particle deposition 

in electrostatic precipitators numerically and experimentally. They considered the effects of 

diffusion, electrostatic force, thermophoresis and sedimentation, and included the effects of 
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field charging. Yu et al. (2017) studied deposition of submicron particles in an ionic air 

purifier experimentally ranging from 30nm to 300nm and showed higher deposition of nano-

particles with higher dielectric constant. Tu et al. (2017, 2018) investigated experimentally 

and numerically particle removal from exhaust flue gas in a novel electrostatic filter using 

perforated plates as the collecting electrodes. They showed that the openings change the 

electric field near the plate which improves the deposition efficiency of particles. Dong et al. 

(Dong et al., 2018) studied the charging and transport of fine particles in a wire-plate 

electrostatic precipitator using multiple wire electrodes. They employed the Lagrangian 

particle tracking method and considered the effects of Brownian diffusion and electrophoresis 

and analysed the influence of applied voltage. 

In contrast to the Eulerian model which neglects the particle inertia effect, the Lagrangian 

approach tracks individual particle motions within the flow field considering different forces 

(Longest & Xi, 2007). In the Lagrangian tracking method, particle deposition is assumed to 

occur upon wall contact.   The Lagrangian approach, however, requires higher computational 

effort for simulating a large number of particles in order to accurately calculate the deposition 

rate (Longest et al,, 2004). The Eulerian approach avoids simulating a large number of 

particles since it deals directly with particle concentration; however, this approach requires 

significant modifications in order to consider the effects of inertial and electrophoresis forces 

(Wang, Flagan, & Seinfeld, 2002). 

In this study, the Lagrangian particle tracking method is used for evaluating the transport and 

deposition of nano-particles in fully developed laminar duct flow, considering the effects of 

Brownian, electrostatic and gravity forces. Different mechanisms of field and diffusion 

charging as well as the Boltzmann charge distribution are considered. A comparative study of 

the effects of electrophoresis and Brownian diffusion on charged nano-particle deposition in 

the presence of different electric fields is performed. 
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2. CFD modelling and boundary conditions 

2.1. Fluid flow modelling 

For 2D incompressible and steady airflow between two parallel plates, the exact solution for 

fully developed laminar velocity profile is given as: 

𝑢𝑓(𝑦) =
3

2
𝑢𝑎𝑣(1 −

𝑦2

𝐻2
) 

 (1) 

Here the width and length of the duct used in this study are, respectively, 2 mm (H=1 mm) 

and 4 cm. Note that avu  is the mean flow velocity which is assumed to be 1 m/s, which 

results in the flow Reynolds number of about 130. Since the flow is considered fully 

developed, Eq. (1) is used throughout the domain. For airflow, it is assumed that the flow is 

not affected by the presence of electric field.  The schematic of the laminar duct flow is 

shown in Fig. 1  

 

 

Fig. 1. Schematic of the fully developed airflow between two parallel plates. 

 

 

2.2. Particle equation of motion 

The trajectories of nano-particles with diameters 5, 10, 20, 40, 100 and 200 nm are evaluated 

using the Lagrangian particle tracking method under the assumption of one-way coupling 
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(Abouali & Ahmadi, 2005).  Fluid drag force is always present and balances with the inertia, 

Brownian excitation and/or electrostatic forces. Due to the range of nano-particle diameters 

studied, the Brownian force should be included in the analysis.  The electrostatic force is also 

included due the presence of an applied electric field across the duct. The effect of gravity is 

also considered for completeness. Therefore, the appropriate equation governing the motion 

of a spherical particle is expressed as (Li & Ahmadi, 1992a): 

(2) 𝑢𝑖
𝑝

𝑑𝑡
= 𝐹𝑖

𝐷 + 𝐹𝑖
𝐵 +

𝐹𝑖
𝑒

𝑚
+ 𝐹𝑖

𝑔
 

Here 𝐹𝑖
𝐷 is the drag force given as: 

(3) 
𝐹𝑖

𝐷 =
𝐶𝐷𝑅𝑒𝑃(𝑢𝑖

𝑓
− 𝑢𝑖

𝑝)

24𝜏
 

where 𝑢𝑖
𝑝
 and 𝑢𝑖

𝑓
are, respectively, the components of the particle and the local fluid velocity. 

