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Relationships between muscle size, strength, and
physical activity in adults with muscular dystrophy
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Abstract

Background Muscular dystrophy (MD) is characterized by progressive muscle wasting and weakness, yet few comparisons to
non-MD controls (CTRL) of muscle strength and size in this adult population exist. Physical activity (PA) is promoted to main-
tain health and muscle strength within MD; however, PA reporting in adults with MD is limited to recall data, and its impact on
muscle strength is seldom explored.
Methods This study included 76 participants: 16 non-MD (CTRL, mean age 35.4), 15 Duchenne MD (DMD, mean age 24.2),
18 Becker’s MD (BMD, mean age 42.4), 13 limb-girdle MD (LGMD, mean age 43.1), and 14 facioscapulohumeral MD (mean age
47.7). Body fat (%) and lean body mass (LBM) were measured using bioelectrical-impedance. Gastrocnemius medialis (GM)
anatomical cross-sectional area (ACSA) was determined using B-mode ultrasound. Isometric maximal voluntary contraction
(MVC) was assessed during plantar flexion (PFMVC) and knee extension (KEMVC). PA was measured for seven continuous days
using triaxial accelerometry and was expressed as daily average minutes being physically active (TPAmins) or average daily per-
centage of waking hours being sedentary (sedentary behaviour). Additionally, 10 m walk time was assessed.
Results Muscular dystrophy groups had 34–46% higher body fat (%) than CTRL. DMD showed differences in LBM with 21–
28% less LBM than all other groups. PFMVC and KEMVC were 36–75% and 24–92% lower, respectively, in MD groups than
CTRL. GM ACSA was 47% and 39% larger in BMD and LGMD, respectively, compared with CTRL. PFMVC was associated with
GM ACSA in DMD (P = 0.026, R = 0.429) and CTRL (P = 0.015, R = 0.553). MD groups were 14–38% more sedentary than CTRL
groups, while DMD were more sedentary than BMD (14%), LGMD (8%), and facioscapulohumeral MD (14%). Sedentary behav-
iour was associated with LBM in DMD participants (P = 0.021, R = �0.446). TPAmins was associated with KEMVC (P = 0.020,
R = 0.540) in BMD participants, while TPAmins was also the best predictor of 10 m walk time (P < 0.001, R2 = 0.540) in ambu-
lant MD, revealed by multiple linear regression.
Conclusions Quantified muscle weakness and impaired 10 m walking time is reported in adults with MD. Muscle weakness
and 10 m walk time were associated with lower levels of TPA in adults with MD. Higher levels of sedentary behaviour were
associated with reduced LBM in DMD. These findings suggest a need for investigations into patterns of PA behaviour, and rel-
evant interventions to reduce sedentary behaviour and encourage PA in adults with MD regardless of impairment severity.
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Introduction

Relationships between muscle size and strength have long
been recognized and reported in healthy and clinical popula-
tions.1–3 Similarly, the importance of physical activity (PA)

and exercise to maintain strength and health is commonly
recognized4,5; however, these relationships have received lit-
tle or no attention in adults with muscular dystrophy (MD).
Where reported in children, the applicability to adults may
be limited due to the degenerative/heterogeneous nature
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of some classifications of MD. Despite an increasing volume of
research supporting exercise interventions to maintain muscle
function within this clinical population,6,7 basic understanding
of the relationship between muscle structure/function and
habitual levels of PA in adults with MD remains largely
unexplored.8

Muscular dystrophy is a broad group of neuromuscular
conditions, characterized by muscle wasting and weakness
and classified by absence or reduced expression of proteins
associated with the sarcolemma.9 Duchenne MD (DMD) is
the most severe of the conditions, with symptom onset from
early childhood and typical loss of ambulation from the age
of 10 years, resultant from an absence of the dystrophin pro-
tein.10 Becker’s MD (BMD) is also a genetic condition
resulting in an impaired or non-functional dystrophin protein
but is considered a milder, yet more variable condition than
DMD, with typical loss of ambulation from the age of
20 years.10 Limb-girdle (LGMD) and facioscapulohumeral
MD (FSHD) are both inherited neuromuscular conditions that
in general present much later in life, with loss of ambulation
mainly in the adult stage, and typically later than in BMD.11

The nature of LGMD and FSHD results in great variance with
various classifications within each condition, dependent upon
the proteins affected.9 Despite the well-established molecu-
lar and symptomatic differences between these MDs, direct
comparisons between muscle strength and size between
the conditions, and the potential influence of PA, have not
been systematically addressed.12

Decreased muscle strength has long been recognized
within MD and attributed to muscle wasting.13–15 Lower limb
strength comparisons between adults with MD and age-
matched controls (CTRL) have been made in adults with
BMD,12 LGMD,12 and FSHD.14,16 Of these comparisons, lower
isometric maximal voluntary contraction (MVC) strength was
attributed to smaller lean mass in the knee extension
(KEMVC) muscle group in FSHD.14 While Løkken et al.12

showed plantar flexors MVC (PFMVC) was associated with
cross-sectional area in adults with LGMD2I. Decreased mus-
cle strength has been shown within children and adolescents
with DMD.17,13 Within paediatric DMD populations,
pseudohypertrophy is evident, due to the inflammatory pro-
cess associated with muscle degradation resulting in appar-
ent increased calf size compared with age-matched
CTRL.18,19 However, the relationship between cross-sectional
area with muscle strength remains unexplored in adults with
DMD, with Morse et al.20 reporting decreased cross-sectional
area in the gastrocnemius medialis (GM) compared with
CTRL, suggesting an end of pseudohypertrophy in adulthood,
with muscle size possibly becoming more representative of
muscle strength.

