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Abstract
Purpose:  Breast cancer (BC) is a heterogeneous disease characterised by variant biology, 

metabolic activity, and patient outcome. Glutamine availability for growth and progression of 

BC is important in several BC subtypes. This study aimed to evaluate the biological and 
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prognostic role of the combined expression of key glutamine transporters, SLC1A5, SLC7A5 

and SLC3A2 in BC with emphasis on the intrinsic molecular subtypes. 

Methods:  SLC1A5,  SLC7A5  and  SLC3A2  were  assessed  at  the  protein  level,  using 

immunohistochemistry on tissue microarrays constructed from a large well characterised BC 

cohort (n=2,248). Patients were stratified into accredited clusters based on protein expression 

and correlated with clinicopathological parameters, molecular subtypes, and patient outcome. 

Results: Clustering analysis of SLC1A5, SLC7A5 and SLC3A2 identified three clusters Low 

SLCs (SLC1A5-/SLC7A5-/SLC3A2-), High SLC1A5 (SLC1A5+/SLC7A5-/SLC3A2-) and 

High  SLCs  (SLC1A5+/SLC7A5+/SLC3A2+)  which  had  distinct  correlations  to  known 

prognostic  factors  and  patient  outcome  (p<0.001).  The  key  regulator  of  tumour  cell 

metabolism,  c-MYC,  was  significantly  expressed  in  tumours  in  the  High  SLCs  cluster 

(p<0.001).  When  different  BC  subtypes  were  considered,  the  association  with  the  poor 

outcome was observed in the ER+ high proliferation/luminal B class only (p= 0.003).  In 

multivariate analysis,  SLC clusters were independent risk factor for shorter  breast  cancer 

specific survival (p= 0.001). 

Conclusion: The co-operative expression of SLC1A5, SLC7A5 and SLC3A2 appears to play 

a role in the aggressive subclass of ER+ high proliferation/ luminal BC, driven by c-MYC, 

and therefore have the potential to act as therapeutic targets, particularly in synergism. 

Key words: SLC1A5, SLC7A5, SLC3A2, clusters, breast cancer, prognosis.
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Introduction

Altered metabolic profiles, one of the cancer hallmarks [1], has been substantiated for many 

years, and the significance of onco-metabolism and its exploitation for targeting cancers has 

recently  attracted  great  attention.  To  maintain  the  unremitting  proliferation,  cancer  cells 

reprogram  their  metabolism  to  provide  nutrients  required  to  support  bioenergetics  and 

biosynthetic pathways. Many cancer cells are highly reliant on amino acids for their growth, 

not only because they are precursors for nucleotide and protein synthesis, but also because 

they  activate  mammalian  target  of  rapamycin  complex1  (mTORC1)  through  nutrient 

signalling pathways which in turn regulates protein translation and cell growth [2]. 

Glutamine is the second primary metabolite to fuel cancer cell proliferation after glucose, as 

it is characterised by its ability to replenish the carbon pool of the mitochondrial tricarboxylic 

acid cycle (TCA) via α-ketoglutarate (α-KG) synthesis, in addition to its role for maintaining 

the redox balance [3] Indeed, certain tumours may have glutamine-dependent cell growth or 

‘glutamine addiction’ [4].  In BC, glutamine-dependent mechanisms can vary substantially 

between the molecular subtypes, as previous studies have revealed that the expression levels 

of glutamine metabolic enzymes, such as glutaminase (GLS), are mainly observed in Triple 

Negative (TN), HER2+ and luminal B subtypes compared with luminal A tumours [5-7]. 

Specific genetic alterations may drive cancer cells to resist harsh metabolic stress conditions 

and  nutrient  deprivation  including  the  upregulation  of  the  glutamine  transporters,  solute 

carrier family 1 member 5 (SLC1A5) and solute carrier family 7 member 5 (SLC7A5) by the 

oncogene c-MYC [8,9].

SLC7A5 is a sodium-independent amino acid transporter which imports large neutral amino 

acids such as leucine,  isoleucine,  tyrosine,  and tryptophan, in exchange with intracellular 

glutamine [10]. It  therefore functions in supplying amino acids to cancer cells as well as 
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maintaining  intracellular  leucine  which  is  considered  a  master  regulator  of  mTORC1 

signalling pathway [11,12]. SLC7A5 requires a covalent association with the heavy chain of 

the  membrane  protein,  solute  carrier  family  3  member  2  (SLC3A2),  for  its  functional 

expression in plasma membrane [13]. We have previously described the potential utility of 

these  two  solute  carriers  as  prognostic  factors  for  the  highly  proliferative  BC  subtypes 

[14,15]. Additionally, other studies have revealed the prognostic value of the co-operative 

expression  of  SLC7A5  and  SLC3A2  in  transitional  cell  carcinoma  [16],  squamous  cell 

carcinoma of the lung [17] and pulmonary adenocarcinoma [18]. 

