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ABSTRACT  

The development of supramolecular synthons capable of driving hierarchical two-dimensional 

self-assembly is an important step towards the growth of complex and functional molecular 

surfaces.  In this work the formation of nucleobase quartets consisting of adenine and thymine 

groups was used to control the 2D self-assembly of porphyrins. Tetra-(phenylthymine) zinc 

porphyrin (Zn-tetra-TP) and tetra-(phenyladenine) porphyrin (tetra-AP) were synthesised and 

scanning tunneling microscopy (STM) experiments performed to visualize their self-assembly at 

the liquid-solid interface between an organic solvent and a graphite surface. Mono-component 

solutions of both Zn-tetra-TP and tetra-AP form stable 2D structures with either thymine-thymine 

or adenine-adenine hydrogen bonding. Structural models based on STM data were validated using 

molecular mechanics (MM) simulations. In contrast, bi-component mixtures showed the formation 

of a structure with p4 symmetry consisting of alternating Zn-tetra-TP and tetra-AP molecules in a 

chessboard type pattern. The relative positions of the porphyrin components were identified from 

STM images via contrast changes associated with the zinc atom present in Zn-tetra-TP. MM 

simulations suggest that hydrogen bonding inter-actions within these structures are based on the 

formation of adenine-thymine (ATAT) quartets with Watson-Crick base pairing between adenine 

and thymine groups. 
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INTRODUCTION 

The use of recognition interactions to control the two-dimensional (2D) self-assembly of 

molecules provides a route to form complex and potentially functional nanostructured surfaces.1-

3  In combination with the molecular resolution of surfaces provided by scanning tunneling 

microscopy (STM) this goal has been the driving force behind a wealth of research activity.3-6 

These studies use concepts from reticular synthesis7 and molecular tectonics.8 Rigid and planar 

molecular building blocks known as tectons are decorated with functional groups at specific 

positions. Recognition interactions between functional groups on different tectons then form 

supramolecular synthons9 linking the tectons together and driving self-assembly. Coordination 

bonds,10-11 halogen bonds,12-13 van der Waals interactions,14-15 and even dynamic covalent bond 

formation15 have all been employed as recognition interactions in the growth of complex 2D 

molecular networks. Hydrogen bonds in particular have been widely used as stabilizing 

interactions for 2D self-assembly.1, 5-6, 12 A key example of the use of hydrogen bonds as 

molecular recognition interactions in 2D self-assembly is the triple hydrogen bond interaction 

formed between perylenetetracarboxylic diimide (PTCDI) and melamine.17-19 

The archetypal set of supramolecular synthons based on hydrogen bonds are those formed 

between the nucleobases of DNA. The ability of these interactions to effect self-assembly of 

vastly complex biological systems makes them ideal candidates to control the formation of 

synthetic functional materials.20-22 The planar structure of individual nucleobases, and of small 

groups of hydrogen-bonded nucleobases, means they are ideally suited to the formation of 2D 

molecular layers. This planarity, coupled with the strength and selectivity of their interactions 

has led to the 2D self-assembly of nucleobases being a widely investigated topic.23-39 Self-

assembly of the individual nucleobases adenine (A),23-26 thymine (T),27-28 guanine (G),29-30 and 
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cytosine (C)31 have been studied on different substrates including various coinage metals23, 25, 28-

29, 31 and graphite24, 27, 30 and under a range of environmental conditions from ultra-high vacuum 

(UHV)23, 25, 29 through to liquid-solid interfaces.28 The 2D self-assembly of mixtures of different 

nucleobases has shown the formation of selective inter-nucleobase interactions but also 

highlighted the complexity of their hydrogen bonding landscape.27, 32-35 The hydrogen bonding 

synthons observed for 2D self-assembly of nucleobases often go beyond standard Watson-Crick 

base pairing with a number of examples of the formation of nucleobase quartets.33, 36-39 Guanine 

quartets (GGGG) occur naturally and play a key role in the structure of telomeric DNA.40 

Through their ability to coordinate to metal ions G quartets have been the basis of novel 

methods for metal detection based on DNA.41 The formation of (GGGG),37-39 (ATAT)33 and 

