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ABSTRACT

The paper presents the analysis of a single-phase active rectifier, with DC constant power load, affected by Low-Frequency
Oscillation (LFO) behaviour. Conventional LTI analysis tools might fail to reveal the LFO phenomenon, whereas the LTP
(Linear Time Periodic) approach, here exploited with analytical derivation and detailed simulations, provides superior results.

INTRODUCTION

In recent years, system instabilities due to low-frequency-oscillation (LFO) problems have occurred in different single-phase
traction power supply system. In [1] a report of the last cases of LFO is provided and the main cause of these phenomena
is found to be in the harmonic interaction between the line-side converters of the vehicle-train and the single-phase AC grid.
By the analysis provided in this paper, based on the linearised models of the vehicle-grid system, it is found that the LFO
behaviour arise when the closed-loop system shows two dominant poles that are close to the imaginary axis. Because of the
non-linearities of the system, like saturations for the maximum value of the reference signals in the control algorithm, these
unstable modes do not diverge, but they appear as a stable and undesired LFO. In the same way as in [1], in [2] an impedance
model valid below 10 − 15Hz is used to assess stability in presence of LFOs, making the proposed method useful to detect
only LFO instabilities within this frequency range. However, instabilities in power systems might occur at any frequency,
hence a general method able to predict if a system is stable or not, regardless the frequency range of oscillations, is required.
One promising and used method is Harmonic Linearisation (HL), [3], [4], although it might not reveal LFO, as stated in [3].
Another established method is Dynamic Phasor approach (DP) [5], however it relies on the approximation that the system
is dominated by the first-harmonic component, which is not true in the system under analysis in this paper, that has a not
negligible second-harmonic component represented by the ripple in the DC-link voltage.
Thus, in this paper, a general method for the stability analysis of power systems, based on the LTP theory developed by Wereley
and Hall [6], is exploited to analyse a single-phase active rectifier that exhibits a LFO behaviour. This method detects the
instability regardless the frequency range of the oscillation. The analysis is based on the average-model of the system (defined
either in continuous or discrete-time), which is a Non-Linear Time Periodic (NLTP) model. Then, linearisation is performed
around the steady-state solution of the system and stability is assessed by evaluating the eigenvalue loci plot of the linearised
model. A comparison with the standard LTI analysis is also provided, showing that LTP approach provides more accurate and
precise results, as also reported in [7], [8].

FULL-BRIDGE RECTIFIER MODEL

The single-phase active rectifier is connected on the AC side to an equivalent grid represented by a sinusoidal voltage
source, vg(t) = Vg sin(ωgt), ωg = 2πfg = 2π/Tg , in series with an RgLg impedance, while on the DC side it is connected
to a capacitor, Cdc, in parallel with a constant power load, which is represented as an equivalent current source generator,



TABLE I: system parameters

Vgrid = 115
√

2 V fgrid = 50 Hz fpwm = 10 kHz V ∗
dc = 300 V

Lg = 2.78 mH Rg = 0.4 Ω Cdc = 400 µF P ∗ = 1 kW
kpi = 16.28 kii = 3984 ω0 = 2ωg Q = 20
kApv = 9.9e-5 kAiv = 0.035 kBpv = 7.9e-6 kBiv = 0.035

Ts = 1/fs = 5e-5 M = 0.08 imax
g = 13.5 A

controlled by the voltage across the DC link, vdc(t), thus ip(t) = P ∗/vdc(t). Unity-power-factor mode of operation is
considered, with direct measurement of the grid voltage typical of relatively low power applications. A notch filter is used in
order to attenuate the ripple of the voltage, vdc(t), at twice the grid frequency (2fg) and saturation is applied to the output
produced by the voltage PI controller, in order to guarantee that the grid current, ig(t), will not exceed the maximum peak
value imax

g . The unit digital computational delay is considered, making the example system similar to a real-case converter.
A double-update mode is considered, thus the control algorithm is executed at twice the switching frequency, fs = 2fpwm.