SLC1A5 is a sodium-dependent transporter which regulates the transport of neutral amino 

acids;  alanine,  serine,  cysteine,  threonine,  and  glutamine.  It  has  been  suggested  that 

glutamine influx by SLC1A5 triggers  essential  amino acid entry via  SLC7A5 exchanger. 

These  exchange  mechanisms  balance  the  cytoplasmic  pool  of  the  amino  acids  without 

expending energy and therefore give a strong advantage for cancer cell proliferation [19]. 

SLC1A5  is  overexpressed  in  several  human  neoplasms  [20-22,7].  In  both  esophageal 

squamous cell carcinoma [23] and laryngeal squamous cell carcinoma [24], co-expression of 

SLC7A5 and SLC1A5 is associated with a worse prognosis compared to expression of a 

single transporter, suggesting a potential functional coupling, at transportomic level, which 

supports tumour aggressiveness and progression.

Whilst  approximately  fourteen  SLC  members  accept  glutamine  a  substrate,  SLC1A5 

transporter and SLC7A5/SLC3A2 heterodimeric antiporter have a higher affinity for their 

substrates that confers them the potential to support the growth and survival of the aggressive 

tumour types.

In this study we sought to understand the prognostic impact of the co-operative expression of 

the transporters, SLC1A5, SLC7A5 and SLC3A2, in a large BC cohort. We stratified patients 

in to clusters based on assessment of SLC1A5, SLC7A5 and SLC3A2 protein expression, to 
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determine  their  clinicopathological  and  prognostic  value  with  emphasis  on  the  different 

molecular classes.  
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MATERIAL AND METHODS

Patient Cohort 

This study evaluated a well-characterised cohort of early stage, primary operable, invasive 

BC patients  aged  ≤  70  years.  Patients  (n=2,248)  presented  at  Nottingham City  Hospital 

between  1989  and  2006.  Patient  management  was  uniform  and  based  on  tumour 

characteristics by Nottingham Prognostic Index (NPI) and hormone receptor status. Patients 

within the NPI excellent prognostic group (score ≤3.4) received no adjuvant therapy, but 

those patients with NPI > 3.4 received tamoxifen if ER-positive [± Goserelin (Zoladex) in 

case  the  patients  were  premenopausal].  Conversely,  classical  cyclophosphamide, 

methotrexate and 5-flurouracil  (CMF) were used if  the patients were ER negative and fit 

enough to receive chemotherapy. None of the patients in this study received neoadjuvant 

therapy. Clinical history, tumour characteristics,  information on therapy and outcomes are 

prospectively maintained. Outcome data included development and time to distant metastasis 

(DM) and breast cancer specific survival (BCSS). The clinicopathological parameters for the 

BC series is summarized in (Supplementary Table 1).

 Western Blotting

Primary antibody specificity of SLC1A5 (1:250; HPA035240, Sigma-Aldrich, UK), SLC7A5 

(1:200; EPR17573, Abcam, UK) and SLC3A2 (1:2000; HPA017980, Sigma-Aldrich, UK) 

were  validated  using  Western  blotting  in  BC  cell  line  lysates  (American  Type  Culture 

Collection;  Rockville,  MD,  USA)  as  previously  described  [15,14].  A single  band  for  all 

biomarkers  was  visualized at  the  correct  predicted  size  (75 KDa,  40 KDa and 80 KDa) 

respectively.

 Tissue arrays and Immunohistochemistry
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Tumour  samples  of  0.6mm cores  were  arrayed  [25,14]  and  immunohistochemical  (IHC) 

staining was performed on 4μm TMA sections using the Novolink polymer detection system 

(Leica Biosystems, RE7150-K), as previously described [5]. 

Stained  TMA sections  were  scanned  using  high  resolution  digital  images  (NanoZoomer; 

Hamamatsu  Photonics,  Welwyn  Garden  City,  UK),  at  x20  magnification.  Evaluation  of 

staining for SLC1A5, SLC7A5 and SLC3A2 was based on a semi-quantitative assessment of 

cores’ digital  images  using  a  modified  histochemical  score  (H-score)  which  includes  an 

assessment of both the intensity and the percentage of stained cells [26]. Staining intensity 

was subjectively assessed as follows 0,  negative;  1,  weak;  2,  medium; 3,  strong and the 

percentage  of  the  positively  stained  tumour  cells  was.  The  final  H-score  was  calculated 

multiplying the percentage of positive cells (0-100) by the intensity (0-3), producing a total 

range of 0-300. 