(GCGC)36 quartets have all been observed via 2D self-assembly on surfaces. Despite the wealth 

results on mono-component or mixed nucleobase systems comparatively few studies have taken 

the step of using the nucleobases as functional groups to drive the 2D self-assembly of larger 

molecular tectons.39, 42-46  We have previously outlined the synthesis and 2D-self-assembly of 

thymine functionalized porphyrins.46 Now in this study we extend the use of  nucleobase 

functional groups to control self-assembly by investigating bi-component mixtures of both 

thymine and adenine functionalized porphyrins; (Chart 1). Porphyrins are a particularly attractive 

choice as the basis for more complex molecular tectons and their 2D self-assembly has been 

widely investigated.47 Functional groups can be included on the meso positions of a porphyrin to 

create tetratopic tectons. In addition to their flexibility in terms of the inclusion of peripheral 

functional groups, the central porphyrin macrocycle can also bind a large variety of different 

metal ions. Inclusion of metal ions within the porphyrin core ultimately provides a route to 

modify the optical, electronic and catalytic properties48 of the resulting tectons and offers the 
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opportunity for additional control over self-assembly through secondary coordination to the 

metal.49  Finally, in terms of  self-assembly the planar nature of porphyrins promotes adsorption 

and ordering on surfaces while their delocalized system of π electrons and distinct cross shape 

makes them easily discernable in STM images.47 The self-assembly of these nucleobase 

functionalized porphyrins at the liquid-solid interface between highly oriented pyrolytic graphite 

(HOPG) and an organic solvent layer was investigated using scanning tunneling microscopy 

(STM). Molecular mechanics (MM) simulations were then used in conjunction with drift 

corrected STM images to produce molecular models for the observed structures. Bi-component 

mixtures of the porphyrins demonstrated selective molecular recognition interactions in the form 

of unusual adenine-thymine (ATAT) quartets containing Watson-Crick hydrogen bonding 

between adenine and thymine groups. The formation of these nucleobase quartets resulted in a 

2D molecular network consisting of the two porphyrin species arranged in an alternating 

chessboard type pattern. 

Chart 1. Tetra-(phenylthymine) zinc porphyrin (Zn-tetra-TP) and tetra-(phenyladenine) porphyrin 

(tetra-AP) and model compound mono-(phenyladenine)-tri-(3,5-di-tert-butylphenyl)porphyrin 

(mono-A). 
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EXPERIMENTAL METHODS 

All chemical reagents were used as-purchased from Alfa Aesar, Fisher Scientific, Sigma-

Aldrich, or VWR International, unless stated otherwise. Anhydrous toluene was dried by passing 

through a column packed with 4 Å molecular sieves, degassed and stored over a potassium 

mirror in a nitrogen atmosphere. Anhydrous dichloromethane was purchased from Sigma-

Aldrich (Fluka) and stored over 4 Å molecular sieves. Column chromatography was performed 

on Merck silica gel 60 (0.2-0.5 mm, 50 - 130 mesh). Full details of the synthesis procedures and 

characterization details for each of the molecules discussed in the paper can be found in the ESI. 

1H and 13C NMR spectra were recorded using Bruker spectrometers. EI M/S spectra were 

taken using a Bruker Apex IV 4.7 T mass spectrometer. MALDI-TOF M/S spectra were 

recorded with a Bruker Ultraflex III mass spectrometer using trans-2-[3-(4-tert-butylphenyl)-2-

methyl-2-propenylidene]-malononitrile (DCTB) as the matrix. ESI M/S spectra were recorded 

with a Bruker MicroTOF. Single crystal X-ray diffraction experiments for mono-A and 9-propyl 

adenine were performed on a Rigaku Saturn724+ diffractometer equipped with a rotating anode 

using monochromated Cu-Kα radiation (λ = 1.5418 Å) at 120 K. The structures were solved by 

direct methods using either SHELXS or SHELXT50 and refined with SHELXL51 using a least 

squares method. OLEX2 software was used as the solution, refinement and analysis program.52 

All hydrogen atoms were placed in geometrically calculated positions; non-hydrogen atoms were 

refined with anisotropic displacement parameters. 
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STM experiments were performed using a Keysight Technologies 5500 STM operating in 

constant current mode using mechanically cut Pt:Ir (90:10) tips. Highly oriented pyrolytic 

graphite (HOPG) substrates (Bruker) were freshly cleaved before each experiment. Prior to 

deposition both the substrate and the target porphyrin solution were pre-heated to 120°C for 5 

mins. A liquid cell was used to contain 25 μl of solutions on the HOPG surface. The substrate 

was maintained at 120°C for 5 mins following deposition before controlled cooling at 2°C min-1 

until the sample reached room temperature. The liquid cell was covered during the cooling 

process to prevent evaporation. STM images were then collected at the solid-liquid interface. All 

STM images used to inform the construction of molecular models have been drift corrected using 

the underlying HOPG lattice. Full details of the STM analysis and image processing can be 

found in the ESI. 