The x-component of fluid velocity is given by Eq. (1) with the y-component being zero for 

the fully developed flow conditions considered in this study.  In Eq. (3) 𝑅𝑒𝑃is the particle 

Reynolds number defined as 𝑅𝑒𝑃 =
𝜇𝑓|𝐮𝑓−𝐮𝑝|𝑑𝑝

𝜌𝑓
 , and τ is the particle relaxation time given by 

𝜏 =
𝑑𝑝

2𝜌𝑝𝐶𝑐

18𝜇𝑓
, where 𝑑𝑝 is the particle diameter, 𝜇𝑓and 𝜌𝑓 are, respectively, the fluid viscosity 

and density, and 𝜌𝑝 is the particle density. Here 𝐶𝑐 is the Cunningham correction factor to the 

Stokes drag calculated as (Hinds, 2012): 

 (4) 
𝐶𝑐 = 1 +

2𝜆

𝑑𝑝
(1.257 + 0.4𝑒−(1.1𝑑𝑝/2𝜆)) 

Where 𝜆  is the mean free path of air which is equal to 65 nm under normal condition.  

In Eq. (3), 𝐶𝐷 is the drag coefficient defined as: 

(5) if 𝑅𝑒𝑝<1 
𝐶𝐷 =

24

𝑅𝑒𝑝
 

 if 𝑅𝑒𝑝>1 
𝐶𝐷 =

24(1 + 15(𝑅𝑒𝑝
0.687))

𝑅𝑒𝑝
 

The amplitude of the Brownian force is given as (Li & Ahmadi, 1992a; Ounis et al., 1993): 
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(6) 

𝐹𝐵 = 𝜁√
𝜋𝑆0

Δ𝑡
 

where 𝜁 is a zero-mean, unit-variance independent Gaussian random number, Δ𝑡 is the time-

step for particle integration and 𝑆0 is a spectral intensity function defined as (Li & Ahmadi, 

1992a), 

(7) 
𝑆0 =

216𝜈𝑘𝐵𝑇

𝜋2𝜌𝑔𝑑𝑝
2(

𝜌𝑝

𝜌𝑓
)2𝐶𝑐

 

Here 𝑇 is the absolute temperature of the fluid, 𝜈 is the kinematic viscosity and 𝑘𝐵 is the 

Boltzmann constant.  

Four electrostatic forces act on a charged particle near a conducting surface. These are 

Coulomb, image, dipole-dipole and dielectrophoretic forces. He and Ahmadi (1999) showed 

that the dipole-dipole and dielectrophoretic forces are typically much lower than Coulomb 

and image forces. In the presence of an electric field, the Coulomb force is typically the 

dominant force. The image force is present in the absence of an electric field near a 

conducting surface. In this study, both Coulomb and image forces are considered and the total 

electrostatic force is given as (He & Ahmadi, 1999; Hinds, 2012): 

𝐹𝑒 = 𝐹𝐶 + 𝐹𝑖 (8) 

𝐹𝐶 is the coulomb force given as  

𝐹𝐶 = 𝑞𝐸 (9) 

where 𝐸 is the electric field intensity and 𝑞 is the amount of charge on particles  given as 

𝑞 = 𝑛𝑒 (10) 

where 𝑛 is the number of electrical charges on a particle and 𝑒 is the electric charge unit equal 

to 1.602 × 10−19𝐶 . Note that the direction of the Coulomb force is related to the electric 

field which can be toward or away from the wall.  

𝐹𝑖 is the image force given as: 
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𝐹𝑖 =
𝑞2

16𝜋𝜀0𝑦𝑐
2
 

(11) 

where 𝜀0 is electric permittivity of vacuum which is equal 8.859 × 10−12𝐹/𝑚 and 𝑦𝑐 is the 

distance between the particle centre and the wall.   

In a neutral atmosphere, aerosols generally carry the Boltzmann charge distribution.  