Immunhistochemical staining and dichotomization of the other biomarkers included in this 

study were as per previous publication [27].  ER and PgR positivity was defined as ≥1% 

staining.  Immunoreactivity  of  HER2  was  scored  using  standard  HercepTest  guidelines 

(Dako).  Chromogenic  in  situ  Hybridization  (CISH)  was  used  to  quantify  HER2  gene 

amplification  in  borderline  cases  using  the  HER2  FISH  pharmDx™  plus  HER2  CISH 

pharmDx™ kit  (Dako)  and  was  assessed  according  to  the  American  Society  of  Clinical 

Oncology guidelines [28]. BC molecular subtypes were defined, based on tumour IHC profile 

and the Elston-Ellis [29] mitotic score as: ER+/HER2- Low Proliferation (mitotic score 1), 

ER+/HER2-  High  Proliferation  (mitotic  score  2  and  3),  HER2-positive  class:  HER2+ 

regardless of ER status, TN: ER-, PgR- and HER2- [30].

 Cluster analysis 

Six cluster validity indices were calculated to determine the optimal number of clusters as 

previously described [32]. Two algorithms, partitioning around medoids (PAM) and K-means 
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were used to cluster tumours into the optimal number of clusters based on the H-score of 

SLC1A5, SLC7A5 and SLC3A2 as previously described [31].

K-means clustering is based on the initial  setting of the cluster assignments,  and for this 

study, we used a fixed initialization obtained with hierarchical clustering. PAM is dependent 

on finding the k-representative objects (the so-called medoids) among the observations of the 

data set. K-clusters are constructed, after finding a set of k-mediods, through assigning each 

observation to its nearest medoid. Principle component analysis was applied to transform the 

original data space. Biplots were generated by plotting the points at their projected position 

on axes of the first and second principal components [32].

 Statistical analysis

Statistical analysis was performed using SPSS 24.0 statistical software (SPSS Inc., Chicago, 

IL,  USA).  The Chi-square  test  was  performed for  inter-relationships  between categorical 

variables.  Survival curves were analyzed by Kaplan-Meier with Log Rank test.  This was 

performed with the BC specific death,  those who died of  other  causes,  alive and lost  to 

follow-up were censored. Cox’s proportional hazard method was performed for multivariate 

analysis  to  identify  the  independent  prognostic  factors.  P-values  were  adjusted  using 

Bonferroni correction for multiple testing. A p-value ˂0.05 was considered significant. The 

study endpoints were 5-year BCSS or distant metastasis free survival (DMFS). This study 

complied with reporting recommendations for tumour marker prognostic studies (REMARK) 

criteria [33].
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Results

Solute carrier protein expression in breast cancer

Expression of the three solute carriers was predominantly in the membrane of the invasive 

BC cells, with intensity levels varying from absent to high (Figures 1A-C). 

 Clustering of SLCs expression in breast cancer

To explore the prognostic value of the co-expression of SLC1A5, SLC7A5 and SLC3A2 in 

invasive  BC,  unsupervised  clustering  analysis  was  applied.  Based  on  several  indices, 

acceptable  classification  was  applied  by  clustering  the  tumours  into  three  groups.  An 

appropriate  separation  between  clusters  was  attained  as  indicated  from  the  biplots 

(Supplementary Figure 1A-B). The final three clusters were obtained from the overlap of the 

two  clustering  algorithms.  The  three  clusters  were  characterised  as  follows:  Low  SLCs 

(SLC1A5-/SLC7A5-/SLC3A2-),  High  SLC1A5  (SLC1A5+/SLC7A5-/SLC3A2-)  and  High 

SLCs (SLC1A5+/SLC7A5+/SLC3A2+) (Figure 2).

 SLC clusters correlate with the clinicopathological features and breast cancer subtypes

BCs in the High SLCs and High SLC1A5 clusters were significantly associated with poor 

prognostic parameters including larger tumour size, higher histologic grade, poor NPI and 

lymph node stage 3 (p<0.001), whereas tumours in the Low SLCs cluster were associated 

with good prognostic factors (Table 1). 

