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Abstract

Background: Various methods have been developed to explore inter-genomic relationships
among plant species. Here, we present a sequence similarity analysis based upon comparison of
transcript-assembly and methylation-filtered databases from five plant species and physically
anchored rice coding sequences.

Results: A comparison of the frequency of sequence alignments, determined by MegaBLAST,
between rice coding sequences in TIGR pseudomolecules and annotations vs 4.0 and
comprehensive transcript-assembly and methylation-filtered databases from Lolium perenne
(ryegrass), Zea mays (maize), Hordeum vulgare (barley), Glycine max (soybean) and Arabidopsis
thaliana (thale cress) was undertaken. Each rice pseudomolecule was divided into 10 segments, each
containing 10% of the functionally annotated, expressed genes. This indicated a correlation
between relative segment position in the rice genome and numbers of alignments with all the
queried monocot and dicot plant databases. Colour-coded moving windows of 100 functionally
annotated, expressed genes along each pseudomolecule were used to generate 'heat-maps'. These
revealed consistent intra- and inter-pseudomolecule variation in the relative concentrations of
significant alignments with the tested plant databases. Analysis of the annotations and derived
putative expression patterns of rice genes from 'hot-spots' and 'cold-spots' within the heat maps
indicated possible functional differences. A similar comparison relating to ancestral duplications of
the rice genome indicated that duplications were often associated with 'hot-spots'.

Conclusion: Physical positions of expressed genes in the rice genome are correlated with the
degree of conservation of similar sequences in the transcriptomes of other plant species. This
relative conservation is associated with the distribution of different sized gene families and
segmentally duplicated loci and may have functional and evolutionary implications.
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Background

In spite of evolutionary divergence and the pressures of
domestication, there has been a noticeable conservation
of genetic synteny between related plant species, e.g.
within the Gramineae and the Brassicae. There has been
considerable interest in defining these interrelationships,
from the angles of both evolutionary genetics and plant
breeding [1-8]. Rapidly accumulating data from plant
genome sequencing and comparative genetic mapping
have led to new resources for accessing and displaying
these data sets (eg. see Gramene [9], The Institute for
Genome Research (TIGR) [10], The Arabidopsis Informa-
tion Resource (TAIR) [11], the Brassica Genome Gateway
[12]. One limitation of the current state of knowledge in
plant genetics is that the physically ordered complete
genome sequence is only available for rice (Oryza sativa)
and Arabidopsis thaliana, both of which have relatively
small genomes. Rapid progress is being made for some
other species, particularly maize (Zea mays [13,14], Sor-
ghum bicolor [15,16] and Brachypodium distachyon [17]
among the monocots and Brassica spp. [18] among the
dicots (see also Joint Genome Initiative (JGI) [19]). How-
ever, feasible approaches for the sequencing and physical
mapping of the larger genome Poaceae species, including
the cereals wheat (Triticum aestivum) and barley (Hordeum
vulgare) and the forage and amenity ryegrasses (Lolium per-
enne and L. multiflorum) and fescues (Festuca pratensis and
F. arundinacea), are still in the process of development
[20-23]. Until more progress is made in the whole
genome analysis of these latter species, comparative stud-
ies will continue to be of great use in transferring informa-
tion from the model species to the crop species. Typically,
whole genome comparative studies are based upon the
identification of genetic synteny between a model and
crop species by either reference to existing sources or the
development of de novo markers which target particular
areas of a genome (see Gramene comparative map views
[24]). In the present study a variation on the whole
genome angle has been developed in which, using rice as
an anchor, DNA sequence databases based upon both
cDNA transcripts and methylation-filtration [25]
obtained from both monocot and dicot crop and model
species (see Figure 1 for a taxonomic description) have
been aligned with the annotated rice pseudomolecules.
This makes it possible to establish an overall picture of
gene similarities between a number of different species
and the rice genome.

Results

Using MegaBLAST with parameters of wordsize (W) = 16
and expectation (E) = 1 x 10-1%identified significant align-
ments with between 7% (At_TA) and 45% (Zm_TA) of the
all TIGR rice loci (TRL) (see Materials and Methods for
database abbreviations). Subdividing the TRL database on
the basis of annotation and pseudomolecule origin iden-

http://www.biomedcentral.com/1471-2164/8/283

tified marked differences in the percentage of alignments
within the different subdivisions [see Additional file 2
Table 1]. For all the databases, the largest percentage of
alignments was identified for functionally annotated,
expressed (FAexp) TRL (67% to 84% for the monocot
databases and 21% to 28% for the dicot databases). The
smallest number of alignments was identified in the
hypothetical protein subdivision (7% to 10% for the
monocot databases and < 0.05% for the dicot databases).
These differences in the percentages of significant align-
ments coincided with differences in the physical distribu-
tion of the different types of TRL annotations (Figure 2).
For each rice pseudomolecule the overall physical distri-
bution of the TRL with functional annotations and the
expressed proteins was distinguishable from the that of
the hypothetical proteins and retro/transposon-related
TRL. The distributions of the latter groups were loosely
centred around the centromeres, whereas the former
groups tended to be distributed away from the centro-
meres. The alignments established with the databases
from the other species mimicked the distribution of the
TRL with functional annotations and expressed proteins.
On the basis of pseudomolecule origin, rice TRL derived
from C3 generally had a higher percentage of alignments
than those derived from the other pseudomolecules and
TRL derived from C11 the lowest. This trend, in terms of
percentages of alignments/pseudomolecule, was generally
consistent across the different subdivisions of TRL and,
particularly, the monocot plant databases [see Additional
file 2 Table 1 and illustrated for FAexpTRL in Additional
file 3]. An exception was the Lp_MF database, where the
alignments from C1 and C3 were more or less equivalent.

TIGR rice loci (TRL) with expressed functional annota-
tions (FAexp) consistently generated the highest number
of MegaBLAST alignments [see Additional file 2 Table 1].
Consequently these were considered likely to contain the
most reliable gene predictions and further analyses were
focussed on this set of 17108 gene models from the rice
Os_CD database. Figure 2 illustrates how the FAexpTRL
are not evenly distributed throughout the rice genome
and while Figure 2 does not represent the direct physical
distribution within each rice chromosome, it does reflect
it. So, rather than using rice physical distances, in order to
look at the patterns of alignments and their associated
MegaBLAST scores, comparisons were made using linear
10% divisions of the FAexpTRL (n = 120, i.e. 10/pseudo-
molecule) and moving windows of 100 consecutive FAex-
PTRL (MWs) for each pseudomolecule (the number of
MWs covering the 17108 FAexpTRL = 15920 - illustrated
in Figure 3).