Molecular Mechanics (MM) and Molecular Dynamics (MD) simulations were carried out 

using the Forcite module in the Materials Studio 4.2 software package from Accelrys. The 

Dreiding force field53 was used to assign atomic charges as well as to perform geometry 

optimization. A conjugate gradient algorithm was employed with an RMS force convergence 

parameter set to 5 × 10-3 kcal mol-1 Å-1. The non-bonded van der Waals, and electrostatic terms 

both described by a cubic spline function with a cut-off at 15.5 Å and a spline width of 3 Å. 

Hydrogen bonding terms were described by a cubic spline function with a cut-off at 4.5 Å and a 

spline width of 0.5 Å. Full details of the simulations and the method used to calculate the 

network binding energies can be found in the ESI. 
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RESULTS AND DISCUSSION 

The target nucleobase functionalized porphyrins were prepared by adapting our previously 

reported strategy for the synthesis of thymine-functionalized porphyrins.46 The strategy requires 

the synthesis of a suitable aldehyde building-block which can be employed to synthesize the 

porphyrin. Developing our previous strategy, we prepared N-9-(4-formylphenyl)-C-6-(bis-boc-

amino)adenine. We found it necessary to protect the adenine group using a boc-functionality54 

prior to the porphyrin forming reactions. Thus, the synthesis of N-9-(4-formylphenyl)-C-6-(bis-

boc-amino)adenine was readily achieved from 4-formylphenylboronic acid and (bis-boc-

amino)adenine using a Cu(OAc)2-mediated Chan-Lam-Evans-modified Ullmann condensation 

reaction to facilitate the cross-coupling process.55 The synthesis of the tetra-AP (Chart 1) was 

achieved by reaction of N-9-(4-formylphenyl)-C-6-(bis-boc-amino)adenine with a large excess 

of pyrrole using trifluoroacetic acid (TFA) to initiate the reaction, followed by oxidation with 

2,3-dichloro-5,6-dicyano-1,4-benzoquinone(DDQ). Isolation of the pure target was challenging 

as the reaction yielded a mix of boc-protected species. TFA, required for the porphyrin synthesis, 

is known to lead to removal of boc groups and MALDI mass spectrometry confirmed the 

presence of products with loss of 0-8 boc-protecting groups. Thus, purification and isolation of a 

single product was difficult. To overcome this problem the range of boc-protected species were 

combined and the mixture treated with KOH in MeOH at 50°C. These conditions did lead to the 

desired product but deprotection was inefficient leading to an overall yield tetra-AP of just 2%. 

Tetra-AP was found to be sparingly soluble in DMSO with lower solubility in other common 

organic solvents, behaviour similar to that observed for tetra-TP.44  

The synthesis of mono-AP (Chart 1) required the formation of a suitable dipyrromethene 

which was achieved by reaction of N-9-(4-formylphenyl)-C-6-(bis-boc-amino)adenine with a 
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large excess of pyrrole in the presence of InCl3. The bis-boc-adenine functionalized 

dipyrromethane was reacted with a suitable tert-butyl functionalized carbinol species, using 

Lindsay’s approach,56-58 in the presence of TFA with subsequent oxidation using DDQ. The 

reaction was slightly more efficient than the synthesis of tetra-AP with an 8% yield following 

purification. In addition, in order to aid identification of the two similarly sized porphyrin 

molecules in STM images, the zinc(II) complex of tetra-(phenylthymine) porphyrin (Zn-tetra-

TP) was prepared by simple reaction of tetra-TP46 with zinc acetate. Further detailed information 

concerning synthesis is presented in the ESI. 

 

Figure 1. The single crystal X-ray structure of mono-AP reveals an intermolecular A1-A1 

arrangement in the solid-state.  Nitrogen – blue; carbon – grey; hydrogen-white. Hydrogen bonds 

are shown by black dotted lines. EtOAc solvent molecules are omitted for clarity. 

