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Abstract. In this paper, the effect of surface radiation in a square cavity containing an absorbing, emitting and

scattering medium with four heated boundaries is investigated, numerically. Lattice Boltzmann method (LBM)

is used to solve the energy equation of a transient conduction–radiation heat transfer problem and the radiative

heat transfer equation is solved using finite-volume method (FVM). In this work, two different heat flux

boundary conditions are considered for the east wall: a uniform and a sinusoidally varying heat flux profile. The

results show that as the value of conduction–radiation decreases, the dimensionless temperature in the medium

increases. Also, it is clarified that, for an arbitrary value of the conduction–radiation parameter, the temperature

decreases with decreasing scattering albedo. It is observed that when the boundaries reflect more, a higher

temperature is achieved in the medium and on boundaries.

Keywords. Conduction–radiation heat transfer; transient, surface radiation; lattice Boltzmann method; finite

volume method; sinusoidal heating boundary.

1. Introduction

Lattice Boltzmann method (LBM) has been introduced as an

efficient numerical method for simulating fluid flows and heat

transfer in fluids, recently [1–5]. LBM has lots of advantages

such as providing a physical meaning of a problem, simple

computer implementation as well as parallel programming,

easy employing for complicated geometries and boundary

conditions and accurate results [2, 6, 7]. Combined conduction

and radiation heat transfer problems have been used in a

variety of practical applications [8]. Among them, the flux

boundary condition problems have been attended to in

important fields of research such as the furnace design,

solidification–melting of semitransparent materials, fire pro-

tection systems, porous materials, glass fabrication, electronic

devises and power plants [9]. In the literature, combined

radiation–conduction heat transfer problems with constant

temperature boundary conditions have been studied signifi-

cantly; however, a few studies have presented heat transfer

problems with heat flux boundary conditions. Ho et al [10]

used LBM to solve a non-Fourier conduction heat transfer

problem in a planar medium. They developed the lattice

Boltzmann equation for governing equations of the problem.

They simulated both finite and semi-infinite computational

domains, which were subject to the linear and nonlinear

boundary conditions. Jiaung et al [11] studied heat conduction

with two types of prescribed heat flux and temperature in a

planar medium using LBM. In engineering, the first applica-

tion of the discrete ordinates method (DOM) was reported by

Fiveland [12] in 1984. He used DOM to solve the radiative

transport equation in a 2D square cavity with low temperature

boundary condition containing isothermal absorbing–emitting

medium. Finite-volume method (FVM) is widely employed

for calculating the radiative quantities in radiative heat transfer

problems [4, 13–17]. The computational grids in FVM for the

radiative heat transfer are correspondent with the FVM grids

that are utilized in the solution of the momentum and energy

equations [18]. Furthermore, in FVM, the ray effect is con-

siderably less due to fully conservative form of the equations

[19–22]. Recently, problems of conduction–radiation heat

transfer were solved using FVM coupled with LBM [23, 24].

For a 1D planar absorbing, emitting and scattering medium,

Mishra and Lankadasu [25] showed that LBM shows a good

accuracy of the results with higher computational time than

the FDM/FVM with and without considering radiation.

Mondal and Mishra [6, 26, 27] studied thermal radiation in

three geometries of 1D planar, 2D square and 3D cubical

using LBM. They considered both types of constant temper-

ature and heat flux boundary conditions. Mishra and Sahai

[23] and Mishra et al [28] presented the computational*For correspondence
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advantage of LBM in conduction–radiation heat transfer

problems for solving the energy equation. They also showed

the ability of FVM in computing the volumetric radiative heat

transfer through the energy equation. Mondal and Chatterjee

[29] performed a numerical study by LBM to solve transient

heat conduction problems with and without volumetric heat

generation–absorption in 2D and 3D Cartesian geometries.

Uniform lattices were considered for both geometries. For

both geometries one of the walls was heated and cooled with a

sinusoidal function and the rest of the walls were cooled

isothermally. Effects of amplitude of the sinusoidal function

and volumetric heat generation–absorption on temperature

profiles were analysed. Sun and Zhang [24, 30] studied the

combined conduction–radiation heat transfer problems in 1D

planar and 2D square enclosure using both LBM and FVM;

however, they employed the same grid systems for both LBM

and FVM using a relatively new boundary treatment for the

thermal LBM. Sasmal and Mishra [31] studied the perfor-

mance of different types of discrete heated regions along the

south boundary in a 2D square enclosure using different

methods of DOM: the conventional discrete ordinate method

(CDOM) and the FVM. They showed that from the compu-

tational point of view, all the methods are equally efficient.