Typically, in healthy adult populations, a combination of
high habitual PA and medium intensity planned exercise ses-
sions, is recommended in order to maintain and/or improve
health and muscle strength.21,22 Furthermore, within ageing

populations, where sarcopenia and muscular atrophy can be-
come evident, PA measures have been positively associated
with muscle strength and functional measures.23 Similarly,
Foong et al.24 reported a positive association between PA in-
tensity and both lower limb strength and lean mass in elderly
participants. PA is promoted as a measure to maintain muscle
mass and function within MD.25 However, Jimenez-Moreno
et al.8 recently presented a systematic review of habitual
PA within neuromuscular disorders, highlighting the distinct
lack of PA data currently reported. Recall methods have been
primarily used in MD research, namely, the bone and PA
questionnaire (MD),26,27 Baecke PA questionnaire (DMD),28

and a self-developed PA questionnaire (DMD).29 Quantitative
measures of PA levels in DMD include step count activity,30,31

accelerometry,32 and doubly labelled water,33 but have only
been used with children. Thus, all current research has shown
reduced PA levels in MD compared with healthy CTRL; how-
ever, only two of the aforementioned papers have measured
PA in adults with MD, both of which used recall methods,
which lack objectivity.27,26 Recall methods have been shown
previously to overestimate PA and underestimate sedentary
behaviour (SB).34

In MD, PA may help to maintain muscle mass and strength,
conversely, SB is likely to accelerate muscle atrophy through
disuse, as well as promote other associated health risks such
as increased fat mass, diabetes, and heart disease.35–38 How-
ever, despite the lack of current knowledge and understand-
ing of PA in MD, the importance of exercise and
interventions is becoming more and more apparent within
MD. Morse et al.26 highlighted the strong associations be-
tween bone health and lifetime PA in MD. While MD popula-
tions have also shown physiological improvements following
aerobic exercise interventions.6 Janssen et al.39 showed in-
creased PA levels, through an aerobic training plan, deceler-
ated muscle fat infiltration in adults with FSHD. Moreover,
Jansen et al.40 showed assisted bicycle training delays func-
tional deterioration in boys with DMD. Further understanding
of the habitual PA of adults with MD, along with its relation-
ships with other functional measures, may enhance and spec-
ify future interventions.

This study aims to (i) investigate the relationship between
muscle strength and size and (ii) establish the relationship be-
tween muscle size and strength with objective measures of
PA, with implications for the maintenance of muscle function
in MD.

Methods

This study contains 76 adult male volunteers, only male vol-
unteers were recruited to allow cross-condition comparisons
with DMD and BMD, which are X-linked conditions.11 MD
participants were grouped by their dystrophic condition
(DMD, BMD, LGMD, or FSHD). All MD participants were
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recruited from and tested at The Neuromuscular Centre
(Winsford, UK). CTRL participants were tested at Manchester
Metropolitan University, Cheshire Campus (Crewe, UK). CTRL
participants were self-reported as being recreationally active,
however, were not undertaking any structured training pro-
gramme. Similarly, no MD participants were taking part in a
structured training programme; however, all were receiving
weekly, biweekly, or monthly physiotherapy treatment,
consisting of passive stretching, along with access to low in-
tensity cardiovascular exercise equipment. Ethical approval
was obtained through the Department of Exercise and Sport
Science local Ethics Committee, and all participants signed in-
formed consent forms prior to participation. All procedures
complied with the World Medical Association Declaration of
Helsinki.41

Procedures

All participants were tested in a single testing session, subse-
quent from which 7 day PA was assessed using an accelerom-
eter. The same equipment was used for all participants, with
the exception of seated scales for body mass (BM) measures
in non-ambulatory MD participants. Due to the high level of
contractures present in some participants, all participants
were assessed in a seated position to ensure consistency. Bio-
electrical impedance (BIA) (Bodystat 1500, Bodystat Ltd.,
United Kingdom) and anthropometric measures were
performed first, followed by B-mode ultrasound measures
of the GM (MyLabGamma Portable Ultrasound, Esaote
Biomedica, Genoa, Italy). Ultrasound recordings were taken
of the participants’ self-reported dominant leg. If a partici-
pant was unable to distinguish a dominant leg, the right leg
was measured. Quantitative muscle strength was then taken
from the self-reported dominant leg using a load cell (Zemic,
Eten-Leur, Netherlands). Participants then performed a maxi-
mal handgrip strength test with their dominant hand. Upon
completion of physical testing, a wrist-worn accelerometer
was attached to the wrist of the self-reported dominant
arm and worn for seven consecutive days (GENEActiv, Cam-
bridge, United Kingdom).