 

The products were characterized by conventional techniques and in the case on mono-AP by 

single crystal X-ray diffraction. Slow evaporation of CDCl3 solutions of the mono-AP, 

containing small amounts of EtOAc, led to growth of single crystals of suitable quality for X-ray 

diffraction studies. The X-ray structure confirms the identity of the product and the relative 

arrangement of the adenine moiety with respect to the porphyrin ring (Figure 1). The structure of 

mono-AP gives insight into the nature of the intermolecular interactions anticipated for adenine-
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substituted porphyrin species with the most pertinent feature being the intermolecular 

adenine···adenine hydrogen-bonding interactions. Unfunctionalized adenine has the potential to 

adopt 21 different arrangements of planar hydrogen-bonded dimers, if dimers that employ C-

H…N interactions are included.59 However, functionalization at the N9 position, as employed in 

both mono-AP and tetra-AP, limits this number to a maximum of 15. If the steric inhibition 

bestowed by the large porphyrin group is considered and only stronger N-H…N interactions are 

used then the number of possible hydrogen-bonded dimers is further reduced to just 3 

arrangements (Chart 2). Previously reported calculations suggest that the stabilization energy 

associated with each interaction follows a general trend of A2-A2 > A2-A1 > A1-A1, where A1 

corresponds to the Hoogsteen60 face and A2 to the Watson-Crick61 face of adenine. A small 

degree of disagreement between the reported energies is found depending on the precise 

calculations used.23,59,62-64 However, the single crystal structure of mono-AP, grown as an EtOAc 

solvate, adopts an A1-A1 intermolecular hydrogen bonding interaction. The hydrogen bond 

lengths [N…N = 3.084(9) Å; H…N = 2.340(9) Å; < N-H...N = 145.1(2)°] are slightly longer 

than those observed for the crystal structure of 9-propyl-9H-purine-6-ylamine, (9-propyladenine, 

see ESI) which adopts the A2-A1 interaction, or anhydrous adenine65,66 for which two 

polymorphs are known which adopt either the A2-A165,66 interaction or both the A1-A1 and A2-

A2 interactions66 (as well as interactions involving the face of adenine that is functionalized and 

blocked in our systems). As the calculated differences in stabilization energy between the 

different intermolecular interactions is small it is possible that the arrangement observed in the 

structure of mono-AP is stabilized by additional hydrogen-bonding interactions to the EtOAc 

solvent molecules (see ESI) or that other packing interactions tip the balance in favor of the A1-

A1 interaction. 
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Chart 2. Hydrogen-bonded adenine-adenine dimers employing solely N-H···N interactions. 

 

 

In addition to the structure of mono-AP we have investigated the single crystal X-ray 

structures of 9-propyladenine, N-1-propylthymine and a co-crystal of these two compounds (see 

ESI for details). As discussed above 9-propyladenine forms a hydrogen bonded arrangement 

which adopts an A2-A1 adenine...adenine interaction. N-1-propylthymine forms a dimeric 

arrangement with two thymine molecules adopting N-H…O hydrogen bonds in an R2
2(8) double 

hydrogen-bonded arrangement, analogous to that observed for self-assembled arrays of tetra-

TP.46 Perhaps most pertinently to this study we isolated a 1:1 co-crystal of 9-propyladenine:N-1-

propylthymine which adopts a Hoogsteen hydrogen-bonding arrangement between the A1 face 

of the adenine moiety and thymine (see ESI). 

In order to promote solubility of the nucleobase functionalized porphyrins a mixture of 

tetrahydrofuran (THF) and 1,2,4-trichlorobenzene (TCB) in a 1:9 volume ratio was used as a 

solvent. Mono-component solutions of both Zn-tetra-TP and tetra-AP were made with 

concentrations of ~ 4 × 10-5 M. Mixed solutions of Zn-tetra-TP and tetra-AP consisted of a 1:1 

volume ratio mixture of the above solutions. 

STM investigations of the self-assembly of Zn-tetra-TP (Figure 2a) show that the metallated 

tecton forms an identical structure to its freebase counterpart.46 Zn-tetra-TP forms an ordered 
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structure on a square lattice with p4 symmetry that is stabilized by hydrogen bond dimers 

between adjacent Zn-tetra-TP molecules. Bright features observed in Figure 2a correspond to the 

cores of the Zn-tetra-TP molecules. Additional structure observed in the STM image is difficult 

to assign to a specific molecular moiety and may be the results of an imaging artefact associated 

with the STM tip configuration. The unit cell for the Zn-tetra-TP structure, shown in the insert to 

Figure 2a, has dimensions a = (26.2 ± 0.9) Å; b = (26.3 ± 0.5) Å; α = (89 ± 2)° with an angle of 

the unit cell vectors with respect to the underlying HOPG lattice of θa = (5 ± 2)° and θb = (26 ± 