When association with hormone receptor status was examined, both Low SLCs and High 

SLC1A5 clusters,  showed a significant  association with hormone receptor  (ER and PgR) 

positive  tumours,  while  the  High  SLCs  cluster  included  mainly  tumours  with  hormone 

receptor  negative  status  (p<0.001,  Table  2).  Tumours  with  HER2  positivity  were  more 

frequent in High SLCs and High SLC1A5 clusters compared with Low SLCs (p<0.001, Table 

2). 
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The prevalence of the three clusters in different BC subtypes was varied, where the Low 

SLCs cluster was primarily observed in ER+ low proliferation/luminal A tumours and the 

High SLC1A5 cluster was mainly found in the ER+ high proliferation/luminal B and HER2+ 

subtypes.  In  contrast,  the  poor  prognostic  TN class  was  strongly  represented  in  patients 

having tumours with High SLCs (p<0.001, Table 1).

 High SLCs is associated with poor patient outcome in breast cancer

Clusters of the three solute carriers were significantly associated with patient outcome, where 

patients with tumours showing High SLCs had the worst survival compared to tumours with 

High SLC1A5, which had moderate outcome and Low SLCs which showed the best survival 

(p<0.001, Figure 3A). Within the different molecular subtypes, the High SLCs cluster was 

predictive of shorter BCSS but only in ER+ high proliferation/luminal B tumours (p=0.003, 

Figure 3B). There was no association between the SLC clusters and outcome in ER+ low 

proliferation/luminal A, HER2+ or TN tumours. (Figure 3C-E)

There was a similar observation regarding the association of SLC clusters with DMFS, where 

patients in the High SLCs cluster had significantly shorter DMFS compared with the other 

clusters  (p<0.001,  Figure  4A).  Similarly,  the  result  is  only  observed  in  the  ER+  high 

proliferation/luminal B Class (p=0.01, Figure 4B). There was no association with the SLC 

clusters in predicting DMFS in ER+ low proliferation/luminal A, HER2+ or TN subtypes 

(Figure  4C-E).  In  multivariate  Cox  regression  analysis,  the  SLCs  clusters  remained  a 

predictor of shorter BCSS independent of tumour size, histologic grade and lymph node stage 

in unselected tumours (p=0.001, Table 3). The result remained significant in the ER+ high 

proliferation /luminal B tumours only (p=0.01, Supplementary Table 2).

 SLC clusters and other molecular biomarkers
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The expression of c-MYC protein was primarily observed in the High SLCs cluster (Table 2, 

p<0.001). This observation remained significant only in ER+ High proliferation/luminal B 

tumours (p=0.01, data not shown). Furthermore, patients in High SLCs cluster with c-MYC 

positive tumours showed shorter BCSS compared to those tumours that did not express c-

MYC (Supplementary  Figure  2A,  B).  Low PIK3CA expression  was  predominant  in  low 

SLCs cluster,  while  High SLC1A5 and High SLCs clusters  were mainly associated with 

positive PIK3CA expression (Table 2, p<0.001). The association with poor outcome was only 

observed in patients with PIK3CA positive expression and not with the cases who did not 

express this protein (Supplementary Figure 3A, B). The proliferation marker, Ki67, was also 

significantly expressed in High SLC1A5 and High SLCs clusters  (Table 2,  p<0.001) and 

patients  belonging  to  these  clusters  showed  shorter  BCSS  when  accompanied  with  the 

positive  expression  of  Ki67  (Supplementary  Figure  4A,  B).  Conversely,  mTORC1  was 

mainly  observed in  Low SLCs cluster  (Table  2,  P<0.001)  and the  association with  poor 

outcome showed no difference between mTORC+ and mTORC- tumours (Supplementary 

Figure 5A, B).
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Discussion 

BC is a heterogeneous disease with various molecular subtypes differing in terms of tumour 

biology and patient outcome [34]. In addition, different subtypes exhibit disparity in their 

metabolic pathways, where ER-negative tumours can be distinguished from the ER-positive 

based on their metabolic signatures. ER+/luminal tumours which comprise the majority of 

BC cases (approximately 75%) remain heterogeneous in terms of mortality rates and disease 

prognosis [35,36]. There is thus a clear need to understand the biology of BC which then can 

help in exploring methods of prognostic and predictive stratification as well as identifying 

potential novel therapeutic targets.

Currently,  the  prognostic  stratification  of  invasive  BC  is  mainly  based  on  the  known 

clinicopathological parameters, such as tumour grade, stage, and hormone receptor status. 

Although a large number of biomarkers have been suggested to be prognostic markers in this 

tumour, other studies have demonstrated that combination of prognostic indicators is superior 

to  recruiting  single  markers  [5,37,38].  Therefore,  applying  cluster  analysis  is  not  only 

competent for identifying biologically relevant groups of biomarkers, it can also allow more 

detailed  prognostication  and  potentially  provide  optimal  treatment  strategies  with  the 

objective of improving patient outcome and quality of life.