Anthropometry

Control participants’ BM was measured by digital scales (Seca
model 873, Seca, Germany). Alternatively, all MD participants
were weighed in a digital seated scales system (6875,
Detecto, Webb City, Mo, USA). Slings, shoes, splints, and so
forth were weighed separately and subtracted from the gross
weight. All participants’ height was calculated as point-to-
point of arm span (index finger, elbow, shoulder, and across
midline) to replicate the method used on non-ambulatory
participants. A correction of 3.5% was applied to the raw

data, consistent with regression data from Caucasian males
in order to account for the known discrepancy between
height and arm span measures.42

Body composition

Body composition measures of fat and lean BM (LBM) were
measured using BIA in a fasted state, with adhesive
electrodes placed on the right hand and foot. Two distal elec-
trodes were placed on the dorsal surfaces of the metatarsals
and metacarpals, and two proximal electrodes were placed
between the medial and lateral malleoli of the right ankle
and between the styloid processes of the right ulna and ra-
dius. BIA has been commonly used as a quicker, cheaper,
and more easily accessible alternative to other body compo-
sition measures, such as dual-energy X-ray absorptiometry
(DEXA). BIA has been shown to be valid and reliable in com-
parison with DEXA in adults of healthy weight (R = 0.99)43

and in overweight populations (R = 0.78).44 In addition, BIA
has been promoted as a measure for change in fat and LBM
over time in a dystrophic population.45

LBM was determined by the following equation:

LBM Kgð Þ ¼ Body Mass Kgð Þ � Fat Mass Kgð Þ

Body mass index (BMI) was calculated using the following
equation46:

BMI
Kg
m2

� �
¼ Body Mass Kgð Þ÷Height2 m2� �

Strength

Due to the severe level of contractures and difficulties with
body mechanics, all strength testing protocols were designed
for the most severe participants and replicated across all con-
ditions and participants. Isometric PFMVC and KEMVC force
was recorded using a load cell with the participants in a
seated position. The load cell was calibrated prior to every
strength testing session. Three trials were performed, with
extended breaks of 1 min between trials due to the increased
fatigue associated with MD.47 The highest measure of the
three trials was used for analysis. The force produced was
digitized using an analog-to-digital converter, displayed by a
self-displayed and coded program using MyLabView (National
Instruments, Berkshire, UK). Force (N) was converted to mo-
ment (N.m) by multiplying the force measurement by the
moment arm from the axis of rotation (knee or ankle) to
the point of force measurement (the strap height on the shin
or ball of the foot). PFMVC and KEMVC measures have been
presented as torque (N.m) and normalized to BM (N.m/kg),
and presented as KEMVC/BM and PFMVC/BM, respectively,
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while PFMVC is also normalised to GM ACSA (N.m/cm2) and
presented as PFMVC/ACSA.

Protocol
All MVC measures took place with the participant seated,
with knee and hip angles maintained at 90°. Non-ambulant
participants remained seated within their manual/power
wheelchair. For knee extension, straps were used to limit
hip flexion during contractions. A strap was securely fastened
around ankle and attached perpendicularly to the load cell,
which was securely fastened to a weighted support bar. The
strap length was shortened until the strap was taut between
the load cell and limb, while maintaining limb position. All
participants were verbally encouraged throughout their max-
imal effort.

All participants’ PFMVC was measured with ankle angle at
0° (neutral position); however, not all participants’ ankles
were able to be mechanically moved into a neutral position,
with ankles typically in a plantar-flexed position due to con-
tractures, and so measures were taken from as close to neu-
tral position as possible. The participants’ foot was attached
to a footplate, with the load cell attached underneath. The
practitioner produced the resistive force to ensure a
static/isometric contraction occurred during MVC. Plantar-
flexion forces were normalized for gravity.

Reliability
Similar techniques to those used within this study have been
common within neuromuscular research. The KEMVC proto-
col is similar to quantitative muscle testing and has been
previously used within both clinical and non-clinical popula-
tions.48–50 The plantar-flexion measures are restricted by
the mechanical limitations previously mentioned within these
conditions, namely, capacity that put the leg into full exten-
sion due to contractures and remain self-supported; how-
ever, similar techniques using a non-mechanical resistive
force are common in dystrophic research.51,52 Reliability test-
ing was performed across all four dystrophic conditions, with
within-day reliability performed with 1 min breaks between
trials, while between-day reliability was performed over two
separate days, separated by 1–4 weeks, to coincide with par-
ticipants’ physiotherapy appointment. Intraclass correlations
(ICCs) (Table 1) showed strong reliability for between-day

and within-day reliability across all conditions for knee exten-
sion and plantar flexion and were in fact comparative or even
stronger than ICCs in previous quantitative muscle assess-
ment studies.53–55

Ultrasound

GM anatomical cross-sectional area (ACSA) was measured
using transverse ultrasound scans (7.5 MHz linear array
probe) at 50% of muscle length, consistent with the muscle
length at which the largest ACSA occurs.56 Muscle length
was measured with a tape measure over the skin surface, fol-
lowing identification of the visible origin of the GM at the
posterior aspect of the femur to the distal formation of the
myotendinous junction through ultrasonography.

