
NeuroImage 188 (2019) 598–615
Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/neuroimage
Using GPUs to accelerate computational diffusion MRI: From microstructure
estimation to tractography and connectomes

Moises Hernandez-Fernandez a,b,* , Istvan Reguly c, Saad Jbabdi a, Mike Giles d, Stephen Smith a,
Stamatios N. Sotiropoulos a,e

a Wellcome Centre for Integrative Neuroimaging - Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, Oxford, United Kingdom
b Center for Biomedical Image Computing and Analytics (CBICA), Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
c Faculty of Information Technology and Bionics, Pazmany Peter Catholic University, Budapest, Hungary
d Mathematical Institute, University of Oxford, Oxford, United Kingdom
e Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
A R T I C L E I N F O

Keywords:
GPGPU
Scientific computing
Biophysical modelling
Non-linear optimisation
Bayesian inference
Fibre orientations
Fibre dispersion
Brain connectivity
Medical imaging
* Corresponding author. Wellcome Centre for Int
Oxford, Oxford, United Kingdom.

E-mail address: moisesf@fmrib.ox.ac.uk (M. Her

https://doi.org/10.1016/j.neuroimage.2018.12.015
Received 28 June 2018; Received in revised form 2
Available online 8 December 2018
1053-8119/Crown Copyright © 2018 Published by E
A B S T R A C T

The great potential of computational diffusion MRI (dMRI) relies on indirect inference of tissue microstructure
and brain connections, since modelling and tractography frameworks map diffusion measurements to neuroan-
atomical features. This mapping however can be computationally highly expensive, particularly given the trend of
increasing dataset sizes and the complexity in biophysical modelling. Limitations on computing resources can
restrict data exploration and methodology development. A step forward is to take advantage of the computational
power offered by recent parallel computing architectures, especially Graphics Processing Units (GPUs). GPUs are
massive parallel processors that offer trillions of floating point operations per second, and have made possible the
solution of computationally-intensive scientific problems that were intractable before. However, they are not
inherently suited for all problems. Here, we present two different frameworks for accelerating dMRI computations
using GPUs that cover the most typical dMRI applications: a framework for performing biophysical modelling and
microstructure estimation, and a second framework for performing tractography and long-range connectivity
estimation. The former provides a front-end and automatically generates a GPU executable file from a user-
specified biophysical model, allowing accelerated non-linear model fitting in both deterministic and stochastic
ways (Bayesian inference). The latter performs probabilistic tractography, can generate whole-brain connectomes
and supports new functionality for imposing anatomical constraints, such as inherent consideration of surface
meshes (GIFTI files) along with volumetric images. We validate the frameworks against well-established CPU-
based implementations and we show that despite the very different challenges for parallelising these problems, a
single GPU achieves better performance than 200 CPU cores thanks to our parallel designs.
1. Introduction

General-purpose computing on graphics processing units (GPGPU)
has lead to a significant step forward in scientific computations. GPUs are
massive parallel processors with thousands of cores. Mainly driven by the
computer game industry, and more recently by deep learning applica-
tions (Schmidhuber, 2015), GPUs have evolved rapidly in the last
decade, offering now over 15 TeraFLOPS (15� 1013 floating operations
per second) in single precision of performance (NVIDIA, 2017). Even if
their full potential is not used, their suitability for scientific computing
has become more and more evident in projects that involve large
egrative Neuroimaging - Centre f

nandez-Fernandez).

0 November 2018; Accepted 7 D

lsevier Inc. This is an open access
amounts of data. For instance, the 1000 Genomes Project (Auton et al.,
2015; Sudmant et al., 2015) and the Human Connectome Project (Van
Essen and Ugurbil, 2012; Van Essen et al., 2012; Sotiropoulos et al.,
2013) have generated Petabytes of data. The computations performed for
the analysis of all this data can take months on typical computer clusters,
but GPU accelerated solutions can accelerate massively these computa-
tions (Klus et al., 2012; Hern�andez et al., 2013).

In the field of medical imaging, GPUs have been used in several
computational domains (Eklund et al., 2013), including image recon-
struction (Stone et al., 2008; Uecker et al., 2015) image segmentation
(Smistad et al., 2015; Alsmirat et al., 2017), image registration
or Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of

ecember 2018

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:moisesf@fmrib.ox.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2018.12.015&domain=pdf
www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
https://doi.org/10.1016/j.neuroimage.2018.12.015
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.neuroimage.2018.12.015
https://doi.org/10.1016/j.neuroimage.2018.12.015

Table 1
Execution times andmemory requirements of some dMRI applications processing
datasets from the UK Biobank project and the Human Connectome Project.
Processing times are reported using several CPU cores from several modern
processors (Intel Xeon E5-2660 v3 processors).

Application (Single subject) Computational
resources

Time Memory
Required

Ball & 2 sticks model (MCMC) -
UK Biobank

72 cores 0.73 h 2.5 GB

Ball & 2 sticks model (MCMC) -
HCP

145 cores 5 h 8 GB

NODDI-Bingham. Multi-
compartment model – Biobank

72 cores 6.75 h 2.5 GB

Brain Connectome (dense) - HCP 100 cores 9.5 h 35 GB

M. Hernandez-Fernandez et al. NeuroImage 188 (2019) 598–615
(Shamonin, 2014), and in the analysis of functional MRI (Eklund et al.,
2014) and diffusion MRI data (Xu et al., 2012; Hern�andez et al., 2013;
Chang et al., 2014; Hernandez-Fernandez et al., 2016; Harms et al.,
2017).

However, using GPUs is not always straightforward. The GPU archi-
tecture is completely different to the traditional single or multi-core CPU
architectures, it is not inherently suited for all types of problems, and
bespoke computational frameworks may need to be developed to take
advantage of their full potential. Some of the challenges that need to be
considered for achieving an efficient design include: balanced paralleli-
sation of an algorithm, good organisation of threads and grouping,
appropriate usage of memory resources, appropriate memory access
patterns, and correct communication and synchronisation between
threads. Furthermore, programming GPUs requires specific program-
ming models that offer control over the device resources, but may in-
crease the difficulty for designing parallel solutions. Low-level
programming models, such as the Compute Unified Device Architecture
(CUDA) (Nickolls et al., 2008), offer a high degree of control over the
resources, and the possibility of achieving very efficient solutions. A
more detailed description of the GPU architecture, the CUDA program-
ming model, and some considerations for GPU programming are
included in the Supplementary material.

Despite the challenges, in this paper we illustrate the potential of
GPUs for two neuroimaging applications spanning different parallelisa-
tion strategies. Specifically, we design and implement parallel compu-
tational frameworks for analysing diffusion magnetic resonance imaging
(dMRI) data (Alexander et al., 2017; Jeurissen et al., 2017; Sotiropoulos
and Zalesky, 2017). The great potential of dMRI is that it uniquely allows
studying the human brain non-invasively and in vivo. However, it relies
on indirect inference from the data, and typically, modelling frameworks
are necessary to map dMRI measurements to neuroanatomical features,
which can be computationally expensive. The computational cost is
becoming even higher given the trend of increasing data sizes. New MRI
hardware and sequences for pushing spatial and angular resolution (Vu
et al., 2015; Setsompop et al., 2018) can considerably increase the size of
a single subject dataset. At the same time, big imaging data repositories
with a large number of subjects are being created, such as the Human
Connectome Project (HCP) (Van Essen and Ugurbil, 2012; Van Essen
et al., 2012; Sotiropoulos et al., 2013), where 1200 datasets are included,
its Lifespan and Disease extensions (https://www.humanconnectome.
org) and UK Biobank (Miller et al., 2016; Alfaro-Almagro et al., 2018)
where a total of 100,000 subjects are being scanned. Limitations in
computing can restrict data exploration and even methodology
development.

A common application of dMRI analysis is tissue microstructure
estimation. Even if the diffusion tensor imaging model (DTI) (Basser
et al., 1994a,b) is by far the most popular framework for extracting
microstructure indices and can be fitted linearly to data, it has major
limitations such as the inability to capture partial volume, leading to
non-specific markers of tissue structural changes (Basser et al., 2000;
Poupon et al., 2000; Wiegell et al., 2000; Alexander et al., 2001; Pierpaoli
et al., 2001; Seunarine and Alexander, 2014). To overcome these limi-
tations, multi-compartment biophysical models are being developed,
where the diffusion signal attenuation is represented as a mixture of
signals obtained from different tissue components (Szafer et al., 1995;
Niendorf et al., 1996; Stanisz et al., 1997; Assaf and Cohen, 1998; Mul-
kern et al., 1999; Assaf et al., 2008; Alexander et al., 2010; Sotiropoulos
et al., 2012; Zhang et al., 2012). Multi-compartment dMRI models are
commonly non-linear functions of the signal, and non-linear optimisation
algorithms are typically used for fitting the model to the
diffusion-weighted measurements (Motulsky and Ransnas, 1987; Kelley,
1999). These algorithms use iterative optimisation procedures for finding
a global solution, leading to potentially large computational times.
Furthermore, if a stochastic (instead of deterministic) optimisation
method is required, such as Bayesian approaches (Tarantola, 2005),
computation requirements are even heavier. For instance, using a cluster
599
with 72 CPU cores, fitting the NODDI-Binghammodel (Tariq et al., 2016)
to a single subject of the UK Biobank dataset with the current available
Matlab toolbox (Microstructure Imaging Group - University College
London, 2017) requires more than 6 h for deterministic fitting, and fitting
the ball and sticks model (Behrens et al., 2003, 2007) to a single subject
of the HCP dataset with FMRIB's Software Library (FSL) (Jenkinson et al.,
2012) requires 5 h for stochastic fitting using MCMC on a large cluster
with 145 CPU cores (see Table 1).

Optimisation methods used for fitting voxel-wise biophysical models
to dMRI data are inherently parallelisable and in general well suited for
GPU design, since the computational modelling is applied independently
to different voxels. The large number of independent elements in the data
and the fact that identical procedures need to be performed over each of
these elements make GPUs a perfect candidate for processing these
datasets, as they have been designed for exploiting the data level paral-
lelism by executing the same instructions over different data simulta-
neously (SIMD (Flynn, 1972)). However, due to the heavy tasks involved
in the optimisation procedures, the design of an optimal parallel solution
is non-trivial.

A number of GPU frameworks for accelerating these routines have
been developed in the past by ourselves and others focusing on specific
models for fibre orientation or diffusion tensor estimation (Xu et al.,
2012; Hern�andez et al., 2013; Chang et al., 2014). In this paper we
reformulate our previous proposed approach (Hern�andez et al., 2013)
and provide a generic and model independent toolbox for model fitting
using GPUs. The toolbox provides a flexible and friendly front-end for the
user to specify a model, define constraints and any prior information on
the model parameters, and choose a non-linear optimisation routine,
ranging from deterministic Gauss-Newton type approaches to stochastic
Bayesian methods based on Markov Chain Monte Carlo (MCMC). It then
automatically generates a GPU executable file that reflects all these op-
tions. This achieves flexibility in model fitting and allows a single GPU to
achieve a better performance than 200 CPU cores.