Cancer cells, including BC, require a constant supply of nutrients to support their growth and 

proliferation. To do so, they need to elevate the expression levels of nutrient transporters in 

the plasma membrane, a process which has a strong relationship with tumorigenesis and drug 

resistance [39]. We have recently demonstrated that the solute carriers SLC7A5 and SLC3A2 

are associated with poor prognosis particularly in the ER+ high proliferation subtype of BC 

[14,15]  and  the  co-expression  of  SLC7A5  and  SLC3A2  in  TNBC  has  been  previously 

established [40]. However, studies that address the prognostic significance of the co-operative 

�12



expression of those two proteins alongside the glutamine transporter SLC1A5 in BC, and 

their influence in the other molecular subtypes, remain limited.

This study has revealed differential expression levels of the three solute carriers across a large 

BC cohort which can be used to stratify the patients into three clusters, where the Low SLCs 

cluster  did  not  show  expression  of  any  transporter  proteins,  High  SLC1A5  cluster  was 

derived by the high expression of SLC1A5 only and the High SLCs cluster included tumours 

with high expression of all three transporters. The prognostic value of the three clusters was 

varied,  where  patients  with  tumours  in  the  High SLC1A5 and High SLCs clusters  were 

associated  with  poor  clinicopathological  parameters,  including  larger  tumour  size,  higher 

grade  and  poor  NPI.  In  contrast,  tumours  with  good  prognostic  characteristics  were 

predominantly in the Low SLCs cluster. It was further established that patients with tumours 

in the High SLCs cluster had the poorest outcome compared to those cases in the Low SLCs 

or  High  SLC1A5  clusters.  This  is  anticipated,  as  the  High  SLCs  cluster  embraces  the 

overexpression  of  the  three  solute  carriers  together,  where  SLC1A5  mediates  uptake  of 

glutamine,  while  the  SLC7A5-SLC3A2  heterodimeric  complex  uses  the  intracellular 

glutamine concentrations to adjust the essential amino acid cytoplasmic pool for metabolic 

demands and the subsequent activation of mTORC1 signalling pathway , suggesting a system 

of functional coupling between these transporters to confer the more aggressive character to 

BC  cells.  It  is  also  known  that  the  SLC7A5-SLC3A2  complex  is  a  thyroid  hormone 

transporter  and  recently,  Søgaard  et  al,  have  identified  an  association  between 

hyperthyroidism and increasing breast cancer risk [41]. It is noteworthy, that SLC7A5 and 

SLC3A2 can be expressed independently. Furthermore, the single expression of SLC3A2, but 

not SLC7A5, can predict the poor patient outcome (data not shown). This is can be attributed 

to the extra role played by SLC3A2 in favoring cancer growth, as it can  modulates integrin-

�13



induced signal transduction which derives malignant tumour cells’ behavior including cell 

spreading and migration [42].

With respect to the ER+ BC subtypes, the three solute carriers were highly expressed in a 

subset of the highly proliferative ER+/luminal B tumours and were related with poor patient 

outcome and shorter DMFS. We noted that the single expression of SLC1A5, the driver of 

High SLC1A5 cluster, was not enough to predict the shorter BCSS in this subtype. To do so, 

it requires the concurrent expression of SLC7A5 and SLC3A2. This is most likely due to 

their  heavier  energy  and  nutrient  requirements  for  cell  survival  and  proliferation. 

Furthermore, we and others have previously demonstrated that SLC7A5 and SLC3A2 are 

significantly correlated with the proliferative marker Ki67 in thymic carcinomas [43], tongue 

cancer [44], neuroendocrine carcinoma of the lung [45], non-small cell lung cancer [46] and 

BC [14,15,40]. In this study, Ki 67 was mainly expressed in tumours of High SLC1A5 and 

High  SLCs  clusters,  indicating  that  the  studied  solute  carriers  can  support  cancer  cell 

proliferation, the main characteristic which distinguishes luminal B from luminal A subtypes. 

The BC subtypes, TN and HER2+, were also commonly represented in cases demonstrating 

the High SLCs cluster, in concordance with Kim et al [6] and Furuya et al [40], who studied 

the  expression  levels  of  SLC1A5  and  SLC7A5/SLC3A2  respectively,  within  the  BC 

molecular subtypes. However, neither the TN nor the HER2+ subtype showed a significant 

association between the SLC clusters and patient outcome. 

The oncogene MYC has a robust influence in tumour cell metabolism through enhancing the 

uptake and utilization of the necessary nutrients via up-regulation of cellular transporters and 

enzymes supporting tumour growth and giving rise to aggressive cancer phenotypes [47,9]. 