According to the literature review, all of the afore-

mentioned conduction–radiation heat transfer problems

employed constant temperature alone or combined with

heat flux boundary conditions for the boundaries. However,

no attempt in the literature has been made so far to solve

conduction–radiation heat transfer problems involving dif-

ferent heat fluxes on all boundary conditions using LBM.

The novelty of this paper is to study transient conduction–

radiation heat transfer in a 2D rectangular cavity with two

different types of heat fluxes on the right boundary. In the

first case, all of the boundaries are at constant prescribed

fluxes; however, the flux on the right wall is higher than the

other walls. In the second one, the right wall is heated with

a sinusoidal function and the other walls are heated with

uniform and similar fluxes. The medium is considered

absorbing, emitting and scattering. For the medium, LBM

is employed to solve the energy equation and FVM is used

to solve the radiative heat transfer equation. The effects of

different parameters, i.e., the scattering albedo, the con-

duction–radiation parameter and the extinction coefficient

under consideration of different types of heat fluxes on the

right boundary are investigated.

2. Mathematical modelling

2.1 Model description

A schematic of the geometry as well as the boundary

conditions is shown in figure 1. The walls are assumed to

be diffuse and grey. Furthermore, the contained medium is

grey, absorbing, emitting, anisotropically scattering and

homogeneous. The system is initially at the temperature

Tref and then different heat fluxes are applied to the system

from the boundaries. Two different cases are studied for the

boundaries. In the first case, all of the walls have uniform

fluxes; however, the east wall has a higher heat flux than the

others. For the second case, a sinusoidally varying heat flux

profile is applied on the east wall. The rest of the bound-

aries for both the cases have uniform and similar fluxes. It

should be noted that all thermo-physical and optical prop-

erties of the gas are assumed to be constant. Note that e is

the emissivity of the wall and the extinction coefficient, the

scattering albedo and the conduction–radiation parameter

are b; x and N, respectively. It should be noted that in all

the studied cases, B is considered to be 500 W/m2.

2.2 Governing equations

The energy equation for a 2D Cartesian geometry in the

presence of volumetric radiation, which is computed by

LBM in this study, is given as

oT

ot
¼ k

qcp

o2T

ox2
þ o2T

oy2

� �
�r:qr ð1Þ

where k is the thermal conductivity, q is the density, cp is

the specific heat and qr is the radiative heat flux. r:qr is the

divergence of radiative heat flux, which is calculated by

FVM and is given as

r:qr ¼ ð1 � xÞb 4p
rT4

p
� G

� �� �
ð2Þ

where G is the incident radiation.

2.3 LBM for computation of thermal field

The thermal lattice Boltzmann equation adopting a uniform

lattice with BGK collision model is given as [32]

Figure 1. Schematic geometry of the problem.
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ogiðr~; tÞ
ot

þ e~i:rgiðr~; tÞ ¼ � 1

s
giðr~; tÞ � g

eq
i ðr~; tÞ½ �

i ¼ 0; 1; 2; 3; . . .; b:
ð3Þ

After discretization [32]

giðr~þ e~iDt; t þ DtÞ � giðr~; tÞ ¼ � 1

s
giðr~; tÞ � g

eq
i ðr~; tÞ½ �:

ð4Þ

Equation (4) is the LB equation, which describes the

evolution of the particle distribution function gi and shows

the transient heat conduction problem; gi is the energy

particle distribution function denoting the number of par-

ticles at the lattice node [6]; b is the number of directions

through which the information propagates and ðbþ 1Þ is

the number of particle distribution functions in a lattice

node; g
ðeqÞ
i is the equilibrium distribution function.