To further explore the potential of GPUs for computational dMRI, we
present another parallel framework for white matter tractography and
connectome estimation, a common dMRI application with completely
different features and challenges compared to the voxel-wise biophysical
modelling. We focus here on probabilistic tractography approaches,
which for certain applications can be very time consuming (Behrens
et al., 2007). For instance, the generation of a “dense” connectome
(Sporns et al., 2005) from a single subject using high-resolution data from
the HCP can take more than 9 h on a large CPU cluster (see Table 1). In
the case of tractography algorithms, the main challenge for a GPU par-
allel solution comes from the fact that the required data for propagating
each streamline (set of voxels with distributions of fibre orientations) is
not known in advance, as their paths are estimated dynamically on the
fly. This makes the allocation of GPU resources difficult, and therefore,
the a-priori assessment of the parallelisability of the application chal-
lenging. Moreover, the streamlines propagation is likely to be asyn-
chronous as they may have imbalanced execution length, which induces
thread divergence and causes performance degradation on GPUs.

https://www.humanconnectome.org
https://www.humanconnectome.org

M. Hernandez-Fernandez et al. NeuroImage 188 (2019) 598–615
Furthermore, these methods have typically high memory requirements
and include relatively heavy tasks, particularly for large datasets and
whole-brain explorations, making the design of an efficient
GPU-accelerated solution (which ideally comprises light and small tasks)
even less straightforward. Preliminary GPU parallel tractography
frameworks have been proposed in the past (Mittmann et al., 2008; Xu
et al., 2012); however, our tractography parallel framework achieves
accelerations of more than 200 times compared to CPU-based imple-
mentations and includes novel features that allow even more accurate
anatomical constraints to be imposed, such as the inherent support of
surface meshes (GIFTI files (Harwell et al., 2008)), and the possibility of
generating dense connectomes.

In summary, we illustrate that, despite differences in parallelisability
challenges, well-thought GPU-based designs that are carefully imple-
mented can offer the same performance as hundreds of CPU cores, within
the different contexts of tissue microstructure estimation, and tractog-
raphy and connectome generation. The developed frameworks will be
released upon publication within the FSL software library (Jenkinson
et al., 2012) 1.

2. Material and methods

2.1. Biophysical modelling on GPUs

2.1.1. Framework description
Tissue microstructure estimation from dMRI is typically performed on

a voxel-by-voxel basis, where a biophysical model is fitted. Excluding the
DTI model, which can be easily and quickly fitted using linear least
squares, most models are non-linear and numerical optimisation routines
are required. Non-linear optimisation is typically computationally
demanding and can be very time consuming, particularly since advanced
multi-compartment models (Alexander et al., 2017) require larger than
average datasets (multiple b-values or high angular resolution).

Given the large number of voxels and the relatively low memory re-
quirements of these independent tasks, such an application is well-suited
for implementation on GPUs. To take advantage of the inherent paral-
lelisability of the problem and yet cover all possible dMRI models, we
have developed a generic toolbox for designing and fitting nonlinear
models using GPUs and CUDA. The toolbox, CUDA diffusion modelling
toolbox (cuDIMOT), offers a friendly and flexible front-end for the users
to implement new models without the need for them to write CUDA code
or deal with a GPU design, as this is performed by the toolbox auto-
matically (Fig. 1). The user only specifies a model using a C-like language
header. This model specification includes the model parameters, con-
straints and priors for these parameters, the model predicted signal
function, and optionally the partial derivatives with respect to each
parameter if they can be provided analytically (cuDIMOT offers the op-
tion for numerical differentiation). Once the model specification has
been provided, the toolbox integrates this information with the parallel
CUDA design of the corresponding fitting routines at compilation time,
and it generates a GPU executable. The fitting routines include options
for both deterministic (e.g. Gauss-Newton type) and stochastic (e.g.
Bayesian inference using MCMC) optimisation.

An important factor to take into account in the design of the frame-
work is its generic and model-independent aspect. In order to achieve an
abstraction of the fitting routines, these are implemented in a generic
way excluding functions that are model-dependent. The management of
threads, definition of grid size and data distribution are also challenging
aspects that cuDIMOT automates. The fitting routines, deterministic and
stochastic, are implemented in different CUDA kernels. The toolbox im-
plements the different kernels, deals with the arduous task of distributing
1 Current versions of the toolboxes are publicly available on: https://users.
fmrib.ox.ac.uk/~moisesf/cudimot/index.html and https://users.fmrib.ox.ac.
uk/~moisesf/Probtrackx_GPU/index.html.

600
the data among thousands of threads, uses the GPU memory spaces
efficiently, and even distributes the computation among multiple GPUs if
requested. Two levels of parallelism are used in our design (see Fig. 2). A
first level distributes the fitting process of all the voxels amongst CUDA
warps (groups of 32 CUDA threads). Specifically, the fitting process of a
few voxels is assigned to a CUDA block (a group of CUDA warps), and
each warp fits the model to a single voxel. In a second level of paralle-
lisation, the computation of the most expensive within-voxel tasks is
distributed amongst threads within a warp, including the computation of
the model predicted signal and residuals, and the partial derivatives with
respect to the model parameters across the different measurement points.
More details about the parallel design and implementation of cuDIMOT
are provided in the Supplementary material.

Additionally, a higher-level of parallelism can be further used to
enhance even more the performance, using very large groups of voxels
and a multi-GPU system. We can divide a single dataset into groups of
voxels and assign each group to a different GPU. The different GPUs do
not need to communicate because the groups of voxels are completely
independent, apart from the final step of outputting the results.

In terms of optimisation routines, cuDIMOT offers a number of
deterministic and stochastic model-fitting approaches, including greedy
optimisation using Grid-Search, non-linear least-squares optimisation
using Levenberg-Marquardt (LM) and Bayesian inference using Markov
Chain Monte Carlo (MCMC).

MRI models can have free parameters, which are estimated, and fixed
parameters, which reflect measurement settings or features that are
known. cuDIMOT allows such fixed parameters to be defined, and these
may be common to all voxels or not (CFP or common fixed parameters
and FixP or fixed parameters in Supplementary Fig. 3a). For instance, in
typical diffusion MRI, the diffusion-sensitising gradient strengths (b
values) and associated directions (b vectors) would be CFPs, whereas for
diffusion-weighted steady-state free precession (DW-SSFP) (McNab and
Miller, 2008), the flip angle (α) and repetition time (TR) would be CFPs,
while the longitudinal and transverse relaxation times (T1 and T2) would
be FixP, as they vary across voxels. Using a simple syntax, a list with all
the information is passed to the toolbox through the designer interface.
This information is parsed by cuDIMOT and used at execution time, when
the model user must provide maps with these parameters. This generic
interface allows the users to combine data from dMRI with data from
other modalities, such as relaxometry (Deoni, 2010), and develop more
complex models (Foxley et al., 2015, 2016; Tendler et al., 2018), or, even
use cuDIMOT in different modalities where nonlinear optimisation is
required.

Prior information or constraints on the parameters of a model can be
integrated into the fitting process using the toolbox interfaces, where a
simple syntax is used for enumerating the type and the value of the priors
(see Supplementary Fig. 3b). Upper and lower limits or bounds can be
defined for any parameter (transformations are implemented internally
and described in the Supplementary material), and priors can be any of
the following types:

� A Normal distribution. The mean and the standard deviation of the
distribution must be specified.

� A Gamma distribution. The shape and the scale of the distribution
must be specified.

� Shrinkage prior or Automatic Relevance Determination (ARD)
(MacKay, 1995). The factor or weight of this prior must be provided
in the specification.

� Uniform distribution within an interval and uniform on a sphere (for
parameters that describe an orientation).

For stochastic optimisation, a choice can also be made on the noise
distribution and type of the likelihood function (Gaussian or Rician).

Because high-dimensional models are difficult to fit without a good
initialisation, the toolbox offers an option for cascaded fitting, where a
simpler model is fitted first, and the estimated parameters are used to

https://users.fmrib.ox.ac.uk/%7Emoisesf/cudimot/index.html
https://users.fmrib.ox.ac.uk/%7Emoisesf/cudimot/index.html
https://users.fmrib.ox.ac.uk/%7Emoisesf/Probtrackx_GPU/index.html
https://users.fmrib.ox.ac.uk/%7Emoisesf/Probtrackx_GPU/index.html

Fig. 1. General design of CUDA Diffusion Modelling Toolbox (cuDIMOT). Two types of users interact with the toolbox through interfaces, a model designer and a
model user. The model designer provides the model specification (parameters, priors, constraints, predicted signal and derivatives), whereas the model user interacts
with the toolbox for fitting the model to a dataset. The toolbox provides CUDA kernels that implement several fitting routines. These kernels are combined with the
model specification at compilation time for generating a GPU executable application.

Fig. 2. Parallel design of cuDIMOT for fitting dMRI models on a GPU. The V voxels of a dataset are divided into groups of B voxels (voxels per block), and the fitting
process of each of these groups is assigned to different CUDA blocks. Inside a block, a warp (32 threads) collaborate for within-voxel computations.

M. Hernandez-Fernandez et al. NeuroImage 188 (2019) 598–615
initialise the parameters of a more complex model. 3D volumes can be
used for specifying the initialisation value of the model parameters in
every voxel.

Once a model has been defined and an executable file created, a user
still has flexibility in controlling a number of fitting options, including:

� Choosing fitting routines: Grid-Search, Levenberg-Marquardt or
MCMC. A combination of them is possible, using the output of one to
initialize the other.

� Selecting number of iterations in Levenberg-Marquardt and MCMC
(burn-in, total, sample thinning interval).

� Using Gaussian or Rician noise modelling in MCMC.
� Choosing model parameters to be kept fixed during the fitting
process.

� Choosing model selection criteria to be generated, such as BIC and
AIC.

2.1.2. Exploring microstructure diffusion MRI models with cuDIMOT
We used cuDIMOT for implementing a number of diffusion MRI

models and assess the validity of the results. We have implemented the
Neurite Orientation Dispersion and Density Imaging (NODDI) model,
601
using Watson (Zhang et al., 2012) and Bingham (Tariq et al., 2016)
distributions for characterising orientation dispersion.

We implemented NODDI-Watson with cuDIMOT using the designer
interface. This model assumes the signal comes from three different
compartments: isotropic compartment, intra-cellular compartment and
extra-cellular compartment. The model has five free parameters: the
fraction of the isotropic compartment fiso, the fraction of the intra-cellular
compartment relative to the aggregate fraction of the intra-cellular and
extra-cellular compartments fintra, the concentration of fibre orientations
κ (the lower this value the higher the dispersion), and two angles for
defining the mean principal fibre orientation θ and ϕ. The concentration
parameter κ can be transformed and expressed as the orientation
dispersion index OD ε ½0;1�:

OD ¼ 2
π
arctan

�
1
κ

�
(1)

We implemented the model predicted signal of NODDI-Watson as in
(Zhang et al., 2011), providing analytically the derivatives for fiso, fintra.
We used numerical differentiation to evaluate the partial derivatives of
the rest of parameters. We used numerical approximations (e.g. for the
Dawson's integral) as in (Press et al., 1988), and we performed the same

Fig. 3. Connectivity matrices modes offered by the GPU-accelerated tractog-
raphy framework. The framework can generate connectivity matrices from a) all
seed to all seed points, b) all points in a mask to all points in another mask

M. Hernandez-Fernandez et al. NeuroImage 188 (2019) 598–615
cascaded steps as the Matlab NODDI toolbox (Microstructure Imaging
Group - University College London, 2017). First, we fit the diffusion
tensor model for obtaining the mean principal fibre orientation (θ and ϕ).
Second, we run a Grid-Search algorithm testing different combination of
values for the parameters fiso, fintra and κ. Third, we run
Levenberg-Marquardt algorithm fitting only fiso, fintra and fixing the rest of
parameters. Finally, we run Levenberg-Marquardt, fitting all the model
parameters. The only difference is that the Matlab toolbox uses an active
set optimisation algorithm (Gill et al., 1984) instead of
Levenberg-Marquardt.