In comparing the results of the different test databases, the
numbers of significant alignments and the scores associ-
ated with these alignments in each linear 10% of FAexp-
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Order Eamil Clade Sub-family Tribe Genus/Species
462__ Ehrhartoideae = Oryzeae Oryza sativa
BEP < ,
o 502 Pooideae Triticeae ————— Hordeum vulgare
Liliopsida Poales Poaceae < Poeae ———— Lolium perenne
91-133" (monocots)
Magnioliophyta PACCAD = Panicoideae Andropogoneag— Zea mays

Brassicales Brassicaceae Arabidopsis thaliana
Eudicotyledons <

Fabales Fabaceae Papilionoideae— Phaseoleae Glycine max

Figure |

Partial angiosperm taxonomy illustrating the relationship between monocot and dicot species included in the
present analysis. Numbers represent estimated times of lineage divergences (million years before the present) relative to
rice taken from 'Bell et al. (2005) [26] and 2Gaut (2002) [58]. Taxonomic relationships were obtained from the NCBI Taxon-
omy browser [59].

TRL for each pseudomolecule [see Additional file 2 Table
2] do not appear to be random, as indicated by the signif-
icant rank correlations (Table 1); i.e., the number of sig-

nificant alignments identified for one test database for
one pseudomolecule linear 10% segment is a positive
indicator of the number of alignments one will expect to

Table |: Spearman rank correlation coefficients between linear 10% FAexpTRL pseudomolecule segments comparing % MegaBLAST

alignments and average scores for each test database.

Databas Lp_MF
e
Lp_MF a a Lp_MF
Lp_MF b 0.465 b Zm_MF
Zm_MF a 0.729 0.489 a Zm_MF
Zm_MF b 0.630 0.672 0.577 b Zm_TA
Zm_TA a 0.712 0.526 0.904 0.603 a Zm_TA
Zm_TA b 0.248%  0.307 0.406 0.394 0.448 b Hv_TA
Hv_TA a 0.711 0.495 0.756 0.554 0.818 0.450 a Hv_TA
Hv_TA b 0.256%  0.391 0.479 0.462 0.522 0.809 0.456 b Gm_TA
Gm_TA a 0.313 0.327 0.545 0.275%  0.603 0.566 0.550 0.550 a Gm_TA
Gm_TA b ns ns ns ns ns ns ns ns ns b At_TA
At_TA a 0.320 0.242%  0.449 0.259  0.490 0.620 0.509 0.056 0.702 ns! a
At_TA b ns ns ns ns ns ns ns ns ns 0.672 ns
a = % alignments
b = average scores
Significant levels: p < 0.001 (bold), ** = p < 0.01; * = p < 0.05; ns = p > 0.05
'p=0.05I
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Figure 2

Distribution of differently-annotated TIGR rice loci on rice pseudomolecules. Linear order of differently annotated
types of TIGR rice loci (TRL) on each of the rice pseudomolecules (1-12) in relation to significant MegaBLAST sequence align-
ments between the Os_CD database and the test databases. For each rice pseudomolecule: column | (red) = combined test
database significant alignments; column 2 (blue) = functionally annotated TRL or expressed protein, column 3 (blue) = hypo-
thetical protein, column 4 (blue) = retro/transposon-related sequence. Pseudomolecules are aligned along the centromere

(horizontal black bar).

find in the other test databases. This is also true for com-
parisons between scores generated for the different test
databases and for comparisons between numbers of align-
ments and scores (except for comparisons involving
scores from the Gm_TA and At_TA databases) (Table 1).
This trend can be illustrated using the MW approach (Fig-
ure 3) which shows 'hot' (red) and 'cold' (blue) spots
relating to relative numbers of significant alignments and
their scores - particularly for the four monocot test data-
bases. Notably, FAexpTRL on Pm3 were aligned more fre-
quently and those from Pm11 and Pm12 less frequently
than FAexpTRL from the other pseudomolecules (Figure
3) [see Additional file 2 Table 2|, though there is consid-
erable local variation which is consistent particularly
across the 4 monocot test databases. On most pseudomol-
ecules, cold-spots were associated with the pericentro-
meric region, but were not exclusive to these regions.

Figure 3 illustrates that the MWs based upon percentage
numbers of alignments generally coincide with MWs
based upon average scores. However, while the 2 data
types are correlated (Table 1), the distributions do not
exactly reflect each other and there are some notable
regions of exception. For instance, the MWs in the centro-

meric region of Pm4 are relatively low, in terms of %
alignments, have low relative MegaBLAST scores in the
Hv_TA and Zm_TA databases, but have high relative
MegaBLAST scores in the Lp_MF, Zm_MF, Gm_TA and
At_TA databases. A similar patterns can be seen on Pm10
- with particularly high average scores derived for the
Gm_TA and At_TA databases. Examination of the align-
ments in these regions of the pseudomolecule indicate
this is caused by blocks of consecutive FAexpTRL aligned
with each of the databases which have unusually high
MegaBLAST scores (all 3 blocks also appear to have pho-
tosytem I and II functional associations; see Table 2). This
becomes evident in some of the MegaBLAST scores-based
MWs as opposed to the % alignments MWs, as the former
are based on a relative quantitative measure, average
score, whereas the latter are based on a qualitative, pres-
ence or absence, measure. In addition, while all the data-
bases had unusually high MegaBLAST scores for the
majority of the FAexpTRL described in Table 2, the relative
increases/ MW were larger in the Lp_MF, Zm_MF, Gm_TA
and At_TA databases due to the lower, overall, average
MegaBLAST scores for alignments from these databases.
Also, the Lp_MF, Gm_TA and At_TA databases had lower
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Heat maps for % sequence alignments and average scores. Colour coded moving windows/100 functionally annotated,
expressed TIGR rice loci (MWs/FAexpTRL) for each rice pseudomolecule (I1-12). For each pseudomolecule: column -6 =
MWs for % significant MegaBLAST alignments between Os_CD and test databases Lp_MF, Zm_MF, Zm_TA, Hv_TA, Gm_TA
and At_TA respectively; column 7 = position of MWs containing rice centromere (dark vertical bar); column 8-13 = MWs for
average score of significant MegaBLAST alignments between Os_CD and test databases Lp_MF, Zm_MF, Zm_TA, Hv_TA,
Gm_TA and At_TA, respectively [see Additional file 2 Table 3 for colour code quantification]. Pseudomolecule representa-

tions are aligned along the centromeres.

overall numbers of alignments/MW [see Additional file
7].