Echoabsorptive tape (Transpore, 3M, USA) was used to
project shadows on the ultrasound image during recording
to provide a positional reference. Strips of tape were placed
longitudinally across the GM at 50% of muscle length, at ap-
proximately 3 cm intervals. The probe was moved in the
transverse plane from the medial to the lateral borders of
the muscle while digitally recording. Ultrasound transmission
gel (Aquasonic 100, New Jersey, USA) was used to maximize
image quality; minimal and consistent pressure was applied
to avoid compression of the muscle. Ultrasound was re-
corded in real time (at 25 frames per second) and stored
prior to digitizing. Ultrasound recordings were exported into
video editing software (PowerDirector V6; Cyberlink Corpo-
ration, Tokyo, Japan), from which still images were captured.
Images were captured at intervals consisting of two refer-
ence markers, as shown by shadows projected on the
muscle from echoabsorptive tape. The entire GM ACSA
was then recreated into a single image (Graphic Image
Manipulation Program, GIMP Development) using the
shadows from echoabsorptive tape, muscle markers, and
aponeurosis of the muscle. The ACSA was then measured
using digitizing software (ImageJ 1.45, National Institute of
Health, USA). This method of ACSA measurement using
ultrasound has been performed previously in dystrophic con-
ditions20,27 and previously reported as a valid (0.998) and re-
liable (0.999) measure in comparison with magnetic
resonance imaging (MRI).57

Table 1 Intraclass coefficients for muscle strength

Condition n

Between-day ICC Within-day ICC

Plantar flexion Knee extension Plantar flexion Knee extension

DMD 15 0.984 0.987 0.985 0.991
BMD 18 0.832 0.991 0.911 0.992
LGMD 13 0.946 0.985 0.921 0.980
FSHD 14 0.921 0.956 0.934 0.973

Intraclass correlations (ICCs) for muscle strength in dystrophic conditions. BMD, Becker’s muscular dystrophy; DMD, Duchenne muscular
dystrophy; FSHD, facioscapulohumeral dystrophy; LGMD, limb-girdle muscular dystrophy.
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Handgrip

A digital handgrip dynamometer (Jamar plus, Patterson Med-
ical, USA) was used to assess grip strength. Of the partici-
pants able to produce a measureable grip strength (three
DMD participants produced 0 kg grip strength), three maxi-
mal attempts were performed. Measures were taken in a
seated position for all participants, on their self-reported
dominant hand, with the arm in an extended position to
the side of the body. Extended 1 minute rest periods were
allowed between trials due to the previously mentioned high
fatigability of these conditions.

10 m walk test

A 10 m walk test was performed by 20 out of 24 ambulant
participants (8 BMD, 2 LGMD, and 10 FSHD). The four partic-
ipants to not perform the 10 m walk did so at their own re-
quest due to safety concerns. The 10 m walk was
performed on an even, carpeted surface and is a common
measure of function within neuromuscular conditions.52,58

All participants started in a standing position and were
instructed to walk as quickly and safely as they could, with
the time recorded from the point of ‘Go’ from the practi-
tioner to the point of crossing the finish line. Walking aids
were permitted if required. Given the limited numbers, these
participants were pooled for analysis upon 10 m walk time.

Physical activity

Daily PA was monitored over a consecutive 7 day period
using a wrist-worn triaxial accelerometer (GENEActiv,
Kimbolton, Cambs, United Kingdom). Wrist-worn accelerome-
ters have previously been recommended as the best location
for accelerometers for wheelchair users,59 as well as remov-
ing any issues of access and comfort that would be associated
with other locations (such as mid-thigh or waist). Monitors
were worn for 24 h a day on the preferred wrist of partici-
pants and worn continuously for 7 days.60 Monitors were ini-
tialized to collect data at 100 Hz and acceleration values,
recorded in g, and recorded continuously on each axis (x, y,
and z). Recorded total activity time has been previously vali-
dated against doubly labelled water.61 In addition, GENEActiv
validation studies for both PA and SB have shown strong cor-
relations (Pearson’s r = 0.79–0.98).62,63

Once wrist-worn monitors were returned post 7 day pe-
riod, data were downloaded from monitors into .bin files
and converted into 60s epoch .csv files using the GENEActiv
PC Software (Version 2.1). 60s epoch data files were entered
in an open source Excel macro (v2, Activinsights Ltd.),63 which
classified activity as sedentary (SB), light (LIPA), moderate
(MIPA), or vigorous (VIPA) intensity. The PA intensity

thresholds used within the macro were not designed for
adults with MD, therefore rather than incorrectly allocating
PA to intensity domains, activity will be presented as time
as sedentary or total time spent physically active (TPA).
TPA, the sum of LIPA, MIPA, and VIPA time, is presented as
average daily minutes (TPAmins), while SB is presented as per-
centage of waking hours (hereafter referred to as SB). Both
SB and TPAmins will be used for comparisons, as well as corre-
lations and regression analysis.