The NODDI-Bingham model assumes the same compartments as
NODDI-Watson. However, this model can characterise anisotropic
dispersion, and thus it has two concentration parameters κ1, κ2, and an
extra angle ψ which is orthogonal to the mean orientation of the fibres,
and encodes a rotation of the main dispersion direction. When κ1 ¼ κ2
the dispersion is isotropic, and when κ1 > κ2 anisotropic dispersion oc-
curs. In this case, the orientation dispersion index OD is defined as:

OD ¼ 2
π
arctan

 �����
ffi�
1
κ2

��
1
κ1

�s �����
!

(2)

and an index DA ε ½0;1� reflecting the factor of anisotropic dispersion can
be defined as:

DA ¼ 2
π
arctan

�
κ1 � κ2

κ2

�
(3)

We implemented NODDI-Bingham using cuDIMOT in a similar
manner as the previousmodel (only providing the analytic derivatives for
the fiso and fintra parameters). For implementing the confluent hypergeo-
metric function 1F 1 of a matrix argument, included in the predicted
signal of the intra-cellular and extra-cellular compartments of the model,
we use the approximation described in (Kume and Wood, 2005). We use
the same optimisation steps as in the NODDI-Watson: diffusion tensor
fitting, Grid-Search, and Levenberg-Marquardt twice.

2.2. Probabilistic tractography and connectomes on GPUs

Contrary to voxel-wise model fitting, white-matter tractography, and
particularly whole-brain connectome generation, are not inherently
suited for GPU parallelisation. Very high memory requirements, uncoal-
esced memory accesses and threads divergence (irregular behaviour of
threads in terms of accessed memory locations and life duration) are
some of the major factors that make a GPU parallel design of such an
application challenging. Nevertheless, we present a framework that
parallelises the propagation of multiple streamlines for probabilistic
tractography and overcomes the aforementioned issues using an over-
lapping pipeline-design.

2.2.1. Framework description
We design a parallel design and develop a GPU-based framework for

performing probabilistic tractography. Our application includes the
common tractography functionality, including for instance options to set:

� The number of streamlines propagated from each seed point, i.e., the
number of samples.

� Streamline termination criteria (maximum number of steps, curva-
ture threshold, anisotropy threshold, tract loop detection)

� A number of numerical integration approaches, including Euler's
method and 2nd order Runge-Kutta method (Basser et al., 2000), with
a subsequent choice of step length.

� Propagation criteria and anatomical constraint rules (seed, waypoint,
termination, stopping, and target masks) (Smith et al., 2012).

� Ability to accept tracking protocols in either diffusion or structural/
standard space.
602
Connectome generation is also inherently supported (Sporns et al.,
2005) and three options are available (see Fig. 3) (Li et al., 2012;
Donahue et al., 2016):

� Connectivity matrix between all the seed points and all the other seed
points. A typical use is for studying the connectivity from all grey
matter to all grey matter (Glasser et al., 2013).

� Connectivity matrix between all the points of two different masks,
which are independent of the seed points mask. A typical use is for
studying the connectivity between grey matter regions, when seeding
from all white matter.

� Connectivity matrix between all the seed points and all the points
specified in a different mask. A typical example is to use the whole
brain as a target mask for studying the connectivity profile of the grey
matter in a specific seed, and use it for connectivity-based classifi-
cation (Johansen-Berg et al., 2004).

We have also included an extra feature that is not typically found in
tractography toolboxes, but can be important in defining anatomically
accurate constraints. We included in our parallel framework the possi-
bility of using surfaces, as well as volumes, for defining seed and regions
of interest (ROIs). We implement support for the GIFTI format (Harwell
et al., 2008), according to which surfaces are defined by meshes of tri-
angles. Three spatial coordinates define each triangle vertex in a 3D
space. Surface vertices can be used for defining seed points, and mesh
triangles can be used for defining stopping/constraint masks. If the latter,
a streamline needs to be checked upon crossing the surface meshes. We
implement the method described in (O'Rouke, 1998) (ray-plane inter-
section) for checking if the segments of a streamline intersects a triangle
(details of the method are presented in the Supplementary material).

When designing a parallel solution, we first notice that path
seeding from an independent region, or c) all seed points to all points in a
different mask.

M. Hernandez-Fernandez et al. NeuroImage 188 (2019) 598–615
propagation is completely independent across streamlines, and thus it
can be in principle parallelised. To reflect that, we can create as many
CUDA threads as the required number of streamlines, in fact twice the
number of streamlines, as we propagate from each seed point towards
both directions indicated by the local fibre orientation. Thus, for D seed
points and F streamlines per seed, we create 2 � D � F threads in total
(see Fig. 4). Nevertheless, there are complexities that make such a design
challenging and considerably reduce efficiency if not addressed, as we
explain below. These include heavy tasks, thread divergence and mem-
ory allocation challenges.

A first consideration is the high complexity of some of the routines
included for implementing the offered functionality. For instance, the use
of surfaces involves the execution of an intersection detection algorithm,
while the streamline propagation includes interpolation and space
transformation routines. Furthermore, checking anatomical constraints
during propagation increases the complexity of the algorithm, and in-
duces a significant number of conditional branches. Having a single
CUDA kernel for performing all these tasks leads to substantially heavy
threads, which consume a lot of computational resources and conse-
quently cause low occupancy in a GPU Streaming Multiprocessor (SM,
see Supplementary Fig. 1). To solve this issue, we split the application
into multiple tasks, each of which is implemented in a different CUDA
kernel. A pipelined design is used to execute these kernels, running them
serially one after the other. A first kernel propagates the streamlines, and
subsequently, kernels for checking anatomical constraints, generating
path distribution maps and generating connectomes are executed.
Further details of these kernels and the executing pipeline of the appli-
cation are included in the Supplementary material.

Another main challenge is related to memory requirements. It may be
impossible to use GPUs if the memory demands exceed the available
device memory, and typically, this is true across all levels in the GPU
memory hierarchy. Tractography algorithms need a distribution of fibre
orientations for sampling. As we cannot predict the streamline track lo-
cations in advance, the fibre orientation distributions of all voxels need to
be allocated in memory. The amount of required memory depends on the
size (spatial dimensions) of the dataset and for probabilistic tracking on
the number of samples in the orientation distributions. For instance, the
required memory for simply allocating the samples of a Human Con-
nectome Project dataset (Van Essen and Ugurbil, 2012; Van Essen et al.,
2012; Sotiropoulos et al., 2013) is approximately 1.5 GB. Moreover, the
3D streamline coordinates need to be stored, but the number of steps that
a streamline will take cannot be predicted in advance. We therefore need
to allocate enough memory for storing the maximum possible number of
coordinates for each streamline. Additionally, volumes and/or surfaces
may be used for defining seeds, anatomical constraints and connectome
matrix elements, and all of them need also to be allocated in memory.
Our strategy for overcoming this issue was to allocate all the required
memory in the GPU without considering the streamline coordinates, and
Fig. 4. GPU parallel design of the streamline probabilistic tractography
framework. For each of the D seeds and for each of the F streamlines per seed,
we create two CUDA threads (a and b), which are distributed amongst blocks of
K threads.

603
then propagate the maximum number of streamlines that can be
computed in parallel given the amount of memory left. If all the
requested streamlines cannot be computed in parallel (which is the most
typical scenario), the application iterates over different streamline sets.

Another challenge that limits the performance is thread divergence.
The streamlines may be initialised at different seed points and they can
propagate to different regions and for different lengths. This causes ac-
cesses to different memory locations when sampling, i.e., uncoalesced
memory accesses. Furthermore, streamlines may terminate at different
time points. This causes asynchronous thread termination and a possible
waste of computational resources, as some threads finish their execution
before others and stay idle, wasting GPU resources. This situation persists
until all the threads of the same CUDA block finish their execution and
the GPU scheduler switches the block with another block of threads. For
this reason, we set the block size K to a small size of 64 threads (2 warps).
Although with this configuration full SM occupancy is not achieved
(because there is a limit in the number of blocks per SM), there can be
fewer divergences than having larger blocks. Moreover, the GPU can
employ the unused resources by overlapping other tasks/kernels in
parallel.

We indeed take advantage of our pipelined design and use CUDA
streams to overlap the computation of different sets of streamlines. CUDA
streams are queue instances for managing the order of execution of
different tasks (NVIDIA, 2015a) and offer the possibility of running
concurrently several tasks (kernels execution and/or CPU-GPU memory
transfers) on the same GPU. Our framework divides the streamlines into a
few sets, and uses a number of OpenMP (Chapman et al., 2008) threads to
execute the pipeline of several streamline sets on different CUDA streams
concurrently (see Supplementary Fig. 6b).

2.3. Diffusion–weighted MRI data

The GPU designs presented in this paper have already been used to
process hundreds of datasets. Here, we illustrate performance gains on
various exemplar data with both high and low spatial resolutions.

For testing the diffusion modelling framework (cuDIMOT) we used
data from UK Biobank (Miller et al., 2016). Diffusion-weighting data
were acquired using an EPI-based spin-echo pulse sequence in a 3T
Siemens Skyra system. A voxel size of 2.0�2.0�2.0mm3 was used
(TR¼ 3.6 s, TE¼ 92ms, 32-channel coil, 6/8 partial Fourier) and 72
slices were acquired. Diffusion weighting was applied in M¼ 100 evenly
spaced directions, with 5 directions b¼ 0 s/mm2, 50 directions
b¼ 1000 s/mm2 and 50 directions b¼ 2000 s/mm2. A multiband factor
of 3 was employed (Moeller et al., 2010; Setsompop et al., 2012). A T1
structural image (1mm isotropic) of the same subject was used for
creating a white & grey matter mask, which was non-linearly registered
to the space of the diffusion dataset (Andersson et al., 2007), and applied
to the map of the estimated parameters before showing the results
included in this paper. For creating this mask, a brain extraction tool
(Smith, 2002) and a tissue segmentation tool (Zhang et al., 2001) were
used.

For testing the GPU probabilistic tractography framework, data were
acquired on a 3T Siemens Magnetom Prisma using HCP-style acquisitions
(Sotiropoulos et al., 2013). Diffusion-weighting was introduced using
single-shot EPI, using an in-plane resolution of 1.35� 1.35mm2 and
1.35mm slice thickness (TR¼ 5.59 s, TE¼ 94.6ms, 32-channel coil, 6/8
partial Fourier). 134 slices were acquired in total and diffusion weighting
was applied in M¼ 291 evenly spaced directions, with 21 directions
b¼ 0 s/mm2, 90 directions b¼ 1000 s/mm2, 90 directions
b¼ 2000 s/mm2 and 90 directions b¼ 3000 s/mm2.