Previous studies have showed that MYC controls the expression of SLC1A5 and SLC7A5 via 

binding to specific promoters and enhancing protein transcription [48,8].  Upon glutamine 

deprivation, Activation Factor 4 (ATF4), in co-ordination with MYC, activates the expression 
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of  both  transporters  directly  to  maintain  intracellular  levels  of  amino acids  [49,50,7].  In 

addition,  SLC7A5 can  control  MYC expression  and  constitute  a  positive  feedback  loop 

mechanism  to  encourage  essential  amino  acid  transport  and  tumorigenesis  [51,52].  The 

current study revealed that MYC not only regulates the concurrent expression of the three 

studied solute carriers, it also conferred poorer outcome, in patients with tumours in the High 

SLCs cluster, compared to lack of its expression, concluding that this cluster might play a 

role  in  endocrine  therapy  resistance  as  previous  work  by  our  group  showing  that  MYC 

overexpression confers resistance to endocrine therapy [27].

Mutations in PIK3CAis known to have a relation to metabolic alterations in cancer cells. Hao 

et  al,  have  demonstrated  that  PIK3CA mutations  in  colorectal  cancer  increase  glutamine 

dependency by upregulating  glutamate  pyruvate  transaminase  2  (GPT2),  which  enhances 

glutamine conversion to αkG to replenish TCA and assist ATP production through an ATF4-

dependent mechanism [53]. Recent work carried out by our group has shown that PIK3CA is 

the  driver  for  glutaminase  1  expression,  which  converts  glutamine  to  glutamate,  in  the 

luminal B tumours (data unpublished). In this study, we showed that PIK3CA is primarily 

over-expressed in the High SLC1A5 and High SLCs clusters and is  therefore a potential 

driver of shorter BCSS in these clusters. 

Previous research has detailed the role of amino acids in activating mTORC1, which in turn 

controls  cell  proliferation  and  prevent  apoptosis  in  cancer  cells  [2].  This  study  however 

showed that mTORC1 was mainly expressed in Low SLCs cluster and its expression did not 

make a difference in patient outcome compared to its absence. This can be explained by a 

previous  study,  which  reported  that  phosphorylation  of  mTORC1  at  ser  (2448),  which 

included in this study, is stimulated by growth factors and it was mutually exclusive with 

mTORC1 phosphorylated at thr (2446), which is regulated by amino acids [54]. In addition, 

Figueiredo et  al  concluded that  mTORC1 phosphorylated at  Ser  (2448)  is  an inadequate 
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measure for mTORC1 kinase activity and the alternative should be  the downstream and 

effector proteins, such as p70S6K  [55].

With the increasing number of treatment strategies available for cancer patients it is critical to 

find  effective  approaches  which  can  support  personalization  of  care  and  allow  tailored 

treatment plan for BC patients, taking into consideration its molecular subtypes. Inhibition of 

SLC1A5,  via  the  inhibitor  l-γ-glutamyl-p-nitroanilide  (GPNA),  decreases  the  growth  of 

various  cancer  cell  lines  including  TN  BC  [56,7,57].  Blocking  SLC7A5,  using  2-

aminobicyclo-(2,2,1)-heptane-2-carboxylic  acid  (BCH),  efficiently  decreased  colony 

formation of MDA-MB-231 TNBC cells [58]. In addition, the selective SLC7A5 inhibitor 

(JPH203/KYT-0353)  is  undergoing  Phase  I  clinical  trials  (UMIN000016546)  as  a  novel 

adjuvant  treatment  approach  for  solid  tumours  including  BC  [59,60].  Although  the 

consequences  of  blocking  the  action  of  these  solute  carriers  in  ER+  high  proliferation 

tumours remain undetermined, our data suggest that the synergistic lethality targeting the 

three solute carriers may prove to be more effective in BC treatment. 
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Conclusion

This study reveals that the co-operative expression of SLC1A5, SLC7A5 and SLC3A2 was 

associated with the poor prognostic characteristics and poor patient outcome particularly in 

the ER+ high proliferation/luminal B subtype. Therefore, elaboration in understanding the 

biological diversity of BC is essential, with the linked development of classification strategies 

suitable for clinical use. Further functional assessment is essential to reveal the specific role 

played by solute carrier co-expression in the highly proliferative BC subclass of ER+ disease.
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Table 1. Clinicopathological associations of the SLC clusters in breast cancer.