Significant correlations between the number of segmen-
tally duplicated FAexpTRL and % alignments/linear10%
of each pseudomolecule (Table 3) indicated that there
was a positive association between these measures. Illus-
trated in the form of MWs (Figure 4) it can be seen that
regions where there are hot-spots or cold-spots for seg-
mentally duplicated FAexpTRL also tend to be hot-spots
or cold-spots for % alignments. Particular exceptions to
this are on Pm11 and Pm12 where there are high concen-
trations of duplicated FAexpTRL but fewer alignments
(omitting the equivalent FAexpTRL linear10% segments,
11.1,11.2, 12.1 and 12.2 from the correlation calculation
results in larger correlation coefficients, Table 3 [see Addi-
tional file 2 Table 1]. However, even in this case, the
duplicated regions of the Pm11 and Pm12 have relatively
more alignments than the remainders of these pseudo-
molecules.

Arabidopsis expression profiles

MegaBLAST searches of the 3057 FAexpTRL present in the
highest 10% MWs (red colour code) [see Additional file 2
Table 3], which had significant alignments with all the
monocot test databases, identified a total of 804 Arabidop-
sis gene models in the At_CD database (including hypo-
thetical and expressed proteins). By searching the
Genevestigator® Meta-Analyzer database with these gene
models, the expression profiles of 435 FAexp Arabidopsis
gene models were obtained for both growth stage and
plant organs, and the stage and organ of maximal expres-
sion were identified. The maximal expression profiles for
these Arabidopsis gene models are compared with a ran-
dom sample of 1599 FAexp Arabidopsis gene models in
Tables 4 and 5.

Discussion

It is well established that the physical and genetic order of
markers and genes from one species can be reflected by
similar orders or partial orders in a different species (syn-
teny); a major goal of comparative plant genomics is to
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Table 2: FAexpTRL blocks associated with high MegaBLAST scores from pseudomolecules 4 and 10
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FAexpTRL

Annotation

Test database MegaBLAST score

Lp_MF Zm_MF Zm_TA Hv_TA Gm_TA At TA

LOC_Os04gl 6450
LOC_Os04g16680

LOC_Os04gl6740
LOC_Os04g16750

LOC_Os04gl6760

LOC_Os04g16770
LOC_Os04g16780
LOC_Os04g16790
LOC_Os04gl 6819
LOC_Os04g16820

LOC_Osl0g21200
LOC_Osl0g21270
LOC_Osl0g21280

LOC_Osl0g21310

LOC_Osl0g21330

LOC_Os10g38229
LOC_Os10g38248

LOC_Os10g38270
LOC_Os10g38292

Mean MegaBLAST
score

aquaporin PIP2.8, putative, expressed

Sedoheptulose-1,7-bisphosphatase, chloroplast precursor,
putative, expressed

ATP synthase alpha chain, putative, expressed

Photosystem | P700 chlorophyll a apoprotein A2, putative,
expressed

Photosystem | P700 chlorophyll a apoprotein Al, putative,
expressed

Photosystem Q, putative, expressed

Chloroplast 30S ribosomal protein S3, putative, expressed
DNA-directed RNA polymerase alpha chain, putative, expressed
DNA-directed RNA polymerase beta chain, putative, expressed
DNA-directed RNA polymerase beta chain, putative, expressed

Photosystem Q, putative, expressed
ATP synthase beta chain, putative, expressed

Ribulose bisphosphate carboxylase large chain precursor,
putative, expressed

Photosystem |l P680 chlorophyll A apoprotein, putative,
expressed

DNA-directed RNA polymerase alpha chain, putative, expressed

Photosystem | P700 chlorophyll a apoprotein Al, putative,
expressed

Photosystem | P700 chlorophyll a apoprotein A2, putative,
expressed

ATP synthase alpha chain, putative, expressed

Chloroplast ATP synthase a chain precursor, putative, expressed

470
289

1037
613

503

936
129
525
264
1072

936
991
936

561

525

496

1033

1029
109
214

357
995

644
868

1465

190
287

1265

1037
1524
591

287

184

914

949

258
260

351
1112

743
644

1100

539
474
1086
410
1096

539
1376
1766

551

1070

1092

936

698

504

838
1112

1126
628

323

1891
498
1219
394
460

1883
527
1701

170

1203

323

906

1098
1096
473

121
184

856
470

357

848
97.6
216

105
266

840
573
531

206

216

357

716

848
545
155

121
129

815
462

252

987
141
206
188

979
793
98I

206

252

1076

815
614
151

- = no significant MegaBLAST alignment with Os_CD database

Table 3: Spearman rank correlation coefficients between linear 10% FAexpTRL pseudomolecule segments comparing % MegaBLAST
alignments for each of the test databases and the number of segmentally duplicated FAexpTRL

Test database

Segmentally duplicated FAexpTRL

A B
Lp_MF 0.532 0.592
Zm_MF 0.539 0.589
Zm_TA 0.516 0.586
Hv_TA 0.536 0.585
Gm_TA 0.351 0.373
At_TA 0.185* 0.256

A = including pseudomolecule I | and 12 segments | and 2 (n = 120).
B = excluding pseudomolecule || and 12 segments | and 2 (n = 1 16).
Significant levels: p < 0.001 (bold), * = p < 0.05;

[See Additional file 2 Table 2 for associated 10% FAexpTRL pseudomolecule |1 and 12 segments | and 2 values]
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78 9 10 11 12