2.4. Hardware features

We used an Intel host system with NVIDIA GPUs and a large cluster of
Intel processors for testing our parallel designs. The system has a dual
NVIDIA K80 accelerator (Error Correcting Codes ECC enabled),

Fig. 5. Comparison of three different tools fitting the NODDI-Watson model. (a)
The results from each tool are presented in different rows. The first 3 columns
show the map of the estimates for the parameters fiso, fintra and the index OD. The
4th column shows the employed computational resources and the execution
times. (b) Differences, in percentage, of the estimated values between the
Matlab toolbox and the other approaches.

2 Note the almost sixfold difference between fitting NODDI-Bingham vs.
NODDI-Watson using the Matlab toolbox, despite the higher complexity of
NODDI-Bingham. This is due to the inefficient approximation of the confluent
hypergeometric function of a scalar argument used in the NODDI-Watson Mat-
lab implementation. For this reason, the comparisons in performance gains with
cuDIMOT are more meaningful in the NODDI-Bingham case.

M. Hernandez-Fernandez et al. NeuroImage 188 (2019) 598–615
connected to the host via PCI express v3. A single GPU was used for the
experiments. The system has tens of CPU nodes, and each node is
comprised of 2 Intel Xeon E5-2660 v3 2.60 GHz processors, each with 10
cores (20 CPU cores per node), and 384 GB (24� 16 GB) RDIMM mem-
ory. Major features of the NVIDIA K80 accelerators and the Intel pro-
cessors are summarized in Supplementary Table 1 (NVIDIA, 2014a,
2015b).

The systems run Centos 6.8 Linux. We compiled our code using CUDA
7.5 (V.7.5.17) and gcc 4.4.7 compilers.

3. Results

3.1. Tissue microstructure modelling with GPUs

We fit the NODDI-Watson model to a UK Biobank dataset using three
approaches, the NODDI Matlab toolbox (Microstructure Imaging Group -
University College London, 2017), AMICO (Daducci et al., 2015) and
cuDIMOT. Although Matlab applications are not as optimised as C/Cþþ
applications, the only available version of NODDI is implemented in
Matlab. Despite this issue, the NODDI toolbox can parallelise the fitting
process distributing groups of voxels among several CPU threads. AMICO
reformulates the problem as a linear system via convex optimisation and
accelerates computations by performing discrete searches in the multi-
dimensional space of the problem. Fig. 5a showsmaps with the estimated
parameters from each approach and the respective execution times. Both
cuDIMOT and AMICO achieved accelerations of more than two orders of
magnitude compared to NODDI toolbox (cuDIMOT 352x and AMICO
160x) using a single NVIDIA K80 GPU and a single CPU core respectively.
cuDIMOT was 2.2 times faster than AMICO.

To compare the estimates, we treat the NODDI toolbox results as
ground truth, and we calculate the percentage absolute difference with
the estimates obtained from the other two approaches. Fig. 5b shows
higher differences with AMICO than with cuDIMOT for some of the
estimated parameters. The differences between the Matlab imple-
mentation and cuDIMOT are insignificant, except for the parameter fiso in
certain parts of the white matter. However, the values of fiso are very low
in the white matter, and the absolute difference between the Matlab
toolbox and cuDIMOT are very small (~0.003) (See Supplementary
Fig. 8). The absolute differences between the Matlab toolbox and AMICO
are also small, but more significant (~0.03).

To further explore these findings, Fig. 6 shows scatterplots of the
estimated values throughout the brain. The correlations between the
Matlab implementation and AMICO, and between the Matlab toolbox
and cuDIMOT are presented. cuDIMOT results are highly correlated to
the results from the Matlab tool (Supplementary Fig. 9 includes Bland-
Altman plots). The discretisation approach used in AMICO is evident in
these scatterplots, particularly for the fintra parameter, with discretisation
effects. For cuDIMOT, correlations with ground truth is higher. We only
find some differences in a few grey matter voxels where OD takes rela-
tively high values (OD> 0.85, i.e. very high fibre orientation dispersion).
We compared the distribution of the estimated values for the parameter
κ, from whichOD is derived (See Supplementary Fig. 10a), and we found
that for low values of κ (κ <1), the Matlab toolbox seems to get trapped in
a local minimum (κ ¼ 0:5), whereas in cuDIMOT the value of the
parameter is pushed towards the lower bound (κ ¼ 0:0). Moreover, we
found that this happens in a very low proportion of voxels located at the
interface between grey matter and CSF (See Supplementary Fig. 10b). We
believe that these differences are due to the numerical approximations
used. In the cuDIMOT implementation we approximate the Dawson's
integral as in (Press et al., 1988). Likely, the Matlab toolbox is using a
different approximation. Overall, these results indicate that cuDIMOT
achieves very similar performance to the NODDI Matlab toolbox, and
compared with AMICO, cuDIMOT is faster and obtains more accurate
results.

We also performed similar comparisons for the NODDI-Bingham
model (Microstructure Imaging Group - University College London,
604
2017). Using a single GPU, cuDIMOT was found to be 7 times faster than
the Matlab implementation running on a cluster with 72 cores2 (Fig. 7).
We obtain very similar results from both tools; however, the percentage
absolute differences (bottom row in Fig. 7) are on average higher
compared to the NODDI Watson model. To gain further insight, Fig. 8
shows scatterplots of the parameter values estimated using both methods
throughout the brain. In all the parameters, the correlation coefficient
was higher than 0.984 in the white matter, and 0.977 in the grey matter.
Notably, we found some voxels where one toolbox returns a very low DA
(near zero) but not the other. We found that these voxels represent a very
low proportion of the whole dataset, 0.2%, and they are at the interface
between white matter and CSF. We believe that the source of these dif-
ferences come from:

Fig. 6. Correlations between the results from NODDI Matlab toolbox and AMICO/cuDIMOT fitting the NODDI-Watson model in the white matter, grey matter and the
combination of white & grey matter.

M. Hernandez-Fernandez et al. NeuroImage 188 (2019) 598–615

605

Fig. 7. Comparison of a Matlab tool and cuDIMOT fitting the NODDI-Bingham
model. The first 2 rows show the map of the estimates for the parameters fiso,
fintra, the indices OD and DA, the used computational resources and execution
times for each tool. The bottom row shows the differences, in percentage, of the
estimated parameters between the Matlab tool and cuDIMOT.

M. Hernandez-Fernandez et al. NeuroImage 188 (2019) 598–615
� Using a different approximation of the hypergeometric function. In
cuDIMOT we use a Saddlepoint approximation (Kume and Wood,
2005) and in the Matlab toolbox the function is approximated as in
(Koev and Edelman, 2006).

� Different non-linear optimisation method. We use Levenberg-
Marquardt whereas the Matlab toolbox uses the active set algorithm
included in the fmincon function (Gill et al., 1984).

We also found a few voxels where DA is estimated with values around
0.5 in cuDIMOT, whereas in the Matlab toolbox the values are different.
This seems to be related to the initial Grid-Search routine and the values
that define the grid for the second concentration parameter κ2. Both
Matlab toolbox and cuDIMOT reparametrise this parameter as β ¼ κ1 �
κ2. However, in cuDIMOTwe include in the grid a set of values (from 0 to
16), whereas Matlab toolbox uses a single constant value to initialise this
parameter, defined by the coefficient between the second and third ei-
genvalues of the diffusion tensor. Nevertheless, overall we obtain very
high correlations between both toolboxes.

To assess speed-ups achieved by cuDIMOT, we implemented several
dMRI models. We report in Table 2 the speedups obtained by cuDIMOT
using a single NVIDIA K80 GPU, compared to the commonly used tools
for fitting these models running on 72 CPU cores, including Cþþ and
Matlab implementations. A Biobank dataset was used for this experi-
ment. We considered the following models:

- Ball & 1 stick (Behrens et al., 2003, 2007)
- Ball & 2 sticks
- Ball & 1 stick (with gamma-distribution for the diffusivity (Jbabdi
et al., 2012))

- Ball & 2 sticks (with gamma-distribution for the diffusivity)
- NODDI-Watson
- NODDI-Bingham

On average (and excluding NODDI-Watson implementation), using a
single GPU cuDIMOT achieves accelerations of 4.3x.

To illustrate the flexibility of cuDIMOT in defining new models, and
the benefits from accelerations that allow extensive model comparison,
even with stochastic optimisation, we used cuDIMOT to test whether
606
crossing or dispersing models are more supported by the data. We per-
formed a comparison of six diffusion MRI models and used the BIC index
for comparing the performance. The models included in this test were:

- Ball & 1 stick (with gamma-distribution for the diffusivity (Jbabdi
et al., 2012))

- Ball & 2 sticks (with gamma-distribution for the diffusivity)
- NODDI-Watson
- Ball & racket (Sotiropoulos et al., 2012)
- NODDI-Bingham
- NODDI-2-Binghams: we implement an extension of the NODDI-
Bingham model (Tariq et al., 2016) for including two fibre orienta-
tions with the model signal given by:

Sm ¼ S0

�
fisoSisom þ ð1� fisoÞ

�
1� ffan2

��
fintra1Sintra1m þ ð1� fintra1ÞSextra1m

� þ
ð1� fisoÞ

�
ffan2
��

fintra2Sintra2m þ ð1� fintra2ÞSextra2m

� 	
(4)

Sisom , Sintra1m , Sintra2m , Sextra1m and Sextra2m are defined as in the NODDI-Bingham
model.

The model has a total of 14 free parameters:

� Compartments fraction: fiso, ffan2, fintra1, fintra2
� First fibre distribution: κ1 1, κ1 2, θ1, ϕ1, ψ1
� Second fibre distribution: κ2 1, κ2 2, θ2, ϕ2, ψ2

In all cases we ran an initialisation routine (Grid-Search or the output
of the fitting process of another model), we run Levenberg-Marquardt
and MCMC. cuDIMOT calculates the BIC from the mean of the param-
eter estimates. We first classify the six models into two groups, one group
with the models that do not characterise the dispersion of fibre orien-
tations, which include the ball& stick(s) models, and another group with
the models that characterise the dispersion. The second row in Fig. 9
shows a colour-coded map indicating in what voxels each group gets a
better BIC (lower), i.e. its complexity is better supported by the data.
Using dispersion models the diffusion signal is better explained, and the
obtained BIC is lower in the majority of brain regions. The last row of
Fig. 9 compares the four considered dispersion models. The dominant
model that gets a lower BIC is NODDI-Bingham (55% of the voxels)
followed by NODDI-Watson (24% of the voxels), consistent with the re-
sults presented by (Ghosh et al., 2016). Interestingly, 5% of the voxels,
particularly in the centrum semiovale, support the existence of dispersing
populations crossing each other.

3.2. Tractography with GPUs

In order to validate the GPU-accelerated probabilistic tractography
framework we performed various tests and compared the results with the
results obtained using a CPU-based tractography application (Smith
et al., 2004; Behrens et al., 2007), as implemented in FSL, for both white
matter tract reconstruction and connectome generation. Given the sto-
chastic nature of probabilistic tractography methods, we expect some
variability in the results of both frameworks, but given the high number
of samples that we have used in the tests, we expect the results to have
converged and the variability to be small. Nevertheless, we run every
experiment 10 times and we compare the differences between CPU and
GPU results with the run-rerun variability.