Statistical analyses

All analyses were performed using IBM Statistics 21 software.
The critical level of statistical significance was set at 5%. Tests
for parametricity were performed upon all variables. All data,
except for height and LBM, were non-parametric. Reliability
of muscle strength measurements (KEMVC and PFMVC)
within and between day was calculated using ICCs (absolute
agreement) within the MD groups (Table 1). The Kruskal–
Wallis test was used to compare between groups, with post
hoc Mann–Whitney U (least significant difference or LSD)
pairwise comparisons used where appropriate. Height and
LBM was compared between groups using a one-way analysis
of variance, and Tukey’s used for post hoc comparison.
Kendall Tau correlations were used to identify associations
of anthropometric variables, muscle size, muscle strength,
and PA. Significant associations with age were identified for
KEMVC, KEMVC/BM, and PFMBC/BM, respectively, therefore
analyses of covariance were performed to determine
whether differences remained when age was controlled for.
Bivariate linear regression was used to identify the best pre-
dictor of 10 m walk from muscle strength measures and
TPAmins. Multiple linear regressions were used when two or
more variables were associated. Post hoc effect size was de-
termined by Phi, using PFMVC, KEMVC, and TPAmins, with
moderate–strong effect sizes shown (Phi = 0.75–0.85). Where
relevant, comparisons are presented with P values, and the
relative difference (%) from a named experimental group.

Results

Demographic, anthropometric, and body
composition measures

Duchenne MD participants were younger than those with
BMD (43%, P < 0.001), LGMD (44%, P < 0.001), FSHD
(49%, P < 0.001), and CTRL (32%, P = 0.013) (Table 2). Fur-
thermore, CTRL were younger than FSHD (25%, P = 0.021)
(Table 2). No other differences were found between groups
for age (P > 0.05). As there were differences in age between
participant groups, subgroup analysis was performed on the
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primary outcome measure (KEMVC), CTRL participants were
split into Young (aged 18–30, n = 8) and Old (aged 31–55,
n = 8) subgroups, so they matched with DMD and FSHD, re-
spectively. As this approach provided the same statistical out-
comes as a combined CTRL group, only comparisons for a
combined CTRL are presented in the succeeding text. DMD
participants were lighter than BMD (15%, P = 0.032), LGMD
(25%, P < 0.001), and FSHD (15%, P = 0.029) participants,
while LGMD participants were heavier than CTRL (19%,
P = 0.012) (Table 2). There were no differences in stature be-
tween any groups (P > 0.05).

No differences were found between groups for BMI
(P > 0.05, Table 2). DMD (45%, P < 0.001), BMD (38%,
P < 0.001), LGMD (56%, P < 0.001), and FSHD (34%,
P = 0.002) participants had higher body fat% than CTRL par-
ticipants (Table 2). DMD participants had less LBM compared
with BMD (21%, P = 0.001), LGMD (26%, P < 0.001), FSHD
(22%, P = 0.002), and CTRL (28%, P < 0.001) participants
(Table 2). No other differences were found between groups
for LBM (P > 0.05).

Becker’s MD participants’ GM ACSA was larger than FSHD
(40%, P = 0.039) and CTRL (47%, P = 0.001) participants, while

LGMD participants’ GM ACSA was larger than CTRL (39%,
P = 0.015) participants (Table 2). No other differences were
found between groups for muscle size (P > 0.05).

Muscle strength

Controls’ KEMVC was significantly stronger than DMD (92%,
P< 0.001), BMD (41%, P = 0.010), and LGMD (53%, P = 0.020)
(Table 3). DMD participants had lower KEMVC than BMD
(87%, P = 0.001), LGMD (87%, P = 0.002), and FSHD (90%,
P < 0.001) (Table 3). No differences were found between
other groups (P > 0.05). All differences between groups
remained for KEMVC when age was controlled for by an anal-
ysis of covariance. DMD participants were also significantly
weaker in KEMVC per BM than BMD (86%, P < 0.001), LGMD
(82%, P = 0.001), FSHD (88%, P < 0.001), and CTRL (92%,
P < 0.001), respectively (Table 3). While CTRL participants
were stronger than BMD (40%, P = 0.009) and LGMD (53%,
P = 0.003) participants in KEMVC/BM (Table 3). No other dif-
ferences between groups were found for KEMVC/BM
(P > 0.05). When age was controlled for, all differences

Table 2 Participant characteristics and anthropometrics

DMD BMD LGMD FSHD CTRL

n 15 18 13 14 16
Ambulant 0/15 10/18 4/13 10/14 16/16
Age (years) 24.2 (6.1)a,b,c 42.4 (13.5) 43.1 (124) 47.1 (11.1)d 35.4 (12.7)
Mass (kg) 73.1 (14.6)a,b,c 86.5 (20.3) 96.9 (17.3)d 86.0 (11.2) 81.1 (18.2)
Stature (cm) 172.0 (4.3) 177.4 (6.0) 179.5 (6.9) 178.6 (8.1) 177.5 (9.3)
BMI (kg/m2) 25.5 (4.1) 27.3 (6.2) 29.5 (4.8) 26.6 (3.4) 25.5 (3.7)
Body fat (%) 33.3 (6.7)d 29.2 (10.0)d 33.7 (4.7)d 27.6 (7.3)d 18.2 (4.5)
Lean body mass (kg) 47.6 (7.7)a,b,c,d 60.0 (9.1) 64.1 (9.3) 61.0 (8.6) 66.0 (13.2)
GM ACSA (cm2) 23.3 (16.5) 27.9 (15.9)c,d 23.9 (11.0)d 16.6 (4.5) 14.7 (4.5)