Increasing %alignment / segmentally duplica&ed FAexpTRL

7

Heat maps for % sequence alignhments and segmentally duplicated rice loci. Colour coded moving windows/100
functionally annotated, expressed TIGR rice loci (MWs/FAexpTRL) for each rice pseudomolecule (1-12). For each pseudomol-
ecule: column |-6 = MWs for % significant MegaBLAST alignments between Os_CD and test databases Lp_MF, Zm_MF,
Zm_TA, Hv_TA, Gm_TA and AT_TA, respectively; column 7 = position of MWs containing rice centromere (dark vertical
bar); column 8 = MWs indicating the distribution of segmentally duplicated FAexpTRL [see Additional file 2 Table 3 for colour

code quantification].

enable detailed analyses of these kinds to take place. It is
also well established that detailed individual sequence
alignments (i.e. as available through the TIGR and
Gramene genome browsers) are informative in terms of
establishing sequence similarities on a gene by gene basis.
In contrast to these two approaches, this present study
does not seek to comment directly on syntenic relation-
ships between different plant species or to describe precise
homologues or orthologues of individual genes. Addi-
tionally, it differs from other analyses in that the basic
unit used is not a gene or a measure of physical, cytoge-
netic or genetic distance, but a unit of linearly ordered
'reliable’ gene models for each pseudomolecule ('reliable’
being defined as FAexpTRL for the purposes of this paper).

Six different databases, derived from 3 monocot species
and 2 dicot species and generated either from expressed
sequences or through methylation-filtered genomic DNA
isolation, were tested against the Os_CD database. In the

absence of the complete sequence of any genome there
will always be limitations and unknowns in the degree of
representation present in a given database. Additionally,
the stringency of the cut-off threshold for reporting a sig-
nificant alignment will, obviously, affect the outcome (E
=1 x 10-1%in the present study). MegaBLAST wordsizes of
16, 20, 24, 28 (the MegaBLAST default) and 40 were
tested with the Lp_MF database and these identified 63,
58, 48, 39 and 16% of the functionally annotated TRL,
respectively. However, while the relative numbers of sig-
nificant alignments identified was affected by altering the
wordsize, the relative proportions of alignments between
the different pseudomolecules stayed, more or less, the
same [data not shown, but as illustrated for FAexpTRL in
Additional file 3]. Consequently, the relatively permissive
W = 16 was maintained in order to facilitate the identifi-
cation of alignments, particularly in the context of
searches of genomic (MF) databases against a database
(Os_CD) which consists of predicted coding sequences.
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Table 4: Maximal expression patterns according to organ type of Arabidopsis CDS from the At_CD database significantly aligned with
FAexpTRL from the 'top 10%' alignment (red zone) regions of the pseudomolecules.

"Top 10%' alignments

Random At_CD loci

Plant Organ! No. % (A) No. % (B) A-B
lateral root cap 35 8.0 53 34 4.6
callus 39 9.0 75 4.8 4.2
cell suspension 30 6.9 56 3.6 33
root tip 53 12.2 139 9.0 32
node 13 3.0 22 1.4 1.6
elongation zone 7 1.6 9 0.6 1.0
xylem 23 5.3 68 44 0.9
endodermis 13 3.0 35 2.3 0.7
endodermis + cortex 9 2.1 21 1.4 0.7
stele 8 1.8 24 1.5 0.3
shoot apex 16 37 54 35 0.2
rosette | 0.2 | 0.1 0.1
root hair zone 23 5.3 8l 5.2 0.1
influorescence 0 0 0 0 0

ovary 0 0 | 0.1 -0.1
cotyledons 9 2.1 34 22 -0.1
stem 2 0.5 10 0.6 -0.1
pedicel 7 1.6 28 1.8 -0.2
seedling 0 0 5 0.3 -0.3
adult leaf 3 0.7 16 1.0 -0.3
juvenile leaf 0 0 6 0.4 -0.4
epidermis atrichoblasts 12 28 49 3.2 -0.4
roots | 0.2 10 0.6 -0.4
cork 7 1.6 33 2.1 -0.5
silique 4 0.9 23 1.5 -0.6
stigma 0 0 9 0.6 -0.6
stamen I 2.5 49 32 -0.7
flower 0 0 10 0.6 -0.6
carpel 0 0 10 0.6 -0.6
petiole [ 0.2 16 1.0 -0.8
cauline leaf 8 1.8 41 2.6 -0.8
hypocotyl 3 0.7 25 1.6 -0.9
seed 14 32 66 43 -1
lateral root 6 1.4 38 2.5 -1
sepal 2 0.5 25 1.6 -1
hypocotyl | 0.2 25 1.6 -1.4
petal 8 1.8 51 33 -1.5
radicle 0 0 25 1.6 -1.6
pollen 53 12.2 224 14.5 -2.3
senescent leaf 13 3.0 83 54 -2.4
Total 435 1550

I'Plant organs definitions as used in the Genevestigator ™ database [57].

There was clearly variation between the different test data-
bases in the degree of coverage of the rice genome - par-
ticularly, and more obviously understandably, between
the monocot and dicot databases, but also between the
Lp_MF database and the other monocot databases. When
compared directly with the other methylation-filtered
database, while both the Lp_MF and Zm_MF databases
contained similar numbers of sequences (Table 7) the
average sequence length for Zm_MF was 752 bp as com-

pared to 502 for Lp_MF. Additionally, 27% of the Zm_MF
sequences were aligned with at least 1 TRL whereas the
equivalent figure for the Lp_MF database was only 11%.
These differences in the number of alignments identified
between the Lp_MF database and the Zm_MF database
probably relate more to the relative proportions and
lengths of coding sequences present in the database than
to sequence divergence between rice and ryegrass as com-
pared to rice and maize.
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Table 5: Maximal expression patterns according to growth stage of Arabidopsis CDS from the At_CD database significantly aligned
with rice FAexpTRL from the 'top 10%' alignments (red zone) regions of the pseudomolecules.