For conduction heat transfer problems, D2Q9 is usually

used for two-dimensional problems [24]. The relaxation

time s for the D2Q9 lattices is given as follows:

s ¼ 3a

e~ij j2
þ Dt

2
: ð5Þ

The discrete velocities in the D2Q9 lattice are given as

follows:

e~i ¼ ð0:0ÞC i ¼ 0

e~i ¼ C cos
pði� 1Þ

2
; sin

pði� 1Þ
2

� �
i ¼ 1; 2; 3; 4

e~i ¼
ffiffiffi
2

p
C cos

pð2i� 9Þ
2

; sin
pð2i� 9Þ

2

� �
i ¼ 5; 6; 7; 8

ð6Þ

where C is the lattice speed defined as follows:

C ¼ Dx
Dt

¼ Dy
Dt

ð7Þ

where Dx and Dy are the grid spacing in x and y directions,

respectively, andDt is the discrete time step. For calculating the

volumetric radiation in LBM, Eq. (4) gets modified to

giðr~þ e~iDt; t þ DtÞ ¼ giðr~; tÞ �
Dt
s

giðr~; tÞ � g
eq
i ðr~; tÞ½ �

� Dtxi

qcp

� �
r:qr: ð8Þ

Equation (8) describes a transient conduction–radiation heat

transfer problem studied in this study. Then, the temperature is

calculated by summing gi over all directions as follows:

Tðr~; tÞ ¼
X8

i¼0

giðr~; tÞ: ð9Þ

For heat conduction and heat transfer problems, the

equilibrium distribution function is given as

g
eq
i ðr~; tÞ ¼ xiTðr~; tÞ: ð10Þ

It should be noted that in this equation, the summation of

the weighting factors should be equal to 1. Therefore, from

Eqs. (9) and (10)

X8

i¼0

g
eq
i ðr~; tÞ ¼

X8

i¼0

xiTðr~; tÞ ¼ Tðr~; tÞ ¼
X8

i¼0

giðr~; tÞ: ð11Þ

The governing equations can be non-dimensionalized by

the following dimensionless parameters:

rþ ¼ r

Lref
; h ¼ T

Tref
; N ¼ kb

4rT3
ref

;Gþ ¼ G

ðrT4
ref =pÞ

; n

¼ ab2t:

ð12Þ

Therefore, the non-dimensional form of the energy

equation can be given as

gþi ðr~
þ þ e~þ

i Dn; nþ DnÞ ¼ gþi ðr~
þ; nÞ

� Dn
sþ

gþi ðr~
þ; nÞ � g

þðeqÞ
i ðr~þ; nÞ

h i
� 4Nð Þr:qþr

ð13Þ

where gþi is the non-dimensional form of gi and it is

obtained from the non-dimensional temperature. r:qþr is

given as follows:

r:qþr ¼ 4ð1 � xÞ h4 � Gþ

4p

� �
ð14Þ

and the non-dimensional relaxation time sþ is given as follows:

sþ ¼ 3a

rrþ=rnj j2
þ Dn

2
ð15Þ

where rrþ=rn is the non-dimensional velocity.

2.4 FVM for computation of radiative heat flux

divergence

For absorbing, emitting and anisotropically scattering

medium, the radiative heat transfer in any discrete direction

s
_m

with direction index m is given as

dIm

dsm
¼ s

_m
:rImðr; s_mÞ ¼ �bIm þ Sm ð16Þ

where

s
_m ¼ ðsin hm cos/mÞ i

_

þ ðsin hm sin/mÞ j
_

þ ðcos hmÞk
_

:

ð17Þ
The source term S is given as follows:

S ¼ bð1 � xÞ rT4

p

� �
þ bx

4p
G: ð18Þ
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The DOM is used to turn the transfer equation into a set

of simultaneous partial differential equations. DOM can be

performed to any arbitrary order and accuracy such that the

total solid angle of 4p is divided into m directions. The

incident radiation ðGÞ in this equation and Eq. (2) is

numerically computed as follows [32]:

G ¼
Z 4p

X¼0

IðXÞdX ¼
Z 2p

/¼0

Z p

h¼0

Iðh;/Þ sin h cos h dh d/

�
XM/

k¼1

XMh

l¼1

Imðhml ;/
m
k Þ2 sin hml sinðDhml =2ÞD/m

k ð19Þ

where Mh and M/ are the number of discrete points over the

complete span of the polar angle 0� h� p and azimuthal

angle 0�/� 2p, respectively, and Im is the intensity in the

discrete direction Xm having index m. The radiative heat

fluxes are calculated in two directions as follows [6]:

qr ¼
Z 4p

X¼0

IðXÞ cos h dX ¼
Z 2p

/¼0

Z p

h¼0

Iðh;/Þ sin h cos h dh d/

ð20�aÞ

qr;x �
XM/

k¼1

XMh

l¼1

Imðhml ;/
m
k Þ sinhml cosð/m

k ÞDh
m
l D/

m
k ð20�bÞ

qr;y �
XM/

k¼1

XMh

l¼1

Imðhml ;/
m
k Þ cosðhml Þ sinð/m

k ÞDh
m
l D/

m
k

ð20�cÞ

To compute Im in Eq. (16), the radiative heat transfer

equation in FVM is resolved into x and y coordinate

directions and DXm is integrated over the elemental solid

angle and consequently

oIm

ox
Dm

x þ oIm

oy
Dm

y ¼ �bImDXm þ SmDXm ð21Þ

where Dmis given as follows:

Dm ¼
Z

DXm

ðn_:s_mÞ dX ð22Þ

n
_

is the outward normal to a surface at any discrete direc-

tion. When n
_

points towards x or y positive coordinate

directions, Dm
x and Dm

y are given as follows:

Dm
x ¼

Z
DXm

sin h cos/ dX ¼Dm
x ¼

Z
DXm

sin h cos/ dX

¼
Z/mþD/

2

/m�D/
2

ZhmþDh
2

hm�Dh
2

sin2 h cos/ dh d/

¼ cos/m sinðD/m=2Þ Dhm � cos 2hm sinðDhmÞ½ �
ð23�aÞ

Dm
y ¼

Z
DXm

sin h sin/ dX ¼
Z/mþD/

2

/m�D/
2

ZhmþDh
2

hm�Dh
2

sin2 h sin/ dh d/

¼ sin/m sinðD/m=2Þ Dhm � cos 2hm sinðDhmÞ½ �
ð23�bÞ

where Dhm and D/m are the elemental polar and azimuthal

angles, respectively, with the centre of discrete angles ðhm;/mÞ.
For n

_
pointing towards the negative coordinate directions, signs

of Dm
x and Dm

y are opposite to what are given from Eqs. (23-a)

and (23-b). In Eq. (21), DXm is given as follows:

DXm ¼
Z

DXm

dXm ¼
Z2p

/¼0

ZhmþDh
2

hm�Dh
2

sin h dh d/

¼ 2 sin hm sinðDhm=2ÞD/m: ð24Þ

Integrating Eq. (16) gives

ImE � ImW
� �

AxD
m
x þ ImN � ImS

� �
AyD

m
y ¼ �bVImp þ VSmp

h i
DXm

ð25Þ

where Ax and Ay are the areas of the 2D control volume in x

and y faces, respectively. In Eq. (25), I with suffixes E, W,

N and S are defined as the average intensities at the east,

west, north and south control surface, respectively. Fur-

thermore, V is the volume of the cell defined as dx� dy and

Imp and Smp are the intensities and source terms at the cell-

centre P, respectively. In any discrete direction Xm, the two

cell-surface intensities and the cell-centre intensity Imp can

be obtained as follows:

Imp ¼ ImE þ ImW
2

¼ ImN þ ImS
2

: ð26Þ

While marching from the first quadrant of a 2D enclo-

sure, for which Dx and Dy are both positive, Imp in terms of

known ImW , ImS and Smp is given from Eqs. (24) and (25) as

Imp ¼
2Dm

x AxI
m
W þ 2Dm

y AyI
m
S þ ðVDXÞSmp

2Dm
x Ax þ 2Dm

y Ay þ ðbVDXÞ 1stquadrant:

ð27�aÞ

For the other quadrants, Imp can be obtained as follows:

Imp ¼
2 Dm

x

		 		AxI
m
E þ 2Dm

y AyI
m
S þ ðVDXÞSmp

2 Dm
x

		 		Ax þ 2Dm
y Ay þ ðbVDXÞ

2ndquadrant,

ð27�bÞ

Imp ¼
2 Dm

x

		 		AxI
m
E þ 2 Dm

y

			 			AyI
m
N þ ðVDXÞSmp

2 Dm
x

		 		Ax þ 2 Dm
y

			 			Ay þ ðbVDXÞ
3thquadrant;

ð27�cÞ
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Imp ¼
2Dm

x AxI
m
W þ 2 Dm

y

			 			AyI
m
N þ ðVDXÞSmp

2Dm
x Ax þ 2 Dm

y

			 			Ay þ ðbVDXÞ
4thquadrant:

ð27�dÞ

For marching from any of the corners, the boundary

intensity should be obtained for solving Eq. (25). There-

fore, for a diffuse-grey wall, the boundary intensity Ib at the

east and west boundaries are calculated [6]:

Ib ¼
ebrT4

b

p
þ 1 � eb

p

� �XM/

k¼1

XMh=2

l¼1

Imðhml ;/
m
k Þ

� sinðhml Þ cosðhml ÞDh
m
l D/

m
k ð28�aÞ

and for the north and south boundaries

Ib ¼
ebrT4

b

p
þ 1 � eb

p

� �

XM/

k¼1

XMh=2

l¼1

Imðhml ;/
m
k Þ cosðhml Þ sinðhml ÞDh

m
l D/

m
k :

ð28�bÞ

2.5 Heat flux boundary condition

The procedure for the implementation of heat flux boundary

condition in the LBM is presented in [6]. In the presence of

volumetric radiation, the total heat flux on a wall results in

conductive and radiative heat fluxes. The divergence of

radiative heat flux ðr:qrÞ is calculated with initial and

boundary conditions. In the DOM and also in the LBM, the

2D solution space is first discretized. It is to be noted that in

the LBM, for the boundary lattices, lattice centres lie along

the boundaries. Thus, they stretch half distance beyond the

respective boundaries. Therefore, if NxNy is the number of

control volumes in the DOM, the LBM will have ðNx þ
1ÞðNy þ 1Þ lattices [26, 27]. In the LBM, r:qr are required

at lattice centres, whereas in the DOM they are calculated

at the centres of the DOM control volumes. Therefore, the

average of the r:qr values should be calculated at four

centres of the DOM control volumes. All boundary inten-

sities incident at any point contribute to the radiative heat

flux.

In implementing the flux boundary condition in the

LBM, conservation of energy is applied to the half-size

boundary lattice. This conservation of energy over time Dt
to the half-size lattice at the east boundary i = 1 yields is

given as follows [6]:

qcp

ZDx=2

0

ZtþDt

t

oT

ot
dt

0
@

1
Adx ¼

ZtþDt

t

ðqin � qoutÞdt ð29Þ

where qin is the total heat flux at the east boundary and

qout ¼ qc þ qr is the heat flux leaving the half-size of the

boundary lattice. Using Fourier’s law for qc, Eq. (29) is

discretized to [6]

qcpðTnþ1
i � Tn

i Þ
Dx
2

¼
ZtþDt

t

ðqin � qrÞ � k
Tn
i � Tnþ1

i

Dx

� �� �
dt

ð30Þ

where n and nþ 1 represent the time levels at t and t þ Dt,
respectively. Using the explicit scheme for the time dis-

cretization on the right-hand side of Eq. (30) gives [6]

Tnþ1
i ¼ ð1 � kÞTn

i þ kTn
iþ1 þ gðqin � qrÞ ð31Þ

where k ¼ 2aDt=ðDxÞ2
and g ¼ 2Dt=qcpDx. Once temper-

ature Tnþ1
i at the boundary is known in terms of prescribed

flux qin, gi at any point of the boundary can be calculated

from reference [25] for the constant boundary condition.

For heat flux boundary condition, temperature remains

an unknown quantity at the wall, which will be corrected

trough the iterations. Therefore, from Eq. (31), Tnþ1
i

keeps on updating with iterations, which depends on the

temperature distribution of the entire domain and radia-

tive heat flux qr at the boundary. Later, after the calcu-

lation of r:qr in the LBM, the equilibrium particle

distribution function g
ðeqÞ
i from Eq. (10) is calculated in

the first iteration. Next, the new particle distribution

functions giðr~þ e~iDt; t þ DtÞ are calculated from Eq. (8)

and then they are propagated to neighbouring lattices.

Finally, the new temperature is computed from Eq. (9). If

the convergence is not achieved, to satisfy the boundary

conditions, the particle distribution functions are locally

modified and the new particle distribution functions are

calculated. With the new temperature field, an updated

value of r:qr is computed. The procedure is repeated

until the convergence is achieved [6, 26, 27].