2)°. These unit cell dimensions are identical to those previously measured for freebase tetra-TP.46 

The molecular model presented in Figure 2b was produced via geometry optimized MM 

simulations using the unit cell dimensions from drift corrected STM images to determine the 

starting position / orientation of the porphyrin cores with respect to each other. 
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Figure 2. Self-assembly of Zn-tetra-TP at the liquid–solid interface between TCB and HOPG. (a) 

Drift corrected STM image of the Zn-tetra-TP network; bright features correspond to porphyrin 

cores. The insert shows a magnified view of the structure with the 2D unit cell marked. Unit cell 

parameters from STM are:  a = (26.2 ± 0.9) Å; b = (26.3 ± 0.5) Å; α = (89 ± 2)°. The orientation 

of the underlying HOPG lattice is given by the arrows in the top right hand corner. STM imaging 
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parameters: Vs = -0.85 V; It = 10 pA. Scale bar = 4 nm. (b) Molecular model of the Zn-tetra-TP 

network from MM simulations. Unit cell parameters a = 26.7 Å; b = 26.7 Å; α = 89.4°. 

 

Thymine groups can rotate around the bond linking them to the tetraphenyl porphyrin core. 

This leads to two distinct orientations that each thymine group can adopt with respect to the rest 

of the molecule. The orientation of the thymine groups have been selected such that the model 

maximizes the hydrogen bonding interactions whilst also retaining the unit cell dimensions 

observed via STM. In the Zn-tetra-TP molecular model shown in Figure 2b all of the thymine 

groups point in the same direction with respect to the porphyrin core. Unit cell dimensions from 

the MM simulations are a = 26.7 Å; b = 26.7 Å; α = 89.4°, with the unit cell vectors making 

angles with respect to the underlying HOPG lattice of θa = 4.6° and θb = 26.0°. For full details of 

the structures and the MM simulation procedure see the ESI. 

Figure 3a shows STM images of tetra-AP self-assembled on HOPG. Cross shaped features 

associated with the porphyrin core are clearly visible allowing the orientation of porphyrin 

molecules with respect to each other to be identified. The self-assembled structure forms an 

oblique lattice with p2 symmetry and unit cell dimensions a = (19.8 ± 0.6) Å; b = (22.9 ± 0.7) Å; 

α = (84 ± 3)°. The angles of the unit cell vectors with respect to the underlying HOPG lattice are 

θa = (23 ± 4)° and θb = (3 ± 3)°. Figure 3b shows a suggested model for this structure based on 

MM simulations. 
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Figure 3. Self-assembly of tetra-AP at the liquid–solid interface between TCB:THF and HOPG. 

(a) Drift corrected STM image of the tetra-AP network; cross shaped features correspond to the 

porphyrin cores. The insert shows a magnified view of the structure with the 2D unit cell marked. 

Unit cell parameters from STM are:  a = (19.8 ± 0.6) Å; b = (22.9 ± 0.7) Å; α = (84 ± 3)°. The 

orientation of the underlying HOPG lattice is given by the arrows in the top right hand corner. 
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STM imaging parameters: Vs = -0.65 V; It = 45 pA. Scale bar = 6 nm. (b) Molecular model of the 

tetra-AP network from MM simulations. Unit cell parameters a = 19.2 Å; b = 22.8 Å; α = 83.7°. 

 

Similar to thymine groups on Zn-tetra-TP, the adenine groups on tetra-AP can also rotate with 

respect to the porphyrin core allowing them to adopt two distinct orientations when the molecule 

is adsorbed on a surface. In contrast to Zn-tetra-TP, the adenine groups on the tetra-AP 

molecules shown in the model presented in Figure 3b do not all display the same orientation with 

respect to the porphyrin core. Instead they adopt alternating orientations around the molecule.  

This arrangement of the adenine groups is necessary in order to construct a molecular model that 

both matched the unit cell dimensions from STM measurements and produced a sensible 

hydrogen bonding configuration. In this model each adenine group forms three hydrogen bonds: 

an A2-A2 dimer formed between adenine groups on tetra-AP molecules at opposite corners of 

the 2D unit cell; and a third hydrogen bond formed by the close-packing of adenine groups on 

adjacent tetra-AP along one side of the molecule. Unit cell dimensions for the tetra-AP model 

from MM simulations are a = 19.2 Å; b = 22.8 Å; α = 83.7°, with the unit cell vectors making 

angles with respect to the underlying HOPG lattice of θa = 26.3° and θb = 2.7°. 