Fig. 10a shows some quantitative comparisons of reconstructed tracts
using both implementations. We reconstructed 27 major white matter
tracts as in (de Groot et al., 2013) (12 bilateral and 3 commissural ones)
using standard space tracking protocols and constraints (see Table 3 for a
list of reconstructed tracts). In a different test, we generated dense con-
nectomes using the HCP grayordinates (91K seed points (Glasser et al.,
2013)). To quantify these comparisons, we present the run-rerun vari-
ability of each framework independently and the distribution of corre-
lation coefficients between the CPU-based and the GPU-based

Fig. 8. Correlations between the results from a Matlab tool and cuDIMOT fitting the NODDI-Bingham model in the white matter, grey matter and the combination of
white & grey matter.

Table 2
Speedups obtained by cuDIMOT, fitting several dMRI models to a dataset from the UK Biobank on a single K80 NVIDIA GPU, compared with the commonly used tools
that implement these models and executed on a computing cluster using 72 CPU cores (and a single CPU thread per core).

Ball & 1-stick
Cþþ

Ball & 2-sticks
Cþþ

Ball & 1-stick þ Gamma
Cþþ

Ball & 2-sticks þ Gamma
Cþþ

NODDI Watson
Matlab

NODDI Bingham
Matlab

Common Tools
72 CPU cores

720s 1380s 1260s 2520s 2400m 405m

cuDIMOT
single NVIDIA K80
GPU

187s 423s 324s 679s 6.8m 58m

Speedup 3.85x 3.26x 3.88x 3.7x 352x 6.98x

M. Hernandez-Fernandez et al. NeuroImage 188 (2019) 598–615

607

Fig. 9. Model performance comparison. The first row shows a map for reference with the estimated fraction of the principal fibre in the ball & 2 sticks model. The
second and third rows show color-coded maps indicating in what locations a model or a group of models get the best BIC.

M. Hernandez-Fernandez et al. NeuroImage 188 (2019) 598–615
frameworks. In the reconstruction of the 27 tracts the correlation was
calculated voxel-wise. In the generation of the dense connectome, the
correlation was calculated from all the elements of the connectivity
matrix. The individual run-rerun correlation coefficients are higher than
0.999 in all the cases, for both the CPU and the GPU frameworks.
Importantly, the correlation coefficients between CPU and GPU are
higher than 0.998, illustrating that the two implementations provide the
same solution. Even if these correlations are slightly lower than between
the individual run-rerun results (CPU vs. CPU and GPU vs. GPU), this is
expected, as some mathematical operations have different implementa-
tions (e.g. rounding modes) and different precision in a GPU compared
with a CPU (Whitehead and Fit-florea, 2011). Fig. 10b shows a qualita-
tive comparison of the reconstruction of six exemplar tracts using both
frameworks.

We evaluated the optimal number of CUDA streams (and OpenMP
threads) for each test (see Supplementary Fig. 11). The most efficient
configurations were 8 CUDA streams for generating dense connectomes,
obtaining a total gain of 1.35x respect using 1 CUDA stream, and 4 CUDA
streams for reconstructing tracts, obtaining gains of only 1.12x. Fig. 11a
reports computation times reconstructing the 12 bilateral tracts and the 3
commissural tracts individually. A single CPU core was used for running
the CPU-based framework, and a single GPU and four CUDA streams for
processing the tracts with the GPU-accelerated framework. On average, a
speedup of 238x was achieved, in the range of 80x to 357x. In all cases,
except for the reconstruction of the Acoustic Radiation (AR), the GPU-
based application achieves accelerations of more than two orders of
magnitude. In general, if the reconstruction of a tract involves several
anatomical constraints that makes the algorithm to stop or discard
streamlines at early steps, including tight termination and exclusion
masks, the GPU-based framework performs worse, as these masks are not
checked until the propagation of the streamlines has completely finished
(see Supplementary Fig. 6a). The reconstruction of the Acoustic Radia-
tion uses a very tight exclusion mask and thus the achieved performance
is lower compared with the reconstruction of other tracts.

Fig. 11b reports the total execution time reconstructing all the tracts.
When the CPU-based tool is used, the reconstruction of several tracts can
be parallelised. Tracts are completely independent and thus their
reconstruction can be processed by different threads. A total of 27 CPU
cores were used in this case, using different CPU threads for recon-
structing different tracts. A single GPU and four CUDA streams were used
608
again for processing the tracts with the GPU-accelerated framework,
processing sequentially the different tracts. A speedup of 26.5x was
achieved using the GPU-accelerated solution.

We use the CPU-based and the GPU-based frameworks for generating
a dense connectome. 91,282 seed points and 10,000 samples per seed
point were employed, having a total of 912.82 million streamlines. For
generating the connectome with the CPU-based application we used 100
CPU cores, each one propagating 100 streamlines from each seed point.
This process took on average 3.38 h. At the end of the process, the
different generated connectomes (on different CPU cores) need to be
added. This merging process took on average 6.1 h (due to the size of the
final connectivity matrices).

We used 1 single GPU and 8 CUDA streams for generating the con-
nectome with the GPU-based application. The process took on average
2.95 h. Fig. 11c reports these execution times and the speedup achieved
by the GPU-based framework, with and without considering the merging
process required by the CPU multi-core application. Without considering
the merging process both applications reported similar execution times.
Considering the merging process, the GPU application was more than
three times faster than the CPU multi-core application.

Apart from the computational benefits, we have added new func-
tionality to the GPU tractography toolbox. A novel feature is the possi-
bility of using surfaces for imposing more accurate anatomical
constraints. For instance, we can use a pial surface as termination mask
for avoiding the propagation of streamlines outside this surface, and
avoiding non-plausible connections along the CSF in the subarachnoid
space. As shown in the results of Fig. 12a, surfaces allow us to describe
more accurately the cortical folding patterns and allow more accurate
constraints to be imposed.

A more sophisticated termination mask mechanism has also been
added to the GPU framework. Commonly, termination masks force the
algorithm to stop the propagation of the streamlines the first time they hit
the mask, but sometimes it is reasonable to allow the propagation until
certain conditions are met (see Fig. 12b). For instance, to increase the
chances of getting “direct” connections, it is desired that a streamline
crosses the WM/GM boundary no more than twice when reconstructing
cortico-cortical networks, once at the starting point and once at the end
point. However, it does not seem plausible to have pathways running in
and out of the WM/GM boundary or in parallel along the cortex con-
necting several regions. Thus, a special type of termination masks can be

Fig. 10. (a) Run-rerun variability of CPU-based and GPU-based probabilistic tractography frameworks and distribution of the correlation coefficients between both
frameworks. Results are showed in the reconstruction of 12 bilateral tracts, 3 commissural tracts and in the generation of a dense connectome. Each experiment was
run 10 times. The 45 combinations of correlations between re-runs were considered and 45 out of the 100 combinations of CPU vs. GPU correlation coefficients were
chosen randomly. (b) Coronal, sagittal and axial views comparing CPU-based and GPU-based frameworks performing probabilistic tractography and reconstructing
some major white matter tracts. Each colour represents a different white matter tract. These paths are binarised versions of the path distributions after being
thresholded at 0.5%.

M. Hernandez-Fernandez et al. NeuroImage 188 (2019) 598–615
used for stopping the streamlines when they cross a surface twice.
Similarly, to encourage direct cortico-subcortical connections, it is un-
desirable that a streamline visits several subcortical regions, but ideally
we would like a streamline to be able to propagate within a subcortical
region. As in (Smith et al., 2012), our framework can use the special
609
termination masks for stopping the streamlines upon exiting these re-
gions, while allowing propagation within them. Fig. 12c shows the effect
of imposing these anatomical constraints when generating a dense con-
nectome. The special termination mask is defined with a WM/GM
boundary surface, and it also includes several subcortical structures

Table 3
List of reconstructed tracts sorted by number of propagated streamlines. Different
number of seed points and samples are used for reconstructing the tracts. Some
tracts have a bilateral homologue (þ) and some others no (�).

Tract Name Acronymic Number
of seeds

Samples
per seed

Number of
streamlines

Left/
Right

Uncinate
fasciculus

UNC 1692 1200 2,030,400 þ

Medial lemniscus ML 1926 1200 2,311,200 þ
Corticospinal
tract

CST 723 4000 2,892,000 þ

Anterior thalamic
Radiation

ATR 3181 1000 3,181,000 þ

Parahippocampal
part of
cingulum

PHC 1887 3000 5,661,000 þ

Middle cerebellar
peduncle

MCP 2075 4400 9,130,000 –

Forceps major FMA 18,159 600 10,895,400 –

Inferior
longitudinal
fasciculus

ILF 9207 1200 11,048,400 þ

Forceps minor FMI 19,195 600 11,517,000 –

Superior
longitudinal
fasciculus

SLF 32,831 400 13,132,400 þ

Superior thalamic
radiation

STR 21,019 800 16,815,200 þ

Cingulate gyrus
part of
cingulum

CGC 1137 20,000 22,740,000 þ

Inferior fronto-
occipital
fasciculus

IFO 15,412 4400 67,812,800 þ

Posterior thalamic
radiation

PTR 3669 20,000 73,380,000 þ

Acoustic radiation AR 23,105 10,000 231,050,000 þ

M. Hernandez-Fernandez et al. NeuroImage 188 (2019) 598–615
(accumbens, amygdala, caudate, cerebellum, hippocampus, pallidus,
putamen and thalamus). The connectivity pattern from the sensori-motor
part of the thalamus without and with advanced termination masks is
illustrated. In the former case, the streamlines can cross the cortex or
subcortical structures several times and continue propagating, generating
a number of false positives (for instance see hotspots along the frontal
medial surface). In the latter case, this situation is avoided, and a more
realistic connectivity map is obtained, connecting the sensorimotor part
of the thalamus to sensorimotor cortical regions.

Given the speed and facility to run-rerun probabilistic tractography
using the developed GPU toolbox, we performed a convergence study.
We evaluated the number of samples that are needed per seed point when
generating a dense connectome in order to achieve convergence. To do
that, we generated a dense connectome multiple times using a different
number of samples per seed point. Fig. 13 shows the correlation co-
efficients with respect to an assumed converged dense connectome,
which was generated using 100,000 samples per seed. The figure also
shows the correlation coefficients between consecutive runs in terms of
number of samples per seed. It seems that even with 1000 samples and
18min run, the results are almost converged. Using 10,000 samples per
seed achieves convergence, while the time for generating the con-
nectome is still reasonable, less than 3 h using a single GPU.

4. Discussion

We have presented GPU-based parallel computational frameworks for
accelerating the analysis of diffusion MRI, spanning from voxel-wise
biophysical model fitting to tractography and whole-brain connectome
generation. Despite the difference in the inherent parallelisability of
these applications, GPUs can offer considerable benefits when challenges
are carefully considered. Performances similar to 200 CPU cores were
achieved using a single GPU, which change the perspective of what is
610
computationally feasible. The GPU toolboxes will be publically released
as part of FMRIB's Software Library (FSL).

