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Abstract30

In their recent paper published in Science (2016, 351, 1437–1439), Chan et al. analyzed 13731

montane gradients, concluding that they found a novel patterna negative relationship32

between mean elevational range size of species and daily temperature variation, which was33

claimed as empirical evidence for a novel macrophysiological principle (Gilchrist’s34

hypothesis). This intriguing possibility was their key conceptual contribution. Unfortunately,35

as we show, the empirical evidence was flawed because of errors in the analyses and36

substantial sampling bias in the data. First, we re-ran their analyses using their data, finding37

that their model should have been rejected. Second, we performed two additional re-analyses38

of their data, addressing biases and pseudoreplication in different ways, both times again39

rejecting the evidence claimed to support Gilchrist’s hypothesis. These results overturn the40

key empirical findings of Chan et al.’s study. Therefore, the ‘macrophysiological principle’41

should be regarded as currently remaining unsupported by empirical evidence.42

43

44
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45

Species’ distributional ranges determine broad-scale species richness patterns, and assessing46

the mechanisms driving species’ distributional ranges is central to ecology. Because a47

disproportionately large amount of biodiversity occurs in mountainous regions (Heywood,48

1995), understanding how species’ elevational range sizes (i.e. the range of elevations49

occupied by each species) are driven by environmental factors can provide insights into the50

mechanisms driving global patterns of range size and species richness. One important body of51

theory (the ‘climatic variability hypothesis’) proposes that temperature variability through52

time drives elevational range sizes of species (Janzen, 1967; Stevens, 1992; McCain, 2009),53

with larger elevational range sizes resulting from greater variability. The reasoning is that54

species that can tolerate changes in temperature in one place can also tolerate equivalent55

changes in temperature associated with higher or lower elevation. This theory has been tested56

almost exclusively with respect to seasonal temperature variability. However, it has been57

suggested that shorter-term temperature variability may select for thermal specialists, and58

thus smaller elevational ranges (Gilchrist, 1995). Gilchrist (1995) explained this reversal, to59

negative elevational range size–temperature variability relationships at shorter temporal60

scales of temperature variability, by distinguishing between within-generation and between-61

generation temperature variation.62

Chan et al. (2016) used a global-extent dataset (though lacking latitudes poleward of63

40°S or N) of 137 montane gradients to relate mean elevational range size of species to their64

measures of seasonal temperature range and diurnal temperature range simultaneously. They65

claimed that they found a novel pattern in their study: diurnal temperature range negatively66

affects mean elevational range size (Fig. 1B). They considered this pattern their most67

important finding and interpreted it as supporting their extension of Gilchrist’s (1995) model68

that between-generation temperature variation favours thermal generalists but within-69
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generation temperature variation favours thermal specialists. This conclusion is interesting70

and represents the key conceptual advance of their paper. Unfortunately, as we show, the71

empirical pattern on which it is based results from flaws in their analyses, and sampling bias.72

The ‘best model’ of Chan et al. (2016), on which their empirical conclusions were based,73

should have been rejected by any standard criteria, and by their own criteria. We now explain74

in more detail.75

Chan et al. (2016) analyzed 137 montane gradients obtained from McCain (2009). In76

the dataset, the diurnal temperature range and mean elevational range size variables are not77

correlated with each other (r = -0.039, P = 0.651; Fig. 1A). Chan et al. constructed 29 path78

models, selecting as ‘best’ one that generates a weak (R2 = 0.06; P = 0.012) direct effect of79

diurnal temperature range on mean elevational range size (