Figure 4a-c shows examples of STM images formed by the co-deposition of 1:1 molar ratio 

mixtures of Zn-tetra-TP and tetra-AP on HOPG. The larger scale STM image shown in Figure 4a 

shows the formation of domains of ordered network between 25 and 50 nm in size. Figure 4b 

shows a smaller scale drift corrected STM image that shows the structure in more detail. As with 

Figure 4a, the cross shape of the porphyrin can be clearly seen in the image highlighting the 

orientation that the individual porphyrin molecules adopt. Analysis of drift corrected STM 

images similar to that shown in Figure 4b give unit cell dimensions (marked on Figure 4b in red) 
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of a = (21.7 ± 0.7) Å; b = (22.0 ± 0.6) Å; α = (90 ± 3)°. The angles the unit cell vectors make 

with respect to the underlying HOPG lattice are θa = (12 ± 3)° and θb = (19 ± 3)°. 

 

Figure 4. Self-assembly of Zn-tetra-TP and tetra-AP mixture. (a) Large scale STM image of the 

Zn-tetra-TP and tetra-AP network. (b) Drift corrected STM image of the Zn-tetra-TP and tetra-AP 

network; cross shaped features correspond to porphyrin cores. The insert shows a magnified view 

of the structure with the 2D unit cell marked in red. Unit cell parameters from STM are:  a = (21.7 

± 0.7) Å; b = (22.0 ± 0.6) Å; α = (90 ± 3)°. The orientation of the underlying HOPG lattice is given 

by the arrows in the top right hand corner. (c) Alternate contrast image of the Zn-tetra-TP and 

tetra-AP network showing ordered arrangement of molecules with brighter contrast corresponding 

to Zn-tetra-TP; insert shows the 2D Fourier transform of the STM image. Unit cell parameters for 
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the marked blue cell from STM are:  a = (31.1 ± 1.1) Å; b = (30.8 ± 1.0) Å; α = (90 ± 4)°. An 

example of a substitutional defect in the network, consisting of a bright Zn-tetra-TP molecule 

appearing in place of a darker tetra-AP molecule, is marked by the white dashed circle. STM image 

scale bars: (a) 25 nm; (b) 5nm and (c) 6 nm. STM imaging parameters: (a) Vs = -0.50 V, It = 10 

pA; (b) Vs = -0.25 V, It = 10 pA; and (c) Vs = -0.55 V, It = 10 pA. (d) Molecular model of the 

Zn-tetra-TP and tetra-AP network from MM simulations. Unit cell parameters: red a1 = 21.9 Å; b1 

= 22.2 Å; α1 = 90.9°; blue a2 = 31.4 Å; b2 = 30.9 Å; α2 = 90.8°; (e) Molecular model of ATAT 

quartet with hydrogen bonds marked as black dashed lines. AT pairs in the Watson-Crick hydrogen 

bonding configuration are marked by the green dashed ovals. 

 

From Figure 4a-b it is clear that the porphyrin tectons form an ordered arrangement with the 

porphyrin core of each molecule in a similar orientation. By comparing both the orientation of 

porphyrin molecules and the STM measured unit cell dimensions to those observed for either the 

Zn-tetra-TP or the tetra-AP mono-component networks it is also clear that the mixed system 

adopts a different structure to either of the molecules on their own. However, from the STM 

images shown in Figure 4b it is not possible to differentiate between the Zn-tetra-TP and the 

tetra-AP molecules. Extended STM scanning of the network did result in occasional changes in 

image contrast to that seen in Figure 4c. In these images the cross shape of the porphyrin core 

was no longer discernable but there was a notable difference in contrast between molecules with 

some porphyrins appearing consistently brighter than others. 