The accelerations achieved by the designs proposed here can be
tremendously beneficial. Big databases arise more and more often from
large consortiums and cornerstone projects worldwide. Hundreds or even
thousands of datasets need to be processed. The throughput of the par-
allel designs using a single or a multi-GPU system is higher than a CPU
multi-core system. Very large recent studies such as the Human Con-
nectome Project (HCP) (Van Essen and Ugurbil, 2012; Van Essen et al.,
2012; Sotiropoulos et al., 2013), (data from 1200 adults), the Developing
Human Connectome Project (dHCP) (data from 1000 babies) and UK
Biobank (Miller et al., 2016; Alfaro-Almagro et al., 2018) (data from 100,
000 adults) are using our parallel designs for processing these datasets on
GPU clusters. For instance, a 10-GPU cluster has been built for processing
the most computationally expensive tasks of the UK Biobank pipeline.
The cluster allows fitting the ball & sticks model to 415 datasets per day.
Running the same tasks with a cluster of 100 CPU cores, only 25 datasets
could have been processed per day. Moreover, to obtain a similar
throughput as the 10-GPU cluster, more than 1600 CPU cores would have
been necessary. Nevertheless, there are cloud computing platforms that
provide on-demand computational resources, including GPUs. Recent
studies have presented the pros and cons of using these services for
running neuroimaging applications, including cost comparisons (Mad-
hyastha et al., 2017).

We made a price-performance comparison between the multi-CPU
and single-GPU configurations, i.e. assessed the relative performance
gains of the GPU designs per unit cost. Indicative costs are detailed in
Supplementary Table 1, suggesting a price of ~£10800 for 72 CPU cores
and £4960 for a dual GPU (K80). It should be noted that these prices
reflect a GPU and CPU model and can change depending on choice and
generations. They however reflect reasonably the current costs. On
average, cuDIMOT on a single GPU (and single CPU core) was 4.3x faster
than 72 CPU cores. Thus, in terms of price-performance ratio the parallel
solution on a single GPU offers 17.6 times better speedup/pound than the
72 CPU core system. For generating a dense connectome, the GPU system
had a total cost of £3680 (a single GPU and 8 CPU cores) and was 3.2x
faster than 100 CPU cores, offering 13.04 times better speedup/pound.

Apart from increasing feasibility in big imaging data exploration, the
designs presented here can assist in model exploration and development,
as estimation and testing is an inherent part of model design. Moreover,
the response time for analysing a single dataset is dramatically reduced
from several hours/days to few minutes using a single GPU, and close to
real-time processing could make these methods more appealing for
clinical practice.

4.1. GPU-based biophysical modelling

We have presented a generic modelling framework, cuDIMOT, that
provides a model-independent front-end, and automatically generates a
GPU executable file that includes several fitting routines for user-defined
voxel-wise MRI models. Although parallel designs for processing MRI
voxel-wise applications are straightforward, for instance creating as
many threads as voxels, challenges need to be considered for achieving
efficient solutions on GPUs. Here we have proposed a second level of
parallelisation where the most expensive within-voxel tasks are distrib-
uted amongst threads within a CUDA warp. We have used cuDIMOT to
explore diffusion models that characterise fibre orientation dispersion,
and we have shown that it can be very useful for exploring, designing and
implementing new dMRI protocols and models. It is easy to use and
generates very efficient GPU-accelerated solutions.

Some toolboxes with the same purpose as cuDIMOT have been
recently presented (Harms et al., 2017; Fick et al., 2018). In (Fick et al.,
2018) a python generic toolbox for fitting multi-compartments dMRI
models is proposed, but it does not include any parallelisation strategy. In
(Harms et al., 2017) a toolbox for parallelising the optimisation routines
is proposed. Even if the initial version did not include the option for

Fig. 11. (a) Execution times (in logarithmic scale) and speedup (standard deviation σ is also shown) in the reconstruction of 12 bilateral tracts and 3 commissural
tracts comparing a GPU-based with a CPU-based probabilistic tractography framework. (b) Execution times (in logarithmic scale) and speedup (and its standard
deviation σ) reconstructing a total of 27 tracts and (c) generating a dense connectome, comparing a single GPU with several CPU cores.

M. Hernandez-Fernandez et al. NeuroImage 188 (2019) 598–615
performing stochastic optimisation or the ability to add priors on the
model parameters, an MCMC routine has been very recently included
(Harms and Roebroeck, 2018). It is implemented in a more generic
(non-GPU specific) programming model (OpenCL (Stone et al., 2010)
rather than CUDA), allowing the parallelisation on both multi-core CPUs
and GPUs, but potentially achieving lower performance on NVIDIA GPUs
as some type of instructions can differ in the implementation. For
instance, CUDA Shuffle instructions (NVIDIA, 2014a), which are used in
cuDIMOT kernels (see implementation details in the Supplementary
material), allow sharing data between threads within a warp and offer
performance improvement, but are not supported in OpenCL (Khronos
OpenCL Working Group, 2012), where same results must be achieved
with slower operations. Therefore, it is expected that CUDA imple-
mentations on NVIDIA GPUs will be more efficient than OpenCL
611
counterparts, this however remains to be tested explicitly for our design.
It would be of interest for future work to directly compare the two
implementations.

Our framework offers a C-like interface. We are planning as a future
extension to design an even more user-friendly Application Programming
Interface (API) and a python parser to communicate this API with
cuDIMOT.

Our toolbox has been designed for processing datasets with any
number of voxels and measurements. If the memory required for storing
the data of all the voxels exceeds the device memory, the framework
divides the data into several subsets (according to the amount of device
memory available), and these subsets are processed one after the other.
However, before being processed, each subset needs to be copied into
device memory. This can create a performance penalty if the device

Fig. 12. (a) Example of the use of surfaces for imposing anatomical constraints. Probabilistic tractography is performed using as seed and target points the right
inferior frontal gyrus. Without using a surface constraint, wrong paths that jump between neighbouring gyri can be generated. (b) Advanced termination masks. The
tractography framework adds the possibility of stopping the streamlines when they cross a surface twice and/or streamlines can be propagated inside a subcortical
region but the framework stops them upon exit. (c) Connectivity from a voxel inside the left Thalamus (fuchsia arrow) using and not using advanced terminations
masks. The first two columns show the connectivity with other subcortical structures. The last two columns show the connectivity with all the vertices on the left
hemisphere cortex.

Fig. 13. Correlation coefficient, generating a dense connectome (all grey-
ordinates to all greyordinates) on the GPU-based framework, between re-runs,
modifying the number of samples per seed point. The figure reports the corre-
lation coefficients with respect to a dense connectome generated with 100,000
samples (green) and with respect to the connectome generated with the next
number of samples in the plot (blue). The figure also shows the execution times
generating these dense connectomes on a single NVIDIA K80 GPU.

M. Hernandez-Fernandez et al. NeuroImage 188 (2019) 598–615

612
memory capacity is small (1 or 2 GB) because a large number of CPU to
GPU transfers is required, and these transfers are expensive (using the
PCIe interconnection bus). This is however not a problem in the new
NVIDIA architectures, where global memory space is larger (up to 24 GB
in Pascal architecture (NVIDIA, 2016)) and a new CPU-GPU intercon-
nection bus is incorporated (NVLINK (NVIDIA, 2014b)).

There is a limitation in cuDIMOT on the number of parameters of a
model. In the Levenberg-Marquardt routine the number of model pa-
rameters is limited to 31. The cause of this limitation is in the imple-
mentation of a LU solver (see Supplementary Fig. 4), where each thread
of a warp processes a column of the matrix for solving the system. For a
model with P parameters, P þ 1 threads are required, and a warp has 32
threads. In the MCMC routine there is also a limitation on the number of
model parameters. The framework stores in the GPU Shared memory the
parameters and some associated information (priors, number of pro-
posals accepted/rejected, and standard deviation of the proposals dis-
tribution). Thus, a model is limited to a maximum number of around 300
parameters (the exact number depends on the size of Shared memory of
the specific GPU and on the precision used to store the parameters, single
or double).

A large number of dMRI modelling approaches have been proposed in
the literature, but it seems that no single approach can explain all com-
plex microstructure patterns (Ferizi et al., 2015; Ghosh et al., 2016).
Thus, applications that consider several models for selecting the best one
in each voxel seems to be a potential solution. Given the computational
cost of fitting these models, parallel solutions like cuDIMOT will be
essential for performing this type of analysis. We believe that cuDIMOT is

M. Hernandez-Fernandez et al. NeuroImage 188 (2019) 598–615
going to be very useful in the development and improvement of new
diffusion MRI models, which may explain the complexity of the diffusion
process, extract useful biophysical parameters and contribute to the
development of new biomarkers.

4.2. GPU-based tractography

We have also developed and presented a probabilistic tractography
framework that achieves a higher performance than 200 CPU cores, and
can handle situations ranging from simple white matter tracking tasks to
dense connectome generation. The implementation offers the possibility
of defining tractography protocols with either volumes or surfaces, and
the possibility of using advanced termination masks that allow more
accurate anatomical constraints. We have shown the benefits of using this
extended functionality.

Our GPU framework parallelises a stochastic tractography algorithm,
and we have reported the speed-ups achieved by our parallel solution for
the number of samples required to achieve convergence in the stochastic
estimation (as shown in Fig. 13). Fewer samples would bring the
computing times down, for both the sequential and the parallel solution,
but the relevant speed-ups would still be applicable.

Tractography algorithms pose particular challenges for designing
GPU solutions. Each GPU thread accesses different memory locations
during its execution, and these accesses cannot be anticipated, as the
propagation movements are decided on the fly. Moreover, given the
stochastic nature for choosing the orientation samples, the threads may
diverge even if their streamlines are initialised from the same seed point.
This behaviour leads to uncoalesced memory accesses and imbalanced
execution length of the threads, and consequently, to a waste of GPU
resources.

We studied the execution length distribution across streamlines
reconstructing the same tract. In many scenarios, many generated
streamlines terminate relatively quickly (before 100 steps), as theymeet a
termination criterion. However, there are other streamlines that take
considerably more steps. This trend has also been confirmed before in
Mittmann et al. (2008) and Xu et al. (2012), and it is also supported by the
underlying anatomy: themajority ofwhitematter connections are short in
length (Donahue et al., 2016). To avoid a waste of resources, we explored
the approach proposed in (Mittmann et al., 2008; Xu et al., 2012), where
the kernel that propagates the streamlines is stopped after a certain
number of steps and the threads that are idle, i.e., the threads with
terminated streamlines, are removed. When the kernel is launched again
on the GPU, there will be only threads with streamlines still propagating,
and thus, the device resources will be used more efficiently. This also al-
lows other streamlines to start to be processed, as memory resources are
freed after removing terminated streamlines. We tried several strategies
for deciding the number of propagation steps to use before stopping the
kernel. The process for removing idle threads is executed on the host and it
has some extra cost that may cancel out the gains of this approach. Con-
trary to suggestions in (Mittmannet al., 2008; Xu et al., 2012),where gains
of 4x were reported when using streamlines removal strategies, we could
not find enough supporting evidence that this approach results in signif-
icant performance gains. This strategy barely reduces execution times in
our framework, and in some cases, it even increases them.We believe that
the extended andmore complex functionality offered by our tractography
framework, compared with previous designs, is the main reason for these
differences. Given the complex functionality, more information needs to
be stored and reloaded by the GPU threads every time that the CUDA
kernel is stopped, causing a higher overload. These previous studies have
reported final performance gains in the range of 40x-50x, which is
considerably lower than what we found here.