Parameter Low SLCs
n (%)

High 
SLC1A5

n (%)

High SLCs
n (%)

χ2
(p-value)

Adjusted 
p-value

Tumour size 

<2cm 583 (60.9) 262 (27.4) 112 (11.7) 67.5
(2.2x10-15) <0.0001

≥2cm 326 (43.1) 247 (32.7) 183 (24.2)

Tumour Grade

1 256 (83.7) 48 (15.7) 2 (0.7)
422.5

(3.7x10-90)
<0.0001

2 421 (64.5) 205 (31.4) 27 (4.1)

3 232 (30.8) 256 (34.0) 266 (35.3)

Lymph Node Stage

1 613 (57.0) 286 (26.6) 176 (16.4)
21.8

(0.0002)
0.0004

2 236 (48.2) 165 (33.7) 89 (18.2)

3 60 (40.5) 58 (39.2) 30 (20.3)

Nottingham Prognostic Index

Good 443 (75.5) 132 (22.5) 12 (2.0)
241.5

(1.06x10-47) <0.0001Moderate 381 (44.3) 279 (32.4) 201 (23.3)

Poor 84 (31.8) 98 (37.1) 82 (31.1)

IHC Subtypes 

ER+/HER2- Low Proliferation 639 (68.9) 259 (27.9) 30 (3.2)

ER+/HER2- High 
Proliferation 88 (34.0) 112 (43.2) 59 (22.8)

Triple Negative 59 (22.2) 54 (20.3) 153 (57.5) 504.4

HER2+ 55 (39.3) 51 (36.4) 34 (24.3) (9.4x10-106) <0.0001
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Table 2. Associations of the SLC clusters with the expression of other molecular biomarkers 
in breast cancer.

Parameter Low SLCs
n (%)

High 
SLC1A5

n (%)

High SLCs
n (%)

χ2
(p-value)

Adjusted
p-value

ER 

Negative 80 (23.3) 77 (22.4) 186 (54.2) 418.6
(1.2x10-91) <0.0001

Positive 825 (60.4) 432 (31.6) 109 (8.0)

PR

Negative 521 (50.6) 253 (24.6) 255 (24.8) 114.8
(1.3x10-25) <0.0001

Positive 358 (57.2) 237 (37.9) 31 (5.0)

HER2

Negative 809 (54.3) 433 (29.1) 247 (16.6) 12.2
(0.002) 0.004

Positive 55 (39.3) 51 (36.4) 34 (24.3)

Triple Negative

No 839 (59.1) 446 (31.4) 134 (9.4) 369.1
(7.1x10-81) <0.0001

Yes 59 (22.1) 55 (20.6) 153 (57.3)

MYC

Negative 270 (59.7) 103 (22.8) 79 (17.5) 44.6
(2.0x10-10) <0.0001

Positive 34 (38.6) 10 (11.4) 44 (50.0)

PIK3CA

Negative 94 (76.4) 14 (11.4) 15 (12.2) 24.8

Positive 182 (50.7) 81 (22.6) 96 (26.7) (0.000004) <0.0001

Ki67

Negative 142 (78.5) 22 (12.2) 17 (9.4) 50.5

Positive 159 (46.5) 83 (24.3) 100 (29.2) (1.08x10-11) <0.0001

mTORC1

Negative 141 (48.3) 66 (22.6) 85 (29.1) 21.1

Positive 143 (66.5) 43 (20.0) 29 (13.5) (0.00002) <0.0001
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Table 3. Multivariate and univariate analysis of prognostic variables and the SLC clusters in 
relation to BCSS.

                                                      Multivariate        Univariate

Variable Hazard ratio 
(95% CI)

p-value
Hazard ratio 

(95% CI)
p-value

SLC clusters 1.4 (1.1-1.7) 0.001 2.1 (1.8-2.6) 5.9x10-17

Tumour Size 1.3 (0.9-1.8) 0.13 2.8 (2.3-3.5) 1.1x10-25

Lymph node stage 2.1 (1.7 -2.5) 1.9x10-13 2.4 (2.2-2.8) 2.2x10-50

Grade 4.2 (2.8-6.2) 1.5x10-12 4.3 (3.5-5.4) 2.5x10-42
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Figure legends

Figure 1. SLCs protein expression in invasive breast cancer cores. A) Represent Low SLCs 

cluster;  from left  to  right,  negative  immunohistochemical  (IHC)  expression  in  SLC1A5, 

SLC7A5 and SLC3A2. B) Represent High SLC1A5 cluster; form left to right, positive IHC 

expression in SLC1A5 and negative IHC expression in SLC7A5 and SLC3A2. C) Represent 

High SLCs cluster; from left to right,  positive IHC expression in SLC1A5, SLC7A5 and 

SLC3A2.

Figure 2.  Cluster analysis of SLC1A5, SLC7A5 and SLC3A2 in breast cancer.  Boxplots 

showed the distribution of the SLCs protein expression in A) all data, B) Low SLCs cluster, 

C) High SLC1A5 cluster, D) High SLCs cluster.