2.6 Solution strategy

In the 2D computational domain, the equations of LBM

and FVM should be solved to calculate the values of

dependent variables r:qr and T at each nodal point. As

mentioned, LBM form of the energy equation is obtained

using BGK approximation. FVM is used to solve the

radiative equation. For this purpose, the solution domain

is divided into a finite number of lattices and control

volumes. For studying the grid independence, several

uniform grids for the lattices in LBM and control vol-

umes in FVM are tested. For solving the energy equation

in LBM, r:qr should be obtained at the lattice centres.

However, in FVM, at the mid-points of the control sur-

faces and at the centre of the control volume, the inten-

sity distributions are calculated. Therefore, r:qr value at

any lattice centre is computed by averaging r:qr values

at control surfaces surrounding the lattice centre.
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3. Results and discussion

For the code validation, the results were compared to those

obtained in reference [6] for the same conditions in a 2D

square medium at n ¼ 0:03. The medium is grey, absorb-

ing, emitting, anisotropically scattering and homogeneous.

The media is initially at temperature Tref . All boundaries

are considered to be black. The south and north boundaries

are subjected to heat fluxes BS and BN , respectively, and the

rest of the two boundaries remain at the constant temper-

ature Tref . Figure 2 shows the variation of dimensionless

temperature h on the horizontal centreline for

b ¼ 1;x ¼ 0 and N ¼ 0:01. Since the boundary conditions

of the opposite walls are the same, the temperature at the

centreline is symmetric about the horizontal mid-line.

In the next stage, the numbers of lattices in LBM as well

as number of control volumes and discrete rays in FVM

should be determined to calculate the divergence of radia-

tive heat flux. The effects of the control volumes/lattices

number as well as number of directions on dimensionless

temperature (T=Tref ) at two different locations y/H = 0.5

and 0.7 along the centreline x/L = 0.5 is schematized in

table 1. It is assumed that b ¼ 1:0; x ¼ 0:0 and N ¼ 0:1.

For the number of discrete directions (MhM/) equal to 498,

there is a slight deviation in the temperature for the lattice

size 21921; however, for the lattices 31931 and 41941,

there is no significant deviation. Finally, the 41941 lattice

size is selected for the solution of the problem. Further-

more, for 41941 lattices, effects of the number of discrete

directions on the dimensionless temperature at two different

locations y/H = 0.5 and 0.7 are also listed in table 1. No

significant change is observed beyond 498 rays. Therefore,

all results are presented for 41941 lattices and 498 rays.

Note that a dimensionless time step size is n ¼ 1 � 10�4.

After studying the validation and ray independence,

transient study of the 2D conduction–radiation heat transfer

problem is performed using LBM with non-uniform flux

boundary conditions on the walls. Figure 3a–d shows the

effect of imposed heat flux on the east wall BE on h at

different time instants (n) along the horizontal line at y/

H = 0.25 and 0.5. The boundaries are black and the results

are obtained forb ¼ 1:0;x ¼ 0:7 and N ¼ 0:01. Tempera-

ture profiles have been plotted at n ¼ 0:005; 0:03 and 0:2.

It is observed that for BE [B, the hat centreline is non-

symmetric about the vertical mid-line. Furthermore,

increase in time step causes a higher temperature in the

entire domain. For the sinusoidally varying heat flux pro-

file, due to non-uniform heat flux from the east wall and

also a lower mean heat flux than in the first case, a lower

temperature is achieved.

In the following, the influence of different effective

parameters on the temperature profile will be investigated

at n ¼ 0:2.

3.1 Effect of conduction–radiation parameter

on temperature distribution

In figure 4, temperature distributions within an absorbing–

emitting–scattering medium (x ¼ 0:5 and b ¼ 1) have

been shown along the centreline for different conduction–

radiation parameters N = 0.01, 0.1 and 1.0 for both cases.

Radiation propagates at a faster speed compared with

conduction heat transfer. Therefore, for lower values of N,

the radiation dominance causes faster attainment of higher

temperature in the domain. As the value of N decreases,

radiation is more effective on the temperature distribution

obviously and therefore, for the radiation-dominated case,

the dimensionless temperature in the medium is higher than

that for the higher N values.Figure 2. The variation of temperature on the horizontal centre-

line in compare to reference [6] for b = 1.0, x = 0.0 and N = 0.01.

Table 1. Effect of grid size and ray independence in the LBM–FVM at x/L = 0.5 and y/H = 0.5 and 0.7 for b = 1.0, x = 0.0 and

N = 0.1.