Another challenging requirement of the parallel tractography appli-
cation is the large amount of required memory. Given the non-
predictable path and length of the streamlines, all the orientation
613
samples andmemory for storing the maximum possible number of visited
coordinates need to be allocated. The GPU global memory is used for
storing this data. This restricts the number of streamlines that can be
propagated in parallel. However, most modern GPUs have at least 3 GB of
global memory, and they still can run a considerable number of
streamlines (~40,000) in parallel. When a more complex and demanding
functionality is used, such as generating a dense connectome, this num-
ber can be reduced by 60% (as more data per streamline is needed) and
GPUs with at least 5 GB should be used for achieving a good performance.

It should be noted that the strategy used here to generate con-
nectomes might not be necessarily optimal, as a number of open ques-
tions remain to be answered when building connectomes using diffusion
MRI (see (Sotiropoulos and Zalesky, 2017) for a recent review). Never-
theless, our GPU implementation is flexible for defining a number of
strategies (e.g. see Fig. 3) and contributes to research for resolving some
of the open challenges by enabling faster explorations.

Acknowledgments

We would like to acknowledge financial support from the UK Engi-
neering and Physical Sciences Research Council (EP/L023067/1). The
Wellcome Centre for Integrative Neuroimaging is supported by core
funding from the Wellcome Trust [203139/Z/16/Z]. Part of this project
was awarded the NVIDIA 2016 GPU centre of excellence achievement,
and the prize was used for partially funding this research. We also
acknowledge the support of NVIDIA Corporation with the donation of the
Titan X Pascal GPU used for aspects of development of the presented
toolboxes. Data were provided by the Human Connectome Project, WU-
Minn Consortium (Principal Investigators: David Van Essen and Kamil
Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers
that support the NIH Blueprint for Neuroscience Research; and by the
McDonnell Center for Systems Neuroscience at Washington University.
More details at: https://www.humanconnectome.org/study/hcp-young-
adult/document/hcp-citations.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.neuroimage.2018.12.015.

References

Alexander, A.L., et al., 2001. Analysis of partial volume effects in diffusion-tensor MRI.
Magn. Reson. Med. 45 (5), 770–780.

Alexander, D.C., et al., 2010. Orientationally invariant indices of axon diameter and
density from diffusion MRI. Neuroimage 52 (4), 1374–1389.

Alexander, D.C., et al., 2017. Imaging brain microstructure with diffusion MRI:
practicality and applications. NMR Biomed. e3841.

Alfaro-Almagro, F., et al., 2018. Image processing and Quality Control for the first 10,000
brain imaging datasets from UK Biobank. Neuroimage 166, 400–424. Elsevier Inc.

Alsmirat, M.A., et al., 2017. Accelerating compute intensive medical imaging
segmentation algorithms using hybrid CPU-GPU implementations. Multimed. Tool.
Appl. 76 (3), 3537–3555.

Andersson, J.L.R., Jenkinson, M., Smith, S., 2007. Non-linear Registration, Aka Spatial
Normalisation. FMRIB Technial Report TR07JA2.

Assaf, Y., et al., 2008. AxCaliber: a method for measuring axon diameter distribution from
diffusion MRI. Magn. Reson. Med. 59 (6), 1347–1354.

Assaf, Y., Cohen, Y., 1998. Non-mono-exponential attenuation of water and N-acetyl
aspartate signals due to diffusion in brain tissue. J. Magn. Reson. 131 (1), 69–85.

Auton, A., et al., 2015. A global reference for human genetic variation. Nature 526
(7571), 68.

Basser, P.J., et al., 2000. In vivo fiber tractography using DT-MRI data. Magn. Reson.
Med. 44 (4), 625–632.

Basser, P.J., Mattiello, J., Lebihan, D., 1994a. Estimation of the effective self-diffusion
tensor from the NMR spin echo. J. Magn. Reson., Ser. B 247–254.

Basser, P.J., Mattiello, J., LeBihan, D., 1994b. MR diffusion tensor spectroscopy and
imaging. Biophys. J. 66 (1), 259–267.

Behrens, T.E.J., et al., 2003. Characterization and propagation of uncertainty in diffusion-
weighted MR imaging. Magn. Reson. Med. 50 (5), 1077–1088.

Behrens, T.E.J., et al., 2007. Probabilistic diffusion tractography with multiple fibre
orientations: what can we gain? Neuroimage 34 (1), 144–155.

https://www.humanconnectome.org/study/hcp-young-adult/document/hcp-citations
https://www.humanconnectome.org/study/hcp-young-adult/document/hcp-citations
https://doi.org/10.1016/j.neuroimage.2018.12.015
https://doi.org/10.1016/j.neuroimage.2018.12.015
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref1
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref1
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref1
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref2
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref2
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref2
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref3
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref3
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref4
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref4
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref4
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref5
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref5
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref5
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref5
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref6
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref6
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref7
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref7
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref7
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref8
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref8
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref8
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref9
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref9
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref10
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref10
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref10
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref11
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref11
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref11
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref12
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref12
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref12
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref13
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref13
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref13
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref14
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref14
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref14

M. Hernandez-Fernandez et al. NeuroImage 188 (2019) 598–615
Chang, L.C., et al., 2014. GPU acceleration of nonlinear diffusion tensor estimation using
CUDA and MPI. Neurocomputing 135, 328–338. Elsevier.

Chapman, B., Jost, G., Pas, R. Van Der, 2008. Using OpenMP: Portable Shared Memory
Parallel Programming. The MIT press.

Daducci, A., et al., 2015. Accelerated microstructure imaging via convex optimization
(AMICO) from diffusion MRI data. Neuroimage 105, 32–44.

Deoni, S.C.L., 2010. Quantitative relaxometry of the brain. Top. Magn. Reson. Imag.:
TMRI 21 (2), 101–113.

Donahue, C.J., et al., 2016. Using diffusion tractography to predict cortical connection
strength and distance: a quantitative comparison with tracers in the monkey.
J. Neurosci. 36 (25), 6758–6770.

Eklund, A., et al., 2013. Medical image processing on the GPU - past, present and future.
Med. Image Anal. 17 (8), 1073–1094.

Eklund, A., et al., 2014. BROCCOLI: software for fast fMRI analysis on many-core CPUs
and GPUs. Front. Neuroinf. 8.

Van Essen, D.C., et al., 2012. The Human Connectome Project: a data acquisition
perspective. Neuroimage 62 (4), 2222–2231.

Van Essen, D.C., Ugurbil, K., 2012. The future of the human connectome. Neuroimage 62
(2), 1299–1310. Elsevier Inc.

Ferizi, U., et al., 2015. White matter compartment models for in vivo diffusion MRI at
300mT/m. Neuroimage 118, 468–483.

Fick, R., Wassermann, D., Deriche, R., 2018. Mipy: an open-source framework to improve
reproducibility in brain microstructure imaging. In: Annual Meeting of the
Organization for Human Brain Mapping.

Flynn, M.J., 1972. Some computer organizations and their effectiveness. IEEE Trans.
Comput. 100 (9), 948–960.

Foxley, S., et al., 2015. Improved tract identification of post-mortem human brain with
high-resolution DTI at 7T. In: Annual Meeting of the Organization for Human Brain
Mapping.

Foxley, S., et al., 2016. A comparison of multiple acquisition strategies to overcome B1
inhomogeneities in diffusion imaging of post-mortem human brain at 7T. In:
International Society for Magnetic Resonance in Medicine 24th Annual Meeting.

Ghosh, A., Alexander, D., Zhang, H., 2016. Crossing versus fanning: model comparison
using HCP data. In: Computational Diffusion MRI. Springer, pp. 159–169.

Gill, P.E., et al., 1984. Procedures for optimization problems with a mixture of bounds and
general linear constraints. ACM Trans. Math Software 10 (3), 282–298.

Glasser, M.F., et al., 2013. The minimal preprocessing pipelines for the Human
Connectome Project. Neuroimage 80, 105–124.

de Groot, M., et al., 2013. Improving alignment in Tract-based spatial statistics:
evaluation and optimization of image registration. Neuroimage 76, 400–411.

Harms, R.L., et al., 2017. Robust and fast nonlinear optimization of diffusion MRI
microstructure models. Neuroimage 155, 82–96. Elsevier.

Harms, R.L., Roebroeck, A., 2018. Robust and Fast Monte Carlo Markov Chain Sampling
of Diffusion MRI Microstructure Models bioRxiv.

Harwell, J., et al., 2008. ‘GIfTI : geometry data format for exchange of surface-based brain
mapping data’. In: Annual Meeting of the Organization for Human Brain Mapping.

Hernandez-Fernandez, M., et al., 2016. A fast and flexible toolbox for tracking brain
connections in diffusion MRI datasets using GPUs. In: Annual Meeting of the
Organization for Human Brain Mapping.

Hern�andez, M., et al., 2013. Accelerating fibre orientation estimation from diffusion
weighted magnetic resonance imaging using GPUs. PLoS One 8 (4), e61892.

Jbabdi, S., et al., 2012. Model-based analysis of multishell diffusion MR data for
tractography: how to get over fitting problems. Magn. Reson. Med. 68 (6),
1846–1855.

Jenkinson, M., et al., 2012. Fsl. Neuroimage 62 (2), 782–790.
Jeurissen, B., et al., 2017. Diffusion MRI fiber tractography of the brain. NMR Biomed.

e3785.
Johansen-Berg, H., et al., 2004. Changes in connectivity profiles define functionally

distinct regions in human medial frontal cortex. Proc. Natl. Acad. Sci. Unit. States
Am. 101 (36), 13335–13340.

Kelley, C.T., 1999. Iterative Methods for Optimization. Society for Industrial and Applied
Mathematics, Siam.

Khronos OpenCL Working Group, 2012. The OpenCL Specification Version 1.2.
Klus, P., et al., 2012. BarraCUDA-a fast short read sequence aligner using graphics

processing units. BMC Res. Notes 5 (1), 27.
Koev, P., Edelman, A., 2006. The efficient evaluation of the hypergeometric function of a

matrix argument. Math. Comput. 75 (254), 833–846.
Kume, A., Wood, A.T.A., 2005. Saddlepoint approximations for the Bingham and Fisher-

Bingham normalising constants. Biometrika 92 (2), 465–476.
Li, L., et al., 2012. The effects of connection reconstruction method on the interregional

connectivity of brain networks via diffusion tractography. Hum. Brain Mapp. 33 (8),
1894–1913.

MacKay, D.J.C., 1995. Developments in probabilistic modelling with neural networks -
ensemble learning. In: Neural Networks: Artificial Intelligence and Industrial
Applications. Springer, pp. 191–198.

Madhyastha, T.M., et al., 2017. Running neuroimaging applications on amazon web
services: how, when, and at what cost? Front. Neuroinf. 11.

McNab, J.A., Miller, K.L., 2008. Sensitivity of diffusion weighted steady state free
precession to anisotropic diffusion. Magn. Reson. Med. 60 (2), 405–413.

Microstructure Imaging Group - University College London, 2017. NODDI Matlab toolbox.
Available at: http://mig.cs.ucl.ac.uk/index.php?n¼Tutorial.NODDImatlab. .