Figure 3. SLC clusters and breast cancer patient outcome in A) All cases, B) ER+- High 

Proliferation tumours, C) ER+- Low Proliferation tumours, D) HER2+ tumours, E) Triple 

negative tumours.

Figure 4. SLC clusters vs DMFS in A) all cases, B) ER+- High Proliferation tumours, C) 

ER+- Low Proliferation tumours, D) HER2+ tumours, E) Triple negative tumours.

Supplementary Figure 1.  Biplots  of  clusters  projected on the first  and second principle 

component axes: A) K-means clustering, B) PAM clustering, C) Final clusters including the 

unclassified cases, D) Final (interesting) clusters; N.C., Not Classified.

Supplementary Figure  2.  SLC clusters  and breast  cancer  patient  outcome in  A)  MYC- 

tumours, B) MYC+ tumours.

Supplementary Figure 3. SLC clusters and breast cancer patient outcome in A) PIK3CA- 

tumours, B) PIK3CA+ tumours.

Supplementary  Figure  4.  SLC clusters  and  breast  cancer  patient  outcome  in  A)  Ki67- 

tumours, B) Ki67+ tumours.
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Supplementary Figure 5. SLC clusters and breast cancer patient outcome in A) mTORC1- 

tumours, B) mTORC1+ tumours.
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Supplementary Table 1. Clinicopathological parameters of the METABRIC and Nottingham 
breast cancer series. 

Parameters Nottingham TMA 
series 
n (%)

Age

≥ 50 years 1784 (67.4)

˂ 50 years 864 (32.6)

Tumour size

≥ 2cm 1176 (44.4)

˂ 2cm 1471 (55.6)

Grade

1 421 (15.9)

2 988 (37.4)

3 1235 (46.7)

Tumour type

Ductal (including mixed) 2257 (85.3)

Lobular 221 (8.4)

Medullary-like 39 (1.5)

Miscellaneous 16 (0.6)

Special type 113 (4.2)

Vascular Invasion

Definite 833 (31.5)

Negative/Probable 1808 (68.5)

Lymph node stage

1 674 (61.0)

2 341 (30.8)

3 91 (8.2)

Follow-up Status

Alive 1679 (63.4)

Died from Breast Cancer 647 (24.4)



Died from other causes 321 (12.2)

ER

Negative   570 (21.6)

Positive 2067 (78.4)

PgR

Negative 1047 (41.4)

Positive 1483 (58.6)

HER2

Negative 2297 (88.5)

Positive 298(11.5)



Supplementary table 2: multivariate analysis of prognostic variables and SLC clusters, in 
relation to BCSS, in different BC subtypes. 

ER-low proliferation ER-High proliferation Triple Negative HER2+

Variab

le

Hazard ratio  

(95% CI)
p-value

Hazard ratio  

(95% CI)
p-value

Hazard ratio  

(95% CI)

p-

value

Hazard ratio  

(95% CI)

p-

value

Cluste

rs
1.11 (0.49-2.45) 0.80 1.38 (1.01-1.90) 0.01

0.97 

(0.70-1.36)

0.89 1.40 

(0.92-2.12)

0.11

Size
0.67 (0.24-1.90) 0.45 1.57 (0.81-3.06) 0.18

1.31 

(0.73-2.35)

0.35 1.53 

(0.73-3.21)

0.25

Grade
1.95 (0.86-4.42)  0.11 1.51 (0.47-4.77) 0.48

2.31 

(0.75-7.04)

0.14 1.28 

(0.59-2.76)

0.52

Stage
3.82 (1.93-7.54) 0.0001 1.66 (1.14-2.41) 0.007

2.43 

(1.72-3.44)

5.2x1

0-7

1.88 

(1.18-2.98)

0.007



!  

Supplementary Figure 1. Biplots of clusters projected on the first and second principle 

component axes: A) K-means clustering, B) PAM clustering, C) Final clusters including the 

unclassified cases, D) Final (interesting) clusters; N.C., Not Classified. 



!  

Supplementary Figure 2. SLC clusters and breast cancer patient outcome in A) MYC- 

tumours, B) MYC+ tumours. 

!  

Supplementary Figure 3. SLC clusters and breast cancer patient outcome in A) PIK3CA- 

tumours, B) PIK3CA+ tumours. 
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!  

Supplementary Figure 4. SLC clusters and breast cancer patient outcome in A) Ki67- 

tumours, B) Ki67+ tumours. 

!  

Supplementary Figure 5. SLC clusters and breast cancer patient outcome in A) mTORC1- 

tumours, B) mTORC1+ tumours. 
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