Accordingly, the fraction that has 𝑛 electronic units of charge is given by: 

𝑓(𝑛) =
exp(−𝐾𝐸𝑛2𝑒2/𝑑𝑝𝑘𝐵𝑇)

∑ exp(−𝐾𝐸𝑛2𝑒2/𝑑𝑝𝑘𝐵𝑇)+∞
𝑛=−∞

 
(12) 

where 𝐾𝐸 =
1

4𝜋𝜀0
  is a constant of proportionality that depends on the system of units used. 

Here 𝐾𝐸 = 9 × 109𝑁𝑚2/𝐶2  for SI units (Hinds, 2012). 

Using (12), the average number of absolute charge carried on a particle is given as (He & 

Ahmadi, 1999): 

|�̅�| = ∑|𝑛|𝑓(|𝑛|)

∞

𝑛=0

 
(12) 

The average number of positive or negative charge then is |𝑛|/2. 

Aerosol particles are also charged by field and diffusion charging amongst other mechanisms 

(Hinds, 2012).  In the presence of an electric field, the particles are charged due to the impact 

of unipolar ions which is called field charging. This mechanism is more pronounced for 

particles with diameter greater than 1 micron. The maximum number of charges on a particle 

under field charging, which is achieved under equilibrium conditions, is given as (Hinds, 

2012), 

𝑛 = (
3𝜀𝐷0

𝜀𝐷0 + 2
)

𝐸𝑑𝑝
2

4𝐾𝐸𝑒
 

(12) 

where 𝜀𝐷0 is the dielectric constant of the particles. 

Diffusion charging results from the accidental impacts between the particles and bipolar ions 

due to Brownian motion. For particles with the diameter less than 1 micron, diffusion 

charging is the main mechanism for particle charging, which is given as (Hinds, 2012), 



9 

 

𝑛 =
𝑑𝑝𝑘𝑇

2𝐾𝐸𝑒2
ln [1 +

𝜋𝐾𝐸𝑑𝑝𝑐�̅�𝑒
2𝑁𝑖𝑡

2𝑘𝑇
] 

(13) 

where ic  is the thermal mean velocity of ions equal to 2.4 × 1010𝑐𝑚/𝑠  and 𝑁𝑖 is the 

concentration of ions. In this study, the usual value of 𝑁𝑖𝑡 = 108 𝑖𝑜𝑛. 𝑠/𝑐𝑚3  is used (He & 

Ahmadi, 1999).   

In Equation (2) 𝐹𝑖
𝑔

 is the effective acceleration of gravity given as 

𝐹𝑖
𝑔

=
𝑔𝑖(𝜌𝑝 − 𝜌𝑓)

𝜌𝑝
 

(14) 

Note that gF  is included in the simulation of particle deposition in the present study,  

however, the effect of gravity on deposition of nano-particles smaller than 200 nm is 

negligible (Talebizadeh, Rahimzadeh, Ahmadi, Brown, & Inthavong, 2016). 

In this paper, the deposition velocity and deposition efficiency are evaluated.  Deposition 

velocity is defined as the flux of nano-particles to the wall per unit concentration per unit 

time. For calculating the deposition velocity in Lagrangian particle tracking approach, for a 

uniform initial injection of 0N  particles distributed in a region within a distance of 𝐻0 = 30 

wall units from the wall, the deposition velocity is given as (Li & Ahmadi, 1993b), 

𝑢𝑑 =
𝑁𝑑/𝑡𝑑

𝑁0/𝐻0
 

(15) 

where dN is the number of deposited particles in the time duration dt . Note that the wall unit 

is defined as 𝜐/𝑢∗.  In practice of the simulation, the time duration should be long enough to 

obtain a quasi-equilibrium condition where the rate of the total number of deposited particles 

reaches to a constant value (He & Ahmadi, 1999). The non-dimensional form of the 

deposition velocity is given by 

𝑢𝑑
+ =

𝑢𝑑

𝑢∗
 

(16) 

where 𝑢∗ is the shear velocity defined as 
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𝑢∗ = √
𝜏𝑤̅̅̅̅

𝜌
 

(17) 

where 𝜏𝑤̅̅̅̅  is the wall shear stress. 