Number of directions Number of lattices

Dimensionless

temperature

Number of lattices Number of directions

Dimensionless

temperature

y/

H = 0.5

y/

H = 0.7

y/

H = 0.5

y/

H = 0.7

498 21921 0.6645 0.5967 41941 294 0.6612 0.5796

31931 0.6641 0.5966 498 0.6641 0.5966

41941 0.6641 0.5966 6912 0.6639 0.5966
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3.2 Effect of scattering albedo on temperature

distribution

In figure 5, the variation of the dimensionless temperature

for different scattering albedo values of x ¼ 0:0; 0:5 and

0.9 are shown along the centreline for b ¼ 1 and N ¼ 0:1.

The scattering albedo defines as the fraction of scattered

radiation energy in the domain.

Therefore, it is obvious that the effects of the scattering

albedo are more significant for lower values of N

(N = 0.01) and is very small for the conduction heat

transfer dominated case (N = 1). Hence, for an arbitrary

value of the conduction–radiation parameter, as shown in

figure 5, the temperature decreases on decreasing x since

less radiation is scattered out for the lower values of scat-

tering albedo. It is noticeable that for x ¼ 1, all radiant

Figure 3. Dimensionless temperature profiles at different times along the horizontal line at y/H = 0.25 (a, b) and 0.5 (c, d) for different

heat fluxes on the right side and b = 1.0, x = 0.5, N = 0.01 and e = 1.0.

Figure 4. Comparison of the dimensionless mid-line temperature y/H = 0.5 for different conduction–radiation parameters b = 1.0,

x = 0.5 and e = 1.0
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Figure 5. Comparison of dimensionless temperature at n = 0.2 for variable scattering albedo radiation parameters b = 1.0, N = 0.1 and

e = 1.0 at the centreline

Figure 6. Comparison of non-dimensional temperature at the centreline at n = 0.2 for different extinction coefficients and x = 0.5,

N = 0.1 and e = 1.0.

Figure 7. Comparison of non-dimensional mid-line temperature for both studied cases for different emissivity coefficients and b = 1.0,

N = 0.1 and x = 0.5 at n = 0.2
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energy will be scattered and therefore the problem will be

only a conduction heat transfer type.

3.3 Effect of extinction coefficient on temperature

distribution

Figure 6 shows the effect of extinction coefficient param-

eter (b) on the dimensionless temperature distributions for

x ¼ 0:5 and N ¼ 0:1 for both cases studied. It can be seen

that the dimensionless temperature is increased on

increasing b since that the medium becomes more partici-

pating and due to the dominance of the radiation, a higher

temperature is achieved.

3.4 Effect of emissivity coefficient on temperature

distribution

For a completely reflecting surface e ¼ 0:0, any incident

radiation cannot be retained at the surface and it gives back

all radiations to the medium. However, a surface

withe ¼ 1:0 absorbs all the incident radiations on it and it

has the maximum emission corresponding to its tempera-

ture. For x ¼ 0:5;N ¼ 0:1 and b ¼ 1 in figure 7, the

dimensionless temperature distributions are shown for dif-

ferent emissivity coefficients for both studied cases at

n ¼ 0:2. It is observed that when the boundaries reflect

more, a higher temperature is achieved in the medium and

boundaries.

4. Conclusion

The aim of this paper is to employ LBM in order to solve

the energy equation of transient combined conduction–ra-

diation heat transfer in a 2D cavity for calculating the

thermal distribution in the medium. The DOM was also

employed for calculating the radiative heat fluxes by FVM.

Two different heat fluxes were applied to the east wall and

a constant heat flux is applied to all the other walls. The

effects of various parameters such as the conduction–radi-

ation parameter, the extinction coefficient and the scattering

albedo of the grey medium on the dimensionless tempera-

ture were investigated. The results show the following:

• as the value of conduction–radiation decreases, the

dimensionless temperature in the medium is higher

than that for the higher conduction–radiation values;

• for an arbitrary value of the conduction–radiation

parameter, the temperature decreases with decreasing

scattering albedo;

• it can be seen that the dimensionless temperature is

increased with increasing b since the medium becomes

more participating and due to the dominance of the

radiation, a higher temperature is achieved;

• it is observed that when the boundaries are more

reflecting, a higher temperature is achieved in the

medium and boundaries.
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