Growth stage! (days) "Top10%' alignments

Random At_CD loci

No. % (A) No. % (B) A-B

1.0-59 86 19.7 187 1.8 7.9
6.0-13.9 28 6.4 86 54 1.0
140-17.9 36 8.2 167 10.5 -2.3
18.0 -20.9 19 4.3 101 6.4 -2.1
21.0-24.9 99 22.7 258 16.3 6.4
25.0 - 28.9 43 9.8 180 1.4 -1.4
29.0 - 35.9 3 0.7 6l 38 -3.1
36.0 —44.9 33 7.6 140 8.8 -1.2
45.0-50 90 20.6 405 25.6 -5.0

Total 437 1585

I Growth stages as described in the Genevestigator™ database [57].

The most striking aspect of the results presented here is the
positional consistency of the similarities, in terms of iden-
tified alignments, between all the test databases - indicat-
ing that it is not just a consequence of random differences
in sampling between the databases. This does not only
apply to the monocot databases, but also to the dicot
databases (Table 1, Figure 3) in spite of the relatively low
number of overall alignments derived from the latter [see
Additional file 2 Tables 1 and 2]. These positional rela-
tionships can even be seen at the level of the whole pseu-
domolecule: even though the magnitudes of the
differences are not necessarily considerable, Pm11 con-
sistently has the lowest number of alignments with the
other databases and Pm3 (with the exception of the
Lp_MF database where Pm3 and Pm1 have similar per-
centages) consistently has the highest number of align-
ments (Figure 3) [see Additional file 2 Tables 1 and 2].
Additionally, the average quality of alignments (as indi-
cated by MegaBLAST scores) above the cut-off threshold
also show positional similarities (Table 1, Figure 3). How-
ever, this is less consistent in terms of the MWs, chiefly
because individual high scores can have a disproportion-
ate effect on the overall average (i.e. the photosystem asso-
ciated regions on Pm4 and Pm10 - see Results, Table 2).
Assuming an ancestral monocot genome [26-28], the sim-
ilarity of trends between the 4 monocot test databases and
the rice Os_CD database would seem to indicate that
there are positional differences in the rice genome in the
rates at which coding sequences (or, at least, regions in
coding sequences) evolve. Most notably, but not exclu-
sively, Pm3 seems to contain many coding regions of the
rice genome that have been relatively well conserved (in
terms of sequence homology) with the other monocots
tested. Conversely, Pm11 and Pm12 seem to contain
many regions of the rice genome where the sequences of
coding regions are less well conserved. These differences

can, in part, be related to the relative distributions of
FAexpTRL with unique annotations as opposed to FAexp-
TRL derived from large gene families (with family size
determined from the annotation) [see Additional file 1
and particularly compare Pm3 with Pm11 in Additional
file 4]. This observation must, however, be treated with
caution due to the untested biological relevance of many
annotations. Possibly, hot-spots represent genic regions
of rice which have a more generalised function and cold-
spots represent genic regions with more rice-specific func-
tions. This is not to say that the homologues or ortho-
logues of the genes present in rice on Pm11 and Pm12
and other cold-spots are absent from the other monocots
- but it does suggest a greater degree of DNA coding
sequence differences and so possible divergence in struc-
ture and function of the protein products from those
regions of the genome. This may have implications in
terms of using rice as a template for gene discovery and
gene function prediction in the larger genome monocots.

There are few obvious differences between the 3 monocot
test species in terms of the heat map patterns, though rye-
grass is probably the most distinct. Bearing in mind the
lower apparent coverage of the rice genome present in the
Lp_MF database relative to the Zm_MF/TA and HV_TA
databases, the hot-spots on Pm3 and Pmb5 are less intense
for ryegrass than they are for maize and barley (Figure 3).
However, the hot-spots on Pm1 seem to be more intense
for Lp_MF than for the other monocot databases. This
would not be expected if it was just an artefact of the rela-
tive coverages of the different database. The relative
number of hot-spots identified for Pm1 in the Lp_MF
database is particularly interesting in the context of the
high degree of conservation of genetic synteny that has
been established between rice chromosome 1 and rye-
grass/fescue (Lolium/Festuca) chromosome 3 [29].
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In this analysis, there were 3057 FAexpTRL from Pm1, 2,
3,4,5,7, 8, 9 and 10 which were in the top 10% (red
zone) for the average monocot % alignment category and
which also had significant alignments with all 4 monocot
test databases (i.e. an average score of 1, see Materials and
Methods). In comparison, there were 508 different FAex-
pTRL from Pm1, 2, 4, 6,7, 8,9 10, 11 and 12 which were
in the bottom 10% (dark blue zone) for the average
monocot % alignment category and which also had no
significant alignments with any of the 4 monocot test
databases. While it is not possible to draw any conclu-
sions about the presence or absence of specific genes from
either grouping, it is possible to look at the representation
of large gene families (defined in this study as groups of
FAexpTRL, with identical annotations, n > 100) within
these top and bottom 10% groupings. Table 6 details that,
of the 8 gene families which are represented > 100 times
within the entire set of FAexpTRL, 4 out of the largest 5
families (protein kinase domain containing proteins,
expressed; F-box domain containing proteins, expressed;
leucine rich repeat (LRR) family proteins, expressed; NB-
ARC domain containing proteins, expressed) seem to be
over-represented in the bottom 10%. Three of these are
also under-represented in the top 10% when compared to
the overall average representation. Functionally, there is
likely to be a degree of overlap between members of some
of these families in that many F-box and NB-ARC domain
containing proteins can also contain LRRs and kinase
domains [30]. Clearly, these families are annotated on the
basis of the presence of particular predicted structural
motifs in the proteins, rather than by a well-developed
knowledge of their precise functions. However, LRR and
NB-ARC domain containing proteins are often associated
with disease resistance and the hypersensitive response
[30,31] and F-box proteins are associated with ubiquitin-
targeting of proteins prior to degradation [32], therefore it
is possible that the bottom 10% are enriched for genes
with a rice-specific response to environmental challenges.
In contrast, pentatricopeptide containing proteins are
associated with plant organellar nucleotide metabolism
and there is no inherent necessity for a rice-specific
response [33,34]. More generally, within large gene fami-
lies a degree of similarity in protein structure may allow
for a degree of redundancy in protein function. This in
turn would lead to a lessening of the relative degree of
sequence homology in certain members of these gene
families as species underwent divergent evolution
(though, if this is a mechanism then it would appear not
to apply to the pentatricopeptide gene family, which is
slightly underrepresented in both the top and bottom
10%).