Miller, K.L., et al., 2016. Multimodal population brain imaging in the UK Biobank
prospective epidemiological study. Nat. Neurosci. 19 (11), 1523–1536.
614
Mittmann, A., Comunello, E., von Wangenheim, A., 2008. Diffusion tensor fiber tracking
on graphics processing units. Comput. Med. Imag. Graph. 32 (7), 521–530.

Moeller, S., et al., 2010. Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration
using partial parallel imaging with application to high spatial and temporal whole-
brain FMRI. Magn. Reson. Med. 63 (5), 1144–1153.

Motulsky, H.J., Ransnas, L. a., 1987. Fitting curves to data using nonlinear regression: a
practical and nonmathematical review. Faseb. J. 1 (5), 365–374.

Mulkern, R.V., et al., 1999. Multi-component apparent diffusion coefficients in human
brain. NMR Biomed. 12 (1), 51–62.

Nickolls, J., et al., 2008. Scalable Parallel Programming with CUDA. ACM QUEUE,
pp. 40–53 (March/April).

Niendorf, T., et al., 1996. Biexponential diffusion attenuation in various states of brain
tissue: implications for diffusion-weighted imaging. Magn. Reson. Med. 36 (6),
847–857.

NVIDIA, 2014a. NVIDIA's Next Generation CUDA Compute Architecture: Kepler GK110/
210.

NVIDIA, 2014b. NVIDIA NVLink High-speed Interconnect: Application Performance.
NVIDIA, 2015a. Cuda C Programming Guide v7, vol. 5.
NVIDIA, 2015b. TESLA K80. GPU ACCELERATOR, Board Specification.
NVIDIA, 2016. NVIDIA Tesla P100 Whitepaper. The Most Advanced Datacenter

Accelerator Ever Built. Featuring Pascal GP100, the World's Fastest GPU.
NVIDIA, 2017. NVIDIA TESLA V100 GPU ARCHITECTURE: the World's Most Advanced

Data Center GPU.
O'Rouke, J., 1998. Search and intersection. In: Computational Geometry in C. Cambridge

university press.
Pierpaoli, C., et al., 2001. Water diffusion changes in wallerian degeneration and their

dependence on white matter architecture. Neuroimage 13 (6), 1174–1185.
Poupon, C., et al., 2000. Regularization of diffusion-based direction maps for the tracking

of brain white matter fascicles. Neuroimage 12 (2), 184–195.
Press, W., et al., 1988. Numerical Recipes in C: the Art of Scientific Computing.

Cambridge University Press.
Schmidhuber, J., 2015. Deep Learning in neural networks: an overview. Neural Network.

61, 85–117.
Setsompop, K., et al., 2012. Blipped-controlled aliasing in parallel imaging for

simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn.
Reson. Med. 67 (5), 1210–1224.

Setsompop, K., et al., 2018. High-resolution in vivo diffusion imaging of the human brain
with generalized slice dithered enhanced resolution: simultaneous multislice
(gSlider-SMS). Magn. Reson. Med. 79, 141–151.

Seunarine, K.K., Alexander, D.C., 2014. Multiple fibers: beyond the diffusion tensor. In:
Diffusion MRI: from Quantitative Measurement to in Vivo Neuroanatomy. Academic
Press, pp. 105–123.

Shamonin, D., 2014. Fast parallel image registration on CPU and GPU for diagnostic
classification of Alzheimer's disease. Front. Neuroinf. 7.

Smistad, E., et al., 2015. Medical image segmentation on GPUs - a comprehensive review.
Med. Image Anal. 20 (1), 1–18.

Smith, R.E., et al., 2012. Anatomically-constrained tractography: improved diffusion MRI
streamlines tractography through effective use of anatomical information.
Neuroimage 62 (3), 1924–1938.

Smith, S.M., 2002. Fast robust automated brain extraction. Hum. Brain Mapp. 17 (3),
143–155.

Smith, S.M., et al., 2004. Advances in functional and structural MR image analysis and
implementation as FSL. Neuroimage 23, S208–S219.

Sotiropoulos, S.N., et al., 2013. Advances in diffusion MRI acquisition and processing in
the human connectome project. Neuroimage 80, 125–143.

Sotiropoulos, S.N., Behrens, T.E.J., Jbabdi, S., 2012. Ball and rackets: inferring fiber
fanning from diffusion-weighted MRI. Neuroimage 60 (2), 1412–1425.

Sotiropoulos, S.N., Zalesky, A., 2017. Building connectomes using diffusion MRI: why,
how and but. NMR Biomed. e3752.

Sporns, O., Tononi, G., K€otter, R., 2005. The human connectome: a structural description
of the human brain. PLoS Comput. Biol. 1 (4), e42.

Stanisz, G.J., et al., 1997. An analytical model of restricted diffusion in bovine optic-
nerve. Magn. Reson. Med. 37 (1), 103–111.

Stone, E., Gohara, D., Shi, G., 2010. OpenCL: a parallel programming standard for
heterogeneous computing systems. Comput. Sci. Eng. 12 (3), 66–73.

Stone, S.S., et al., 2008. Accelerating advanced MRI reconstructions on GPUs. In:
Proceedings of the 5th Conference on Computing Frontiers, pp. 261–272.

Sudmant, P.H., et al., 2015. An integrated map of structural variation in 2,504 human
genomes. Nature 526 (7571), 75–81.

Szafer, A., et al., 1995. Diffusion-weighted imaging in tissues: theoretical models. NMR
Biomed. 8 (7), 289–296.

Tarantola, A., 2005. Inverse Problem Theory and Methods for Model Parameter
Estimation. SIAM.

Tariq, M., et al., 2016. Bingham-NODDI: mapping anisotropic orientation dispersion of
neurites using diffusion MRI. Neuroimage 133, 207–223.

Tendler, B., et al., 2018. Development of a diffusion-weighted SSFP acquisition and
processing pipeline to quantify the diffusion properties of the post-mortem ALS brain
at 7T. In: International Society for Magnetic Resonance in Medicine 27th Annual
Meeting.

Uecker, M., et al., 2015. Berkeley advanced reconstruction toolbox. In: Proceedings of the
International Society for Magnetic Resonance in Medicine.

Vu, A.T., et al., 2015. High resolution whole brain diffusion imaging at 7T for the Human
Connectome Project. Neuroimage 122, 318–331.

http://refhub.elsevier.com/S1053-8119(18)32159-1/sref15
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref15
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref15
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref16
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref16
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref17
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref17
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref17
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref18
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref18
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref18
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref19
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref19
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref19
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref19
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref20
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref20
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref20
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref21
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref21
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref22
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref22
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref22
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref23
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref23
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref23
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref24
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref24
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref24
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref25
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref25
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref25
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref26
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref26
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref26
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref27
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref27
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref27
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref28
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref28
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref28
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref29
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref29
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref29
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref30
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref30
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref30
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref31
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref31
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref31
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref32
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref32
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref32
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref33
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref33
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref33
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref34
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref34
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref35
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref35
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref36
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref36
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref36
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref37
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref37
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref37
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref38
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref38
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref38
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref38
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref39
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref39
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref40
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref40
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref41
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref41
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref41
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref41
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref42
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref42
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref43
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref44
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref44
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref45
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref45
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref45
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref46
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref46
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref46
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref47
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref47
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref47
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref47
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref48
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref48
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref48
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref48
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref49
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref49
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref50
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref50
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref50
http://mig.cs.ucl.ac.uk/index.php?n=Tutorial.NODDImatlab
http://mig.cs.ucl.ac.uk/index.php?n=Tutorial.NODDImatlab
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref52
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref52
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref52
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref53
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref53
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref53
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref54
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref54
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref54
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref54
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref55
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref55
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref55
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref56
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref56
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref56
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref57
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref57
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref57
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref58
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref58
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref58
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref58
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref59
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref59
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref60
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref61
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref62
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref63
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref63
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref64
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref64
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref65
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref65
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref66
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref66
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref66
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref67
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref67
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref67
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref68
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref68
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref69
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref69
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref69
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref70
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref70
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref70
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref70
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref71
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref71
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref71
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref71
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref72
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref72
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref72
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref72
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref73
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref73
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref74
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref74
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref74
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref75
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref75
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref75
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref75
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref76
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref76
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref76
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref77
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref77
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref77
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref78
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref78
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref78
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref79
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref79
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref79
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref80
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref80
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref81
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref81
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref81
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref82
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref82
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref82
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref83
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref83
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref83
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref84
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref84
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref84
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref85
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref85
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref85
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref86
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref86
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref86
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref87
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref87
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref88
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref88
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref88
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref89
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref89
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref89
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref89
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref90
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref90
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref91
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref91
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref91

M. Hernandez-Fernandez et al. NeuroImage 188 (2019) 598–615
Whitehead, N., Fit-Florea, A., 2011. Precision & Performance : Floating Point and IEEE
754 Compliance for NVIDIA GPUs.

Wiegell, M.R., Larsson, H.B.W., Wedeen, V.J., 2000. Fiber crossing in human brain
depicted with diffusion tensor MR imaging. Radiology 217 (3), 897–903.

Xu, M., et al., 2012. Probabilistic brain fiber tractography on GPUs. In: Proceedings of the
2012 IEEE 26th International Parallel and Distributed Processing Symposium
Workshops, IPDPSW 2012, pp. 742–751.
615
Zhang, H., et al., 2011. Axon diameter mapping in the presence of orientation dispersion
with diffusion MRI. Neuroimage 56 (3), 1301–1315.

Zhang, H., et al., 2012. NODDI: practical in vivo neurite orientation dispersion and
density imaging of the human brain. Neuroimage 61 (4), 1000–1016.

Zhang, Y., Brady, M., Smith, S., 2001. Segmentation of brain MR images through a hidden
Markov random field model and the expectation-maximization algorithm. IEEE
Trans. Med. Imag. 20 (1), 45–57.

http://refhub.elsevier.com/S1053-8119(18)32159-1/sref92
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref92
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref92
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref93
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref93
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref93
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref94
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref94
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref94
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref94
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref95
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref95
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref95
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref96
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref96
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref96
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref97
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref97
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref97
http://refhub.elsevier.com/S1053-8119(18)32159-1/sref97

	Using GPUs to accelerate computational diffusion MRI: From microstructure estimation to tractography and connectomes
	1. Introduction
	2. Material and methods
	2.1. Biophysical modelling on GPUs
	2.1.1. Framework description
	2.1.2. Exploring microstructure diffusion MRI models with cuDIMOT

	2.2. Probabilistic tractography and connectomes on GPUs
	2.2.1. Framework description

	2.3. Diffusion–weighted MRI data
	2.4. Hardware features

	3. Results
	3.1. Tissue microstructure modelling with GPUs
	3.2. Tractography with GPUs

	4. Discussion
	4.1. GPU-based biophysical modelling
	4.2. GPU-based tractography

	Acknowledgments
	Appendix A. Supplementary data
	References