To calculate the deposition efficiency in a fully developed flow, at the injection plane, the 

inlet particle flux profile was generated using the velocity profiles given by Eq. (1) to 

generate appropriate mass flux for each particle size.  Then, the deposition efficiency is 

calculated based on the ratio of mass deposition rate on the wall to the inlet mass flow rate of 

particles as (Longest & Xi, 2007): 

(18) 𝐷𝐸 =
�̇�𝑤

�̇�𝑖𝑛
 

An in-house FORTRAN code was developed for solving the particle equation of motion and 

for evaluating the deposition efficiency, as well as deposition velocity. The particle equation 

of motion is integrated in time using an appropriate time step for a fixed flow domain. 10000 

particles are used for the evaluation of the deposition velocity and deposition efficiency. This 

number was determined by simulations with less and more particles that was shown to have 

negligible effect on the deposition results. Note that in the present simulations, the direction 

of the electrostatic force is upward while the gravity is downward. Since the objective of this 

study is to provide an understanding of the contributions of different forces including the 

electrostatic force along with the Brownian diffusion effects, a simple 2D duct is used. 

 

3. Results and discussion 

Table 1 lists the amount of charges (electronic units of charge) for different particle diameters 

and various charging mechanisms. For nano-particles, which are of concern in this study, the 

contributions of diffusion charging are higher than those by field charging for all the studied 

electric field intensities.  Furthermore, by increasing the electric field intensity from 1 kV/m 

to 100 kV/m, the contribution of field charging increases. For smaller particles however, the 
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amount of field charging is still negligibly small even for field intensity of 100 kV/m. For the 

Boltzmann charging distribution, the number of charge increases with the diameter of 

particles, but it is much smaller than those of diffusion and field charging. Note that the 

temperature of the fluid and particles is assumed to be fixed at 288 K.  

 

Table 1. The number of electronic units of charge carried by particles of different 

diameters for various charging mechanisms and electric field intensities.  

Diff.+Field Field Diff.+Field Field Diff. Boltzmann 

n  

Dia. (nm) 

E=100 kV/m E=1 kV/m 

0.108 9.3E-04 0.107 9.3E-06 0.107 0.00002 5 

0.274 3.72E-03 0.27 3.72E-05 0.27 0.00604 10 

0.6709 1.49E-02 0.656 1.49E-04 0.656 0.09930 20 

1.606 5.95E-02 1.547 5.95E-04 1.546 0.32640 40 

5.022 0.372 4.654 3.72E-03 4.65 0.66452 100 

11.98 1.49 10.51 1.49E-02 10.49 0.99573 200 

 

Table 2 presents the amount of charge units per unit mass of a particle which provides 

important information for interpreting the electrophoresis effects. Note that 𝜌𝑓 =

1.225 𝑘𝑔/𝑚3 and 𝜌𝑝 = 2000 × 𝜌𝑓 (for carbon particles) is assumed. It is seen that for 

diffusion and field charging, the number of charge per unit mass decreases as particle 

diameter increases.  Also diffusion charging makes the bulk of the contributions to the 

charging of these ultrafine particles.  For the Boltzmann charge distribution, the maximum 

number of charge per unit mass occurs for 20nm particles.  

 

Table 2. The number of charge per unit mass (gr) for different particle diameters  and for 

various charging mechanisms and electric field intensities.  

 (The unit is electronic unit of charge/gr.) 
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Diff.+Field Field Diff.+Field Field Diff. Boltzmann 

n  

Dim (nm) 

E=100 kV/m E=1 kV/m 

7.33E+20 6.32E+18 7.27E+20 6.32E+16 7.27E+20 1.36E+17 5 

2.33E+20 3.16E+18 2.29E+20 3.16E+16 2.29E+20 5.13E+18 10 

7.12E+19 1.58E+18 6.96E+19 1.58E+16 6.96E+19 1.05E+19 20 

2.13E+19 7.89E+17 2.05E+19 7.89E+15 2.05E+19 4.33E+18 40 

4.26E+18 3.16E+17 3.95E+18 3.16E+15 3.95E+18 5.64E+17 100 

1.27E+18 1.58E+17 1.12E+18 1.58E+15 1.11E+18 1.06E+17 200 

 

Tables 1 and 2 show that for the range of nano-particles studied here, the diffusion charging 

is dominant and   the summation of diffusion and field charging does not vary too much for 

different electric field intensities. However, the influence of electric field intensity is quite 

significant due to increase of Coulomb force.  These issues are further discussed in Section 

3.2.  