A further question concerns whether there might be a bio-
logical basis associated with the observed heat-map pat-
terns generated from the comparative alignment scores

http://www.biomedcentral.com/1471-2164/8/283

(Figure 3). To begin to address this, two further analyses
were carried out relating to: a) possible expression pat-
terns associated with FAexpTRL from the top10% (red
zone) regions and b) the relation of the heat-map patterns
generated from comparative alignments with that gener-
ated for segmentally duplicated FAexpTRL.

MegaBLAST identified 435 FAexp Arabidopsis gene models
(for which expression profiles were present in the Gen-
evestigator® Meta-Analyzer) in the At_CD database with
significant similarities to FAexpTRL and present in the top
10% (red zone) average monocot % alignment category.
Considering just the plant organs (including callus and
cell suspension; Table 4) or growth stages (Table 5) in
which the FAexp Arabidopsis gene models were maximally
expressed, when these were compared to a randomly
selected set of FAexp Arabidopsis gene models there were
some differences between the two samples in terms of the
maximal expression profiles. In terms of the plant organs,
the six types that appeared more frequently (on a percent-
age basis) in the top 10% group, as opposed to the control
group, could all be associated directly or indirectly with
meristematic cell division. Lateral root cap and callus tis-
sue were particularly striking in this respect. For growth
stage, those associated with germination and the initia-
tion of floral development were represented more
strongly in the top 10% group than in the control. No
comparison could be made with FAexpTRL present in the
bottom 10% as, by definition of the MegaBLAST discrim-
ination used in this study, these were not represented
within the At_CD database. There is an indication, from
both the annotation comparisons and the maximal
expression profile comparisons, that some genes within
hot- and cold-spots may have a degree of diverged func-
tionality. In support of this principle, growth stage differ-
ences in the overall transcription patterns between
euchromatin and heterochromatin in rice have been
noted previously for chromosome 4 [35]. Similarly, in the
present study, there is a general association of cold spots
and hot-spots with regions of the pseudomoleules with
higher and lower concentrations, respectively, of retro/
transposon related sequences (compare Figure 2 and Fig-
ure 3). This indicates that there is a hot-spot/euchromatin,
cold spot/heterochromatin association. However, one
must be extremely wary of over-interpretation and clarifi-
cation of this will have to await further investigation.

There has been a considerable amount of genome dupli-
cation in the development of the modern-day rice
genome, principally through ancestral polyploidisation,
but also involving more recent duplications [27,36,37]
(see TIGR, segmental genome duplication of rice [38])
and the consequences of gene duplication and the fates of
such genes has been the topic of recent interest [39-47].
Genome duplication by polyploidisation in the modern
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Table 6: Representation of FAexpTRL large gene families in the 'top' and 'bottom' 10% MWs

FAexp annotation large gene

Annotation type in all FAexpTRL Annotation type in top? 10% MWs

Annotation type in bottom?2 10% MWs

family!

No. % (n=17108)32 No. % (n = 3057)3 No. % (n = 508)3¢c
Protein kinase domain containing 412 241 68 222 22 433
protein, expressed
F-box domain containing protein, 330 1.93 0.10 69 13.58
expressed
Leucine Rich Repeat family 318 1.86 20 0.65 50 9.84
protein, expressed
pentatricopeptide, putative, 264 1.54 16 0.52 | 0.20
expressed
NB-ARC domain containing 245 1.43 0.03 76 14.96
protein, expressed
Zinc finger, C3HC4 type family 218 1.27 36 1.18 | 0.20
protein, expressed
Cytochrome P450 family protein, 184 1.08 22 0.72 8 1.57
expressed
RNA recognition motif family 117 0.68 16 0.52 0 0.00

protein, expressed

ILarge gene family = Families > 100 FAexpTRL with identical annotations.

2MWs which are in the top/bottom 0% for both % sequence alignments and average scores.
3 n = a) total number of FAexpTRL; b) number of FAexpTRL in top 10% alignment MWs with significant alignments identified in each of the Lp_MF,
Zm_MF, Zm_TA and Hv_TA (monocot) databases; c) number of FAexpTRL in bottom 10% MAWs with no significant alignments identified in any

of the monocot databases.

rice progenitor is considered to have occurred c. 70 mil-
lion years ago, before the divergence of the Poaceae cereal
and grass genomes, and to have been followed by a dip-
loidisation process involving large-scale chromosome
rearrangement and deletion [27,37]. In this study, when
the positions of segmentally duplicated regions of the rice
genome were related to % sequence alignments within
linear 10% FAexpTRL Pm segments, there was found to be
a positive correlation for all of the test databases (Table 3).
This relationship, illustrated in the equivalent MWs in Fig-
ure 4, indicates that the presence of hot-spots for segmen-
tally duplicated FAexpTRL is usually associated with the
presence of hot-spots for % alignments. It has been
reported that paralogous gene pairs produced from whole
genome duplications evolve more slowly than singletons
[48,49] and the association of segmentally duplicated and
% alignment FAexpTRL hot-spots is consistent with this.
Models have been proposed as to why the conservation of
both paralogous genes resulting from a duplication event
might be maintained over evolutionary time. One such
model posits subfunctionalisation, in which the com-
bined activities of paralogous genes maintain the func-
tion(s) of their single common ancestor, though neither
paralog, separately, maintains the complete original func-
tion [40,41]. It is also proposed that paralogs might pro-
vide protection against deleterious mutations in dosage
sensitive genes, particularly those with significant roles in
interactive gene networks [47,50]. It could be conjectured
that the hot-spots in this study represent the physical posi-
tion in the rice genome of plant genes which require more