Anthropometric measures. ACSA, anatomical cross-sectional area; BMD, Becker’s muscular dystrophy; BMI, body mass index; CTRL, con-
trol; DMD, Duchenne muscular dystrophy; FSHD, facioscapulohumeral muscular dystrophy; GM, gastrocnemius medialis; LGMD, limb-gir-
dle muscular dystrophy.
aDenotes significance from BMD.
bDenotes significance from LGMD.
cDenotes significance from FSHD.
dDenotes significance from CTRL.

Table 3 Muscle strength in adults with muscular dystrophy

DMD BMD LGMD FSHD CTRL

KEMVC (N.m) 12.6 (8.8)a,b,c,d 96.6 (60.0)d 93.5 (56.6)d 123.6 (78.2) 164.6 (55.9)
KEMVC/BM (N.m/kg) 0.17 (0.1)a,b,c,d 1.23 (0.9)d 0.97 (0.6)c,d 1.41 (0.8) 2.04 (0.6)
PFMVC (N.m) 16.7 (6.8)a,c,d 32.7 (13.7)d 28.2 (15.4)d 43.8 (20.3) 67.0 (13.1)
PFMVC/BM (N.m/kg) 0.23 (0.1)a,b,c,d 0.40 (0.2)c,d 0.31 (0.2)c,d 0.51 (0.2)d 0.84 (0.1)
PFMVC/ACSA (N.m/cm2) 0.92 (0.5)c,d 1.46 (0.9)c,d 1.29 (0.8)c,d 2.75 (1.3)d 4.58 (0.7)
Handgrip (kg) 3.0 (3.1)a,b,c,d 19.5 (14.9)d 19.6 (9.5)d 24.1 (13.2)d 53.5 (10.0)

Strength measures. ACSA, anatomical cross-sectional area; BM, body mass; BMD, Becker’s muscular dystrophy; CTRL, control; DMD,
Duchenne muscular dystrophy; FSHD, facioscapulohumeral muscular dystrophy; KEMVC, knee extension maximal voluntary contraction;
kg = kilograms; LGMD, limb-girdle muscular dystrophy, N.m, Newton metres; PFMVC, plantar flexion maximal voluntary contraction.
aDenotes significance from BMD.
bDenotes significance from LGMD.
cDenotes significance from FSHD.
dDenotes significance from CTRL.
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remained, in addition FSHD were shown as stronger than
LGMD (32%, P = 0.032) (Table 3).

Control participants were significantly stronger in PFMVC
than DMD (75%, P< 0.001), BMD (51%, P< 0.001), and LGMD
(58%, P < 0.001) participants, respectively (Table 3). FSHD
(62%, P < 0.001) and BMD (49%, P = 0.007) participants were
also stronger than DMD participants (Table 3). No other differ-
ences were found between conditions (P> 0.05). PFMVC/BM
in CTRL was significantly stronger than DMD (72%, P< 0.001),
BMD (53%, P < 0.001), LGMD (63%, P < 0.001), and FSHD
(39%, P = 0.006), respectively (Table 3). Similarly, FSHD were
stronger than DMD (55%, P = 0.002) and LGMD (39%,
P = 0.042) participants for PFMVC/BM. BMD participants had
greater PFMVC/BM than DMD (42%, P = 0.017) participants
(Table 3). Once age had been controlled for statistically, all dif-
ferences remained, in addition FSHD was stronger than BMD
(23%, P = 0.048) for PFMVC/BM (Table 3).

Control participants had significantly greater PFMVC/ACSA
than DMD (80%, P < 0.001), BMD (68%, P < 0.001), LGMD
(72%, P < 0.001), and FSHD (40%, P = 0.049) participants
(Table 3). FSHD participants had greater PFMVC/ACSA than
DMD (66%, P < 0.001), BMD (47%, P = 0.009), and LGMD
(53%, P = 0.005) participants, respectively (Table 3). No other
differences were found between conditions (P > 0.05).

Grip strength

Duchenne MD had significantly weaker handgrip strength
than BMD (85%, P = 0.001), LGMD (85%, P = 0.001), FSHD
(87%, P < 0.001), and CTRL (94%, P < 0.001) participants
(Table 3). Compared with CTRL, grip strength was weaker in
BMD (63%, P < 0.001), LGMD (63%, P < 0.001), and FSHD
(55%, P = 0.003) groups (Table 3). No other differences were
found between groups (P > 0.05).

Physical activity

Participants with DMD displayed higher SB than BMD (14%,
P < 0.001), LGMD (8%, P = 0.016), FSHD (14%, P < 0.001),

and CTRL (39%, P < 0.001) participants, respectively
(Table 4). Conversely, CTRL had lower SB than BMD (29%,
P < 0.001), LGMD (33%, P < 0.001), and FSHD (29%,
P = 0.004) participants, respectively (Table 4). No other differ-
ences were found between conditions for SB (P > 0.05).