 

3.1. Validations 

In the absence of other forces for a constant airflow velocity, the variance of particle location 

under Brownian excitation is given as (Einstein, 1956; Li & Ahmadi, 1992b): 

𝜎𝑦
2(𝑡) = 2𝐷𝑇 (19) 

Where 𝐷 =
𝑘𝑇𝐶𝑐

3𝜋𝜇𝑑𝑝
 is the particle diffusivity.  Fig. 2 compares the simulated variance of 10 nm 

particles with prediction of Eq. (19). Here 1000 particles are released from the centre of the 

duct.   It is seen that simulation results are in excellent agreement with the theoretical model. 

Note that the size of the time step is considered 0.5 micro-second for the simulations and the 

results are not changed with reducing the time step size.  
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Fig. 2. Comparison of predicted variance of 10 nm particle position with the exact solution.  

 

For verifying the results for Brownian deposition in a fully developed duct flow, the 

simulation results are compared with the analytical expression reported in the literature.  

Ingham (1976) determined the deposition efficiency by solving the concentration equation 

considering sedimentation for fully developed duct flows as: 

𝐷𝐸 = 2.42264𝑠2/3 − 0.3𝑠 − (0.08608 − 1.33909𝜎𝑠
2)𝑠4/3  (21) 

where 

𝑠 =
2𝐷𝐿

3𝑄ℎ
 (22) 

where  𝑄 is the air flow rate, ℎ is the duct half-width and 𝐿  is the duct length. 𝜎𝑠 is the 

sedimentation coefficient, which was zero in this study. The Gormley and Kennedy (1948) 

expression is given as, 

𝐷𝐸 = 2.44164𝑠2/3 − 0.3𝑠 − 0.0772𝑠4/3 (23) 

A series of simulations for particle deposition in a 4 cm long and 2 mm wide duct under fully 

developed laminar flow condition with the mean velocity of 1 m/s was performed.  Fig. 3 

compares the predicted variation of deposition efficiency for different particle diameters 

subject to Brownian excitation with the expressions of Ingham (1976) and Gormley and 
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Kennedy (1948) given by (21) and (23). This figure shows that the present results are in 

excellent agreement with the analytical models.  

 

 

Fig. 3. Comparison of the predicted deposition efficiency for different particle diameters with 

analytical expressions. 

 

For verifying the computational model for electrical deposition a series of simulations in the 

absence of Brownian effects was performed. The corresponding non-dimensional deposition 

velocity as computed from Eqs. (15) and (16) are compared with the expression for the 

electrical terminal velocity given as (He & Ahmadi, 1999; Hinds, 2012):. 

𝑢𝑒
+ =

𝑞𝐸𝐶𝑐

3𝜋𝜇𝑑𝑢∗
 

(24) 

For the electric field intensities of 10 and 100 kV/m, Figs. 4 compares the simulation results 

in the absence of Brownian motion according to Eq. (15) with the prediction of Eq. (24).  

Here a mean fluid velocity of 1m/s was assumed. It is seen that the simulation results are in 

excellent agreement with Eq. (24).  
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Fig. 4. Comparison of the predicted variation of deposition velocity for different particle 

diameters in the absence of Brownian effects for the electric field intensity of 10 kV/m and 

100 kV/m, for a mean velocity of 1m/s.    

 

 

3.2. Effects of various forces 

Fig. 5 shows the deposition velocity for the electric field intensity of 10 kV/m considering 

both electrostatic and Brownian forces. Here the combined diffusion and field charging for 

the particles is assumed and average flow velocity is 1m/s. It is seen that the effect of 

electrostatic force for combined field and diffusion charging is much higher than that of the 

Brownian diffusion for all particle diameters.  In addition, the deposition velocity decreases 

as particle size increases.  This observation is consistent with the results shown in Table 2 

that the number of charges per unit mass of the particle for diffusion and field charging 

decreases as particle size increases.  
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Fig. 5. The effect of various forces on deposition velocity for different particle diameters for 

an electric field of 10 kV/m.   