Fig. 1: full-bridge rectifier - switching model

In general, stability analysis can be performed in two
equivalent ways:

• continuous-time domain: the control algorithm is rep-
resented in the Laplace domain and features like the
unit computational delay must be taken into account by
an approximated model like the Padé’s one, in order to
obtain an accurate model; however current and voltage
dynamics of AC and DC subsystems are naturally de-
scribed in Laplace;

• discrete-time domain: the control algorithm is naturally
represented in the z-domain, as well as digital com-
putation delay, but AC and DC subsystems must be
discretized.

In this work the analysis is carried out in the discrete-time
domain. Thus, the average model on which stability analysis
is based includes the same control algorithm that would be
implemented in the DSP (with computational delay) and the AC and DC subsystems are discretized using a zero-order-hold
(ZOH) transformation.

The design of the controllers has been made in continuous-time domain, just because it makes it easier to define the controller
gains in order to meet design specifications such us crossover frequency, fc, and phase margin, PM , of the closed loop system.
The inner current control is implemented using the linearised open-loop transfer function TOLI(s) = (sLg + Rg)−1, with a
closed-loop crossover frequency fc = 1kHz and phase margin PM = 70◦:

PII(z) = Tustin
[
kpi +

kii
s

]
= F1 +

F0

z + E0
(1)

whereas for the outer voltage control TOLV (s) = V 2
g /(2CdcV

∗
dcs) is used. It is known, in general, that reducing the phase

margin of the closed-loop system implies lower stability margins; thus, two cases are considered: case (A), with fc = 10Hz
and PM = 10◦, which will provide a stable system, and case (B), with fc = 10Hz and PM = 0.8◦, which will provide a
system affected by an LFO behaviour:

PIV (z) = ZOH

[
kA,B
pv +

kA,B
iv

s

]
= D1 +

D0

z + C0
(2)



The notch filter is discretized as:

N(z) = Tustin
[

s2 + ω2
0

s2 + ω0/Qs+ ω2
0

]
= B2 +

B1z +B0

z2 +A1z +A0
(3)

The AC and DC subsystems are discretized applying the ZOH transformation, and the overall system is described by the
following model:

x1(k + 1) = x2(k) , x2(k + 1) = −A0x1(k)−A1x2(k) + V ∗
dc − vdc(k)

uv(k) = B0x1(k) +B1x2(k) +B2(V ∗
dc − vdc(k))

x3(k + 1) = −C0x3(k) + uv(k) , gdc(k) = D0x3(k) +D1uv(k)

iref (k) = satM [gdc(k)]vg(k) , x4(k + 1) = −E0x4(k) + iref (k)− ig(k)

vco(k) = F0x(k) + F1(iref (k)− ig(k)) , d(k + 1) = (vg(k)− vco(k))/V ∗
dc

ig(k + 1) = ig(k) + Ts/Lg[vg(k)−Rgig(k)− d(k)vdc(k)]

vdc(k + 1) = vdc(k) + Ts/Cdc[d(k)ig(k)− P ∗/vdc(k)] (4)

which, with proper substitutions can be represented as a Discrete Non-Linear Time Periodic (DNLTP) state-space model of
the form x(k + 1) = f(x(k)) + g(x(k))vg(k), where all the state-space variables are L-periodic, with L = Tg/Ts. satM (q)

is the saturation function such that satM (q) = q for |q| < M and satM (q) = sign(q)M for |q| > M .
Remark - For real system application, the analysed active rectifier is not well designed, since the phase margin of the voltage
PI is badly selected (usually it is chosen to be around 70◦), and also a PR controller is usually preferred. However, this is not
an issue for the objective of this work, which is to prove that the stability method based on the LTP theory can be successfully
exploited to detect LFO behaviours, even when LTI traditional approaches fail. To demonstrate this, the system is intentionally
brought to operate in a LFO operation mode by moving the eigenvalues of the closed-loop system close to the imaginary axis
(hence with small phase margin), as in [7], and both LTP and LTI approaches are exploited to assess the stability.