precise conservation of sequence in order to maintain
their functional integrity. If so, where these regions of the
genome have been duplicated, there may be an evolution-
ary advantage in maintaining the duplications, either
through necessity developed after the duplication, as
implied by subfunctionalisation, or through 'buffering by
dosage' against deleterious mutations. The converse argu-
ment might be that within cold-spots more rapid
sequence evolution might be driven by the development
of rice-specific adaptation (and by extension to other
genomes, ryegrass, maize or barley-specific adaptation).
Exceptions to this general trend are the duplicated termi-
nal segments on Pm11 and Pm12, which are relative cold-
spots. However, as these are more recent duplications (c.
5 million years ago) and of a limited scale (i.e. not origi-
nating from effective polyploidisation) the situation may
not be fully analogous [36,51]. Leaving Pm11 and Pm12
aside, over an evolutionary timescale, processes active in
the maintenance of paralogous genes would be expected
to work at the level of the gene and not on a region of a
chromosome, as suggested by the correlations and heat-
maps presented here. Indeed, within the duplicated seg-
ments there is also an indication that the actual FAexpTRL
by which the segmental duplications are recognised show
a greater degree of sequence conservation, in terms of
numbers of alignments with the different plant databases,
than the FAexpTRL for which no duplication is recognised
(data not shown). However, this trend is not reflected in
relatively higher MegaBLAST scores for these sequences
and is also complicated by uncertainty in defining the pre-
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cise starts and ends of duplicated segments and the pres-
ence of, apparently, multiply duplicated segments. It is
also possible that, if one of the main processes driving the
retention of paralogs is their potential significance in the
maintenance of dosage sensitive gene networks [47], then
what is being reflected in the heat maps is the physical
association in chromosomal regions of genes interrelated
through their metabolic functions.

The complete sequence of the rice genome and the rapid
development in the complete sequencing of the maize
and Brachypodium distachyon genomes are new resources
for developing evolutionary models for monocots. Addi-
tionally, they represent invaluable tools for increasing our
understanding of the structure and function of the larger
grass and cereal genomes of the Poaceae. Technologies are
still in development that will enable the efficient and
accurate complete sequencing, reconstruction and anno-
tation of these large grass and cereal genomes. Until these
are established, comparative genome analysis will remain
the underpinning, unifying approach to understanding
the evolutionary (including the process of domestication)
mechanisms that have led to the modern day plant
genome. The present study has developed an approach to
identifying and illustrating similarities and differences
between coding sequences related to the physical position
rice of putative orthologous gene models. It has thus con-
tributed to the developing understanding of the internal
structure of plant genomes and their interrelationships.

Conclusion

Comparisons of patterns of rice pseudomolecule-
anchored sequence alignments between rice FAexpTRL
and transcript-assembly and methylation-filtered data-
bases from other plant species indicated that the relative
numbers of alignments were not-randomly distributed
throughout the rice genome; rank correlations between
relative physical position in rice and % aligned sequences
were positive and significant for all the plant species
(Table 1). When the relationships were illustrated using
heat-maps of colour coded moving average windows of %
alignments/queried database/100 FAexpTRL (Figure 3) it
became apparent that particular pseudomolecules and
regions within pseudomolecules contained FAexpTRL
which were relatively more (eg. Pm3) or less (eg. Pm11
and Pm12) conserved than other pseudomolecules. The
observed patterns were consistent (particularly within the
monocots) across comparisons with different plant spe-
cies. Furthermore, when a comparison of the relative posi-
tions of ancestrally segmentally duplicated regions of the
rice genome was made with the relative numbers of per-
centage alignments with the test databases, the two were
found to be co-incident in terms of both positive, signifi-
cant correlations (Table 3) and heat-maps (Figure 4).
Analysis of the nature of the genes present in hot-spots

http://www.biomedcentral.com/1471-2164/8/283

and cold-spots, inferred from the published annotations,
indicated that Pm3 and Pm11 were enriched for FAexp-
TRL with unique annotations and those contained within
large gene families, respectively. Additionally, members
of certain of the large gene families, particularly F-box,
LRR and NB-ARC domain containing proteins were
under-represented in the hot-spots and over-represented
in cold-spots (Table 6). Maximal expression patterns of
Arabidopsis 'orthologues' of FAexpTRL present in hot-spots
showed a slight enrichment for tissues directly associated
with meristematic cell division (particularly lateral root
cap and callus; Table 4) and for growth stages associated
with germination and floral initiation (Table 5). While,
the evidence from these results alone is insufficient to
conclude that hot-spots and cold-spots reflect the pres-
ence of different gene types and processes, for instance
rice-specific or non-specific gene activities and networks,
further investigation is warranted. As comprehensive
genomic and transcriptomic resources become available
for more plant species, these investigations will be facili-
tated.

Methods

Plant DNA databases

Details and sources of the databases developed for Oryza
sativa (rice), Lolium perenne (perennial ryegrass), Zea mays
(maize), Hordeum vulgare (barley), Glycine max (soybean)
and Arabidopsis thaliana (thale cress) and their abbrevia-
tions used in this study are described in Table 7.

For different parts of the analysis, the rice CDS database
(Os_CD) was subdivided into groups based upon the
annotation assigned to the individual TIGR rice loci
(TRL). Annotations [originally obtained from the file
'all. TU_model.brief_info.4', detailed in Additional file 6]
are available from the TIGR FTP directory [52]. Subdivi-
sions were 1) transposon or retrotransposon related TRL;
2) Hypothetical proteins; 3) Expressed proteins; 4) All
functionally annotated (FA) TRL; 5) Expressed function-
ally annotated (FAexp) TRL [see Additional file 2 Table 1
and Additional file 6].

Additional subdivisions of the FAexpTRL Os_CD
sequences were made based on their relative physical
order in the individual rice pseudomolecules; each divi-
sion consisted of a 'linear' 10% of the FAexpTRL assigned
to each pseudomolecule (the final division for each pseu-
domolecule consisted of 10% of the FAexpTRL +/- the
remainder) [see Additional file 2 Table 2].

The relative positions of FAexpTRL identified as being seg-
mentally duplicated within the rice genome were
obtained from TIGR, rice genome annotation, 500 kb rice
genome semental duplication database [38].
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Table 7: DNA databases
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Species Sequence type Abbreviation No. sequences Total base pairs Average sequence length Source
Oryza sativa CDS Os_CD 62827 85784595 1365 TIGR

Lolium perenne MF Lp_MF 471749 236911323 502 Vialactia
Zea mays MF Zm_MF 450197 338653263 752 NCBI
Zea mays TA Zm_TA 169087 112449533 665 TIGR
Hordeum_vulgare TA Hv_TA 123351 8365531 | 678 TIGR
Glycine max TA Gm_TA 114693 65479263 571 TIGR
Arabidopsis_thaliana TA At_TA 148368 92081906 621 TIGR
Arabidopsis_thaliana CDS At_CD 30690 38043579 1240 TAIR

MF = methylation filtered

CDS = predicted complete coding sequences
TA = transcript assemblies

Vialactia = Vialactia Biosciences [60].