 

Fig. 6 displays the particle deposition efficiencies in a fully developed duct flow with the 

mean velocity of 1 m/s in the presence of an electric field intensity of 1 kV/m. Here the 

particles are assumed to carry the number of charges under the combined diffusion and field 

changing.  For this low intensity of electric field, it is seen that for 5 nm particles, the 

Brownian excitation is the dominant mechanism for particle deposition. However, for larger 

100 and 200 nm particles, the Brownian effects decreases and the electrostatic precipitation 

become dominant.  Fig. 6 also shows that the slope of the variation of Brownian deposition 

(in the absence of electrostatic effects) is higher than electrostatic deposition (in the absence 

of Brownian effects). That is, as expected the Brownian effect is a more sensitive function of 

particle diameter compared to the electrostatic effect. This figure also shows that for nano-

particles carrying charges according to diffusion and field charging, both the electrophoresis 

and Brownian diffusion contribute to the deposition process.  For certain ranges of particle 

diameters, the effect of electrostatic force dominates, while for very small sizes the Brownian 

effects become dominant.  

 . 
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Fig. 6. Variations of deposition efficiency as a function of particle diameter for an electric 

field intensity of 1 kV/m for different forces.   

 

Fig. 7 shows the variation of deposition efficiency for various particle diameters for a fully 

developed laminar flow in the presence of an electric field of 10 kV/m.  The particles are 

charged by the combined diffusion and field changing.  It is seen that the deposition 

efficiency decreases as particle size increases. For this high electric field intensity the 

electrostatic sedimentation makes the bulk of contribution to the deposition velocity and the 

effect of Brownian diffusion is negligibly small. 
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Fig. 7. Variations of deposition efficiency as a function of particle diameter for an electric 

field intensity of 10 kV/m. 

 

Fig. 8 shows the time variations of number of deposited and escaped particles as well as the 

deposition efficiency for 5 nm particles considering both Brownian and electrostatic effects 

for an electric field intensity of 10 kV/m. It is seen that after 0.027 s from the start of 

simulations, the particles begin to escape from the outlet. Furthermore, after around 0.1 s all 

particles that are introduced at the inlet are deposited or escaped from the domain. It can be 

seen that after 0.06 s (60% of the simulation time) almost all particles exit from the solution 

domain and the deposition efficiency becomes constant. Furthermore, it is seen that there is a 

transient region at the beginning as the rate of particle deposition develops. After the initial 

stages, the rate of particle deposition is roughly constant until about 0.05s. In the final stage, 

the deposition efficiency is constant and the rate of deposition approaches zero as the 

majority of injected particles are either deposited or escaped. Understanding of the deposition 

behaviour of particles is useful for optimization of particle removal devices. 
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Fig. 8. Variations of the number of deposited and escaped particles as well as deposition 

efficiency for 5nm particles with diffusion/field charging versus time for E=10 kV/m.  

 

Fig. 9 illustrates the variation of deposition efficiency as a function of particle diameters for 

the Boltzmann charge distribution in the presence of a 10 kV/m electric field. In the 

discussion of Table 2, the number of charges per unit mass was observed to increase with size 

from 5nm to 20nm particles and then decreases by further increase of particle diameter. Only 

considering the number of charges is insufficient to assess the behaviour of nano-particles in 

the presence of an electric field. Therefore, when the electrostatic force alone is considered, 

the deposition efficiency reaches to its maximum for 20nm particles. The Brownian diffusion 

effects increase as particle size decreases. When both Brownian and electrostatic effects are 

included, for the Boltzmann charge distribution, for particles less than 20nm the Brownian 

diffusion is dominant and the effect of electrophoresis is almost negligible. For 40nm 

particles and larger, the electrostatic force becomes more dominant; however, the effect of 

Brownian diffusion cannot be neglected. 
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Fig. 9. The variation of deposition efficiency as a function of particle diameter for the 

Boltzmann charge distribution for E=10 kV/m. 