ANALYTICAL RESULTS

Based on the DNLTP model (4), first the steady-state solution is calculated, either numerically or applying Harmonic Balance.
Then, linearisation around the calculated L-periodic solution is performed and the Discrete Linear Time Periodic (DLTP) model
of the system is derived:

x(k + 1) = A(k)x(k) (5)

with the matrix A(k) being L-periodic as well. As reported in [9], [10], the system described in (5) can be equivalently
represented by a time-invariant model of the form:

q(k + 1) = Āq(k) (6)

with q(k) being a sampled version of x(k), such that q(k) = x(kL), and the matrix Ā being constant. The most relevant
feature for our purposes is the fact that stability can be equivalently assessed based on either (5) or (6). Since Ā can be easily
calculated by:

Ā = A(k + L− 1) ·A(k + L− 2) · · ·A(k + 1) ·A(k) (7)

stability analysis is performed based on the eigenvalue loci of Ā. If all the eigenvalues of (7) lie inside the unit-circle, the system
is stable, otherwise it is unstable. Results from the LTP analysis are shown in Fig.2(a)-(c) for the cases (A) and (B), respectively
(refer to the voltage-control design). It can be seen that case (B) leads to an unstable system, which is in agreement with the
simulation results. In Fig.2(b)-(d) the same cases are analysed based on the LTI closed-loop system GCL = GOL/(1 +GOL),
with GOL = N(z)PIV (z)z−1TOLV (z) and TOLV (z) = ZOH[TOLV (s)]. As it can be seen, in both cases the system results
to be stable, which is in disagreement for case (B) with the results from simulations. It is worth noting that two of the LTI



eigenvalues in case (B), Fig.2-(d), are very close to the unit circle, which means that the error committed by using the LTI
analysis is not very big. However, as also stated in [7], the difference between LTP and LTI analysis becomes important when
fast voltage control loops are implemented, leading in general to the conclusion that LTP approach is preferable for the analysis
of systems with high performance.

(a)

(b)

(c)

(d)

Fig. 2: (a), (b) stable system with PM = 10◦, (c), (d) unstable system with PM = 0.8◦

SIMULATION RESULTS

Simulations have been performed in Matlab-Simulink and PLECS toolbox, based on the switching-model reported in Fig.1
and control algorithm implemented as a script in C-language. The two cases (A) and (B) have been simulated and in Fig.3
the steady-state behaviour of the relevant quantities is reported. It can be seen that for the stable case (A), Fig.3 (a)-(b), the
current ig(t) follows the reference one, iref (t), and the voltage vdc(t) follows the reference one, V ∗

dc, with the normal ripple
at twice the grid frequency, 2fg , with a peak ripple of 12.8V. For the unstable case (B), Fig.3 (c)-(d), both current ig(t) and
voltage vdc(t) show a LFO behaviour. Such LFO instability does not diverge, but it remains stable in time, due to the saturation
block that limits the maximum peak-value of the reference current iref (t); whereas without the saturation block, voltage and
currents will diverge until the control system trips. From the Fast Fourier Transform (FFT) analysis, it has been found that
the frequency of this oscillation is 8.3Hz, with peak-amplitude 7.4V for the DC-link voltage and 0.55A for the grid current.
These results agree with the analytical ones obtained using the LTP approach. Moreover, the current ig(t) follows well the
reference one iref (t), confirming that the LFO arise due to the intentional poor design of the voltage loop. A further decrease
of the phase margin used for the design of the voltage controller, such that PM < 0.8◦, will result in a system with a stronger
constant LFO behaviour, i.e. with higher voltage and current peak-amplitudes at the unstable low frequency. These simulations
are not reported in this abstract for the sake of brevity.
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Fig. 3: currents: blue - ig(t), red - Iref (t); voltages: blue - vdc(t), red - V ∗
dc; (a), (b) case (A) - stable system, (c), (d), case (B) - unstable

system affected by LFO behaviour

CONCLUSIONS

In this paper a general method is exploited, based on LTP theory, to perform stability analysis of complex non-linear power
systems. A case study of a single-phase active rectifier with constant power load has been used to show the practical application
of the method. The system has been intentionally brought to operate in a steady-state operation mode affected by LFO. It has
been shown that the LTP approach, compared to the LTI one, provides more accurate results. Analytical and simulation results
are provided to validate the method.
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