Duchenne MD participants had lower TPAmins than BMD
(88%, P < 0.001), LGMD (83%, P = 0.010), FSHD (89%,
P< 0.001), and CTRL (96%, P< 0.001) (Table 4). Furthermore,
BMD (65%, P < 0.001), LGMD (76%, P < 0.001), and FSHD
(64%, P = 0.001) had lower TPAmins than CTRL (Table 4).

Correlations

Age was shown to be significantly associated with measures
of PFMVC/BM (R = �0.408, P = 0.026), KEMVC (R = �0.343,
P = 0.048), and KEMVC/BM (R = �0.384, P = 0.030) in BMD
participants.

Anthropometric associations with muscle strength revealed
significant associations between GM ACSA and PFMVC in CTRL
(R = 0.553, P = 0.003) and DMD (R = 0.429, P = 0.026) partici-
pants, respectively. Other conditions showed positive but
non-significant associations between muscle size and PFMVC
(P > 0.05). No associations were identified between LBM
and muscle strength measures in adults with MD (P > 0.05).

Sedentary behaviour was negatively associated with LBM
in participants with DMD (R = �0.446, P = 0.021), but no
other groups. Furthermore, SB was negatively associated
with KEMVC (R = �0.477, P = 0.006) and KEMVC/BM
(R = �0.487, P = 0.005) in BMD, with other dystrophic groups
showing no correlation. Furthermore, TPAmins was associated
with KEMVC in BMD (R = 0.407, P = 0.020) participants.

Of the participants with the ability to ambulate, 20/24 re-
corded 10 m walk times. Strength measures associated with
10 m walk were KEMVC (R = 0.484, P = 0.030), KEMVC/BM
(R = 0.514, P = 0.020), PFMVC (R = 0.502, P = 0.024), and
PFMVC/BM (R = 0.472, P = 0.001). In addition, TPAmins was
also associated with 10 m walk (R = 0.735, P < 0.001). Multi-
ple linear regression identified TPAmins as the greatest predic-
tor of 10 m walk time (R2 = 0.540, P < 0.001), with all
strength measures excluded.

Table 4 Physical activity and 10 m walk time

DMD BMD LGMD FSHD CTRL

TPAmins 13.5 (16.1)a,b,c,d 115.4 (63.1)d 80.3 (34.6)c,d 117.6 (58.2)d 329.1 (125.0)
Sedentary behaviour (%) 97.1 (3.3)a,b,c,d 83.8 (8.8)d 88.9 (5.4)d 83.1 (6.4)d 59.3 (15.2)

10 m walk (s)e n/a 11.8 (4.5) n/a

Physical activity and 10 m walk. BMD, Becker’s muscular dystrophy; CTRL, control; DMD, Duchenne muscular dystrophy; FSHD,
facioscapulohumeral muscular dystrophy; LGMD, limb-girdle muscular dystrophy; m, metre; s, second; TPAmins, total minutes being phys-
ically active.
aDenotes significance from BMD.
bDenotes significance from LGMD.
cDenotes significance from FSHD.
dDenotes significance from CTRL.
ePerformed by 20/24 ambulant participants.
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Discussion

The present study showed cross-sectional findings of muscle
weakness in adults across four MD classifications, with, as ex-
pected, a direct relationship between muscle strength and
muscle size observed in adults with DMD. In addition, quan-
titative measures of PA show increased levels of SB in all dys-
trophic conditions in comparison with CTRL, particularly
within DMD participants whom were more sedentary than
BMD, LGMD, and FSHD participants. Furthermore, relation-
ships were identified between muscle strength, specifically
KEMVC, and TPAmins in adults with BMD. Moreover, relation-
ships were also identified between TPAmins and 10 m walk
times in the 20, cross-condition, participants that completed
the functional task.

The present understanding of muscle strength in MD is pri-
marily focussed in DMD paediatric populations.17 Adults with
DMD in the present study showed KEMVC 92% less than CTRL
participants, reflective of the degenerative nature of the con-
dition, with previous paediatric studies reporting KEMVC as
72–86% less than CTRL.13,64,17,15,65,66 Similarly, the 75% lower
PFMVC reported in the current study appears consistent with
the progression of the condition, where previous studies
have reported PFMVC in paediatric groups as 52–65% of
age-matched CTRL.64,17,65,67 More pronounced muscle weak-
ness is predicted in adults with DMD; however, this is likely
exacerbated into adulthood by a lack of PA. The relative
maintenance of muscle strength of plantar flexors, compared
with knee extensors, is consistent with the classical proximal-
distal wasting11; however may also be influenced by the long-
term impact of wheelchair use. There is currently a lack of
quality natural history reports using quantitative measures
of KE or PF MVC in adults with MD.52