Differences in STM contrast observed for the presence or type of centrally coordinated metal 

ion have been widely reported previously.67,68 The bright appearance of the central metal ion in 
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some metal containing porphyrins, e.g. cobalt tetraphenyl porphyrin, has been linked to an 

orbital mediated tunneling mechanism through the partially filled dz2 orbital on the metal ion.68 

However, although this explanation is not expected to be valid for Zn tetraphenyl porphyrin, as 

the dz2 orbital is completely filled, molecular contrast in STM images is also strongly linked to 

the chemical nature of the STM tip apex.69,70 Chemically modified STM tips consisting of an Au 

tip functionalized with thiol molecules have been used to identify the location of specific 

functional groups within an organic monolayer through hydrogen bond interactions.71 A similar 

approach has been used by Ohshiro et al. to distinguish between Zn porphyrin and freebase 

porphyrin through coordination bonding between Zn and a pyridine functionalized STM tip.72 

While the PtIr tips used in this work have not been specifically functionalized, both porphyrin 

molecules can coordinate to Zn either through a carbonyl oxygen present in thymine or a 

pyridine-like nitrogen in adenine. Given that the STM images shown in Figure 4 were collected 

at the interface between HOPG and an organic solvent layer containing dissolved Zn-tetra-TP 

and tetra-AP it is likely that one of these molecules could adsorb at the apex of the STM tip and 

lead to the observed image contrast. This suggestion is consistent with the transient nature of the 

contrast seen in Figure 4c: adsorption or desorption of molecules from the tip apex would lead to 

significant changes in contrast. Additional examples of this image contrast are presented in the 

ESI. 

Based on the observations of Ohshiro et al.72 that Zn containing porphyrins appear as bright 

features when imaged with a pyridine functionalized tip, the brighter features in Figure 4c have 

been assigned as Zn-tetra-TP molecules and the dimmer features as the metal free tetra-AP 

molecules. While the Zn-tetra-TP and tetra-AP network is not perfectly ordered there is a 

preference for the molecules to arrange in an alternating pattern. This hierarchical structure can 
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be clearly seen in the two-dimensional Fourier transform (2DFT) shown in the insert to Figure 

4c. Spots in the 2DFT have been marked with red or blue dashed circles according to the unit 

cell structure they originate from. The observed pattern is similar to low-energy electron 

diffraction (LEED) patterns obtained for a (100) surface with a c(2×2) adsorbate layer.73  

Figure 4d shows a suggested model for this structure based on MM simulations. This structure 

displays p4 symmetry consisting of alternating Zn-tetra-TP and tetra-AP molecules arranged in a 

chessboard type pattern. The equivalent unit cells to those measured by STM are marked in red 

and blue respectively on Figure 4d. The unit cell dimensions are red: a1 = 21.9 Å; b1 = 22.2 Å; α1 

= 90.9°; and blue:  a2 = 31.4 Å; b2 = 30.9 Å; α2 = 90.8°. The angles that the red unit cell vectors 

make with respect to the underlying HOPG lattice are θa = 13.9° and θb = 17.0°. These 

dimensions are all consistent with those obtained from drift corrected STM measurements. The 

structure is stabilized by hydrogen bonding in the form of adenine-thymine quartets (ATAT). 

These bonding arrangements form at nodal points between nucleobase functional groups from 4 

adjacent porphyrin molecules. Figure 4e shows an enlarged view of one of the ATAT quartet 

structures. The quartet consists of two AT dimers, both in a standard Watson-Crick hydrogen 

bonding configuration (marked by the green dashed ovals in Figure 4e) placed next to each other. 

The dimers then form two additional NH···O hydrogen bonds between amine and carbonyl 

groups, resulting in 6 hydrogen bonds in total for each ATAT quartet. 

The formation of quartet structures has previously been observed by Mamdouh et al. for the 

2D self-assembly of adenine and thymine on HOPG.33 In that study DFT calculations were 

performed to quantify the binding energy of several different ATAT quartet structures. The 

quartet structure observed in STM images by Mamdouh et al. consisted of a reverse Hoogsteen 

bonding configuration and had a calculated binding energy of Ebind = 1.20 eV per quartet. The 
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quartet structure shown in Figure 4e however was calculated to have a lower binding energy of 

Ebind = 1.08 eV per quartet. While this lower binding energy suggests the arrangement in Figure 

4e is not the most stable quartet structure, it is important to note that the structures studied by 