NCBI = National Center for Biotechnology Information [61]. Download command line = '(txid4577 [ORGN] AND Quackenbush [AUTH] AND

"methylation" [ALL])' obtained from Gramene [9].
TIGR = The Institute for Genome Research [52, 62].
TAIR = The Arabidopsis Information Resource [I1].

Sequence alignments

Sequence alignments were performed using standalone
MegaBLAST [53] obtained from NCBI, BLAST FTP site
[54] with default settings except for a window size of 16 (-
W 16), maximum expectation value of 1 x 10-10 (-e le-
010) and alignment output (-D 3). Six different searches
were performed, each one consisting of one of the 6 tran-
script assembly (TA) or methylation-filtered (MF) data-
bases described in Table 1 (collectively, the test databases)
queried with the Os_CD database.

MegaBLAST output analysis

From each MegaBLAST search the number of TRL aligned
to sequences from each of the other databases above the
cut-off thresholds was recorded along with the associated
scores. Where multiple significant alignments/TRL were
identified within one of the test databases, the alignment
with the highest score was used.

Linear 10% assignments

For each linear 10% pseudomolecule division, the
number of significant alignments from each test database
was calculated as a percentage of the total number of
FAexpTRL in the Os_CD database. Additionally, the pro-
portion of segmentally duplicated FAexpTRL in relation to
the total number of FAexpTRL per 10% pseudomolecule
division was calculated. Spearman rank correlation coeffi-
cients and associated probabilities were generated using
GenStat for Windows® (8.1) [55].

Moving windows (MWs)

MWs for the individual test databases were calculated on
the basis of: 1) the % of FAexpTRL aligned with the test
database above the cut-off thresholds per 100 consecutive
FAexpTRL on each rice pseudomolecule, 2) the average
score of the alignments with the test database above the

cut-off thresholds in each group of 100 consecutive FAexp
TRL on each rice pseudomolecule. Additionally MWs were
calculated for 1) average alignment data from the 4 mono-
cot databases; each FAexpTRL was assigned a value of 0,
0.25, 0.5, 0.75 or 1 based on the proportion of the mono-
cot databases with which it was aligned. MWs were then
calculated for the average alignment score/100 consecu-
tive FAexpTRL; 2) the relative proportion of segmentally
duplicated FAexpTRL thresholds in each group of 100
consecutive FAexpTRL on each rice pseudomolecule and
3) average gene family size in each group of 100 consecu-
tive FAexpTRL on each rice pseudomolecule [see Addi-
tional files 1 and 7].

Data displays

For Figure 2, each TRL is represented by a colour coded
horizontal bar. The horizontal bars are arranged, equidis-
tantly, in a linear vertical order which represents their
physical order on their respective rice pseudomolecules
but does not directly reflect their physical or genetic dis-
tance from each other. For Figures 3, 4 and Additional file
4, the linear order of the MWs reflects the linear physical
order of the FAexpTRL on each rice pseudomolecule. The
data are displayed in the form of a 'heat-map' consisting
of 10 colours (blue<red) with each colour representing
10% (or as close to as the data allowed) of the MWs
ranked according to either increasing % alignments,
increasing average scores, increasing number of segmen-
tally duplicated FAexpTRL or decreasing average gene fam-
ily size [see Additional file 2 Table 3 for key].

Arabidopsis expression profiles

FAexpTRL present in the highest 10% average MWs (red
colour code) [see Additional file 2 Table 3] which had sig-
nificant alignments with all the monocot test databases
were queried against the At_CD database using MegaB-
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LAST with the parameters as described previously. The
expression profiles of significant Arabidopsis gene model
alignments from the At_CD database [see Additional file
6] were obtained through the Genevestigator® Meta-Ana-
lyzer database [56,57] for both growth stage and plant
organs. For each gene model, the growth stage and the
plant organ which showed maximal expression were
ascertained and maximal expression profiles for growth
stage and plant organs relative to the Arabidopsis gene
models were constructed. The profiles developed from the
FAexpTRL identified in the highest 10% MWs were com-
pared with profiles developed from a random sample of
1599 FAexp Arabidopsis gene models.

Abbreviations
TRL = TIGR rice locus

FA = Functionally annotated

FAexp = Functionally annotated, expressed

MW = moving window

Pm1, 2 etc. = TIGR rice pseudomolecule 1, 2, etc.
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Additional file 1

Supplementary methods describing the derivation of FAexp gene family
sizes based upon identical annotations.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-283-S1.doc]

Additional file 2

Contains supplementary tables: Additional file 2 Table 1 details the
%MegaBLAST alignments between the different TRL categories in the
Os_CD database and the other plant databases. Additional file 2 Table 2
details the % MegaBLAST alignments and average scores of linear 10%
segments of FAexpTRL for each pseudomolecule for each plant database.
Additional file 2 Table 3 details the relation between colour codes used in
the MW displays and the distribution of percentage alignments, average
scores, segmentally duplicated FAexpTRL and gene family sizes. Addi-
tional file 2 Table 4 details derived gene family sizes used in the calcula-
tion of MW for gene family size.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-283-S2.doc]
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Additional file 3

Illustrates the %MegaBLAST alignments/rice pseudomolecule between
FAexpTRL and the plant databases.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-283-S3.doc]|

Additional file 4

Illustrates colour coded MWs comparing %alignments between the
Os_CD database and the test databases in relation to average gene family
size.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-283-S4.doc]

Additional file 5

Contains MegaBLAST scores for the test databases against Os_CD.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-283-S5.xls]

Additional file 6

Lists 1) TIGR rice loci model identifiers and annotation categories; 2) Ara-
bidopsis gene models used in MegaBLAST analyses; 3) TIGR rice loci
gene families and sizes based upon identical annotations.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-283-S6.xls]

Additional file 7

Lists moving window (MW ) scores used to produce Figures 3, 4 and Addi-
tional file 4.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-283-S7 xls]
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