Despite weakness being a clinical diagnostic tool,52,68 there
are limited quantitative measures of muscle strength in
adults with MD compared with age-matched CTRL. Differ-
ences from CTRL in the present study, are similar to those re-
ported previously. Of the other MDs measured (BMD, LGMD,
FSHD), PFMVC in the present study was 42–49% less than
CTRL, compared with 48–61% reported in adults with BMD
and LGMD.12 Additionally, KEMVC in the present study was
25% less than CTRL, compared with 55–58% in previous stud-
ies of FSHD.14,16 The small differences between the present
and previous research can be attributed to the heterogeneity
of conditions,69 participant sex differences (present study all
male participants),12,16 participants ages,14 differences in
strength assessment,12,14 and condition severity in the partic-
ipant groups [e.g. 47% non-ambulant (excluding DMD) in the
current study], with previous research typically all ambu-
lant.12,14 The present data are particularly novel in the objec-
tive assessment of SB and PA as contributing factors to the
differences between groups and participants with MD.

Previous PA data from dystrophic conditions have almost
exclusively been presented from paediatric DMD

populations.30,32,33 The only PA comparisons from adults with
dystrophic conditions to CTRL have been presented in the form
of self-reported PA history from our previous papers.26,27 The
use of quantitative measures of PA through triaxial
accelerometry allows for a much greater understanding PA.
Understandably, adults with DMDhad the highest SB; however,
the ability of some DMD participants to participate in forms of
PA, the negative association between SB and LBM, and previ-
ous evidence showing maintained function with the use of
arm-cycle ergometers40 suggest that PA should be encouraged
through the use of adapted equipment and hydrotherapy.

The significant relationship between PA and KEMVC is a
key finding from the current study. The relationships identi-
fied between TPAmins and KEMVC in BMD are furthered by
the stronger relationship of TPAmins with 10 m walk time in
ambulant MD participants and are consistent with those rela-
tionships identified within elderly populations24,70 and paedi-
atric DMD populations.58 However, future work is required to
quantify activity thresholds relative to separate conditions,
and between ambulant and non-ambulant individuals, in or-
der to quantify PA intensities, and the relative intensities re-
lationships with functional outcomes.

Study limitation and strengths

The authors acknowledge that a wide range of techniques
have previously been used to describe changes in body com-
position and muscle size in clinical populations.71–73 BIA,
however, is necessary as an alternative to more stringent
measures of body composition in MD where mobility is lim-
ited.45 BIA has been used extensively in sarcopenia re-
search74,75 and shown as valid in obese and underweight
individuals,76,44,77 a degree of error is however likely to be in-
troduced within MD given the fat infiltration of muscle tis-
sue.44 Based on previous validity data, BIA would
underestimate the BF% in the present overweight MD partic-
ipants and underestimate BF% in normal weight CTRL partic-
ipants.44 When corrected based on the values previously
established, BF% would be 18% in CTRL (measured = 18.2%)
and 33.8% in MD (measured = 30.8%). Therefore, despite
the error associated with comparing BF% when using BIA,
there is no meaningful impact on the conclusions drawn from
the presented results. Similarly, the use of ultrasound for as-
sessment of ACSA, although consistent with those previously
reported, is likely to be overestimated in those individuals
with high levels of muscle fat fraction (FF%).12 Based on the
work of Lokken et al.,12 the actual GM contractile area of am-
bulant BMD participants is ~23% less than the measured
ACSA; in contrast, the GM contractile area of the CTRL is
11% less than the measured ACSA. Based on this estimated
value, the contractile area in ambulant BMD (n = 10) is
15.7 cm2 and CTRL is 13.0 cm2 in the present study, consis-
tent with the comparisons made by Lokken et al. It is
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therefore likely that the present GM ACSA is higher in the
BMD participants due to the presence of
pseudohypertrophy.18 Future work is required to determine
whether the measurement of muscle area is meaningful
within adults with MD as it may not reflect any functional
measure due to the level of non-contractile material
contained within the muscle compartment (as observed
within the lack of correlation between ACSA and strength in
the present study and previous12).

Although there are shortcomings to using BIA and ultra-
sound for assessing body composition and muscle mass, the
use of transportable and adaptable equipment in the present
study however has allowed for 60 adults with MD
encompassing a wide range of functional ability to be
assessed. Up to 60% of MD participants would have been un-
able to participate had DEXA or MRI been used for body com-
position and FF% assessment. The present authors suggest
the use of adaptable equipment to encompass wide func-
tional ranges in future studies, with the use of methods such
as MRI to asses muscle FF% in sample subsets when possible
and practical.

Conclusions

The present study quantifies muscle weakness (PFMVC and
KEMVC) across four MD classifications and can add to the

currently under-reported, yet clinically observed, physiologi-
cal understanding of these conditions. Significant relation-
ships were identified between muscle size and muscle
strength of plantar flexors in DMD adults. Furthermore,
cross-sectional findings of PA in dystrophic conditions are
presented, with significant increases in SB in all MD
conditions compared with CTRL. Relationships have been
identified between SB and reduced LBM, minutes of being
physically active and knee extension within BMD, as well
as 10 m walk time in ambulant MD participants, suggesting
PA should be encouraged. However, future work must
quantify different PA intensities, as well as consider the
safety and appropriateness of PA intensity relevant to MD
classification.
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