Mamdouh et al. only consisted of the nucleobase molecules without the attached porphyrins 

present in this study. For nucleobase functionalized porphyrins all of the planar quartet structures 

studied by Mamdouh et al., apart from the one shown in Figure 4e, would be prevented from 

forming based on steric effects.33 

Analysis of molecular dynamic (MD) quench simulations based on a previously reported 

method74 was performed for the structures presented in Figures 2b, 3b and 4d in order to 

calculate binding energies for these structures (see ESI for full details). ‡ The binding energy 

values have been calculated per unit surface area to provide a more useful comparison between 

the different structures. The binding energies for the Zn-tetra-TP; tetra-AP; and the mixed 

network structures were Ebind = 2.04; 2.20; and 2.65 eV nm-2 respectively. These results would 

appear to validate the stabilization of the mixed network structure show in Figure 4d in 

comparison to either of the mono-component networks. However, the above values are 

calculated in the absence of solvent molecules and as such do not accurately quantify the true 

difference in Ebind. The self-assembly of nucleobase functionalized porphyrins takes place at a 

liquid-solid interface and therefore requires the displacement of solvent molecules from the 

substrate prior to formation of the network. In addition, the highly porous nature of the molecular 

networks described here means that co-adsorption of solvent molecules is highly likely. Both of 

these factors will play a significant role in determining the final binding energy. The calculations 

of Ebind presented here include only van der Waals and hydrogen bond interactions between 

adjacent network molecules and between molecules and the underlying substrate. The Ebind 
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values show that based only on selective hydrogen bonding interactions between nucleobase 

groups the mixed network has a preferential stabilization with respect to the mono-component 

networks. In order to obtain accurate relative binding energies of the different network structures 

simulations that include explicit solvent molecules would need to be performed. It should also be 

noted that the binding energies described above are calculated for perfectly ordered structures. 

From Figure 4c it is clear that there are defects present in the alternating arrangement of Zn-tetra-

TP and tetra-AP molecules: e.g. the white dashed circle highlights a substitutional defect where a 

Zn-tetra-TP molecule is present where a tetra-AP is expected based on the suggested model. The 

presence of defects such as this will lead to the formation of different quartet structures to the 

one shown in Figure 4e. How the formation of these additional nucleobase quartets influences 

the stability of the bi-component structures requires further investigation. 

 

CONCLUSIONS 

In conclusion we have shown that selective hydrogen boding interactions between 

complementary nucleobase functional groups can be used to drive the hierarchical 2D self-

assembly of porphyrin molecular tectons at a surface. Porphyrin tectons functionalized in the 

meso-positions with either T or A groups were synthesized and their 2D self-assembly at the 

liquid-solid interface investigated using STM and MM simulations. When mixed solutions of 

both A and T functionalized porphyrins were deposited at the interface a 2D molecular network 

was observed that is different to those formed when either of the components was deposited on 

its own. By analysis of experimental data and its comparison to simulations a molecular model 

for the bi-component structure was suggested that consists of an alternating arrangement of A 
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and T functionalized porphyrins in a 2D molecular networks with p4 symmetry. This network 

structure is stabilized via the formation of cyclic hydrogen bond configurations consisting of 

ATAT quartets. Formation of quartet structures is consistent both with the experimental data and 

represents a highly unusual observation of a nucleobase quartet structures at surfaces.33 

The use of selective hydrogen bonding between nucleobases attached to molecular tectons 

represents a powerful method for the control and design of complex 2D materials. Control over 

the self-assembly of porphyrins, which themselves play key roles in electro-catalytic75-77 and 

optoelectronic78,79 applications, demonstrates the efficacy and potential of this approach. The 

formation of nucleobase quartets as the stabilizing hydrogen bond motif in these structures is 

also an important result and has diverse implications for nucleobase driven 2D self-assembly. 

These quartets share many similarities with naturally occurring “quadruplex” structures in 

DNA.80 In addition to their biological functions quadruplexes also strongly coordinate to a 

variety of metals. This ability has seen them find application in schemes for the sensitive 

detection of metal-ions in solution.41 Coordination of metal ions by surface supported G quartets 

on HOPG has previously been demonstrated.81 Formation of nucleobase quartets during 

porphyrin self-assembly provides the possibility of multiple different metal centers, coordinated 

to porphyrins and quartets, arranged into hierarchically ordered surface structures. There is also 

the possibility that the addition of different metal ions in the presence of nucleobase functional 

groups could be used as a further control mechanism for the self-assembly process. Along with 

metal complexation by quartets, the natural extension of this work will be the synthesis and 2D 

self-assembly of porphyrins functionalized with G and C nucleobase groups followed by the 

synthesis of asymmetrically functionalized porphyrins82 containing different combinations of 

nucleobase groups within a single tecton. Using STM to perform quantitative studies of the 
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varying roles of kinetics and thermodynamics in the self-assembly of these systems83-86 should 

allow us to construct a ‘tool-kit’ of design principles that allow us to create new 2D molecular 

materials with increasing complexity and functionality. 
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