 

4. Conclusions 

In this paper, the effects of Brownian diffusion on nano-particle deposition in a fully 

developed duct flow were compared with electrophoresis in the presence of various electric 

field intensities. Different charging mechanisms including diffusion and field as well as the 

Boltzmann charge distribution were included in the analysis.  For diffusion/field charging in 

the presence of a high intensity electric field, the presented results showed that the 

electrostatic forces dominate and the effect of Brownian diffusion on deposition fraction is 

comparatively negligibly small. However, for low electric fields, the Brownian effect is 

larger than the electrostatic effect, especially for particles smaller than 100 nm.  

For an electric field of 1 kV/m and the combined diffusion and field charging mechanism, the 

deposition efficiency of 10 nm and 100 nm nano-particles for the case that both electrostatic 

and Brownian effects were considered are, respectively, about 24.5% and 161.2% higher than 

the case when only Brownian diffusion was included. That is, the presence of an even low 

intensity electric field could cause a significant increase in the particle deposition efficiency. 
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For the Boltzmann charge distribution, the electrostatic force effects peaked for the 20 nm 

particles.   

The results of this study could find application for providing a guideline for evaluating the 

nano-particle transport and deposition in the presence of an electric field in devices such as 

pollution control devices, electrostatic precipitators, filters, particle separation equipment, 

monitoring devices, copier, printers and water purification devices. 

 

Nomenclature 

𝐶𝐷 Drag coefficient 𝑢𝑑 Deposition velocity 

𝐶𝑐 Cunningham correction factor 𝑢𝑑
+ Non-dimentional deposition velocty 

𝑐�̅� 
the thermal mean velocity of ions 

𝑢𝑒
+ 

the variance of particle location under 

Brownian excitation 

𝑑𝑝 particle diameter 𝑦 Distance from the centre 

𝐷 
particle diffusivity 

𝑦𝑐 
distance between the particle centre and 

the wall 

𝐷𝐸 deposition efficiency 𝑢∗  shear velocity 

𝑒 electric charge unit Greek symbols 

𝐸 Electric field intensity 𝜀0 electric permittivity of vacuum 

𝐹𝐶𝑜𝑢𝑙𝑜𝑚𝑏  Coulomb force 𝜏 particle relaxation time 

𝐹𝐷 Drag force 𝜇𝑓 fluid viscosity 

𝐹𝐼𝑚𝑎𝑔𝑒  
Image force 𝜌𝑓 fluid density 

𝐹𝑔 Gravity force 𝜌𝑝 particle density 

ℎ duct half-width 𝜆 the mean free path of air 

𝐻
 

Channel height 𝜉 zero-mean, unit-variance independent 

Gaussian random number 

𝐿
 

Channel length 𝜈 kinematic viscosity 

𝑘𝐵 
Boltzmann constant 𝜀𝐷0 Dielectric constant of the particles 

𝐾𝐸  
constant of proportionality 𝜏𝑤̅̅ ̅ wall shear stress 

�̇�𝑤 mass deposition rate 𝜎𝑠 sedimentation coefficient 

�̇�𝑖𝑛 
inlet mass flow rate of particles 𝜎𝑦

2(𝑡) the variance of particle location under 

Brownian excitation 

𝑛
 

number of electrical charges ∆𝑡 time-step for particle integration 

𝑁𝑖 
concentration of ions   

𝑁0 Number of injected particles Subscripts  
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𝑁𝑑 
number of deposited particles av average 

𝑞
 

the amount of charge on particles   c Centre 

𝑄  air flow rate 𝐷 Drag 

𝑅𝑒𝑝 particle Reynolds number 𝑓 Fluid 

𝑆0 
spectral intensity function 𝑃 Particle 

𝑇
 

absolute temperature   

𝑡𝑑 
time duration Superscripts  

𝑢
 

velocity ̅  Mean value 

𝑢𝑎𝑣 
Mean fluid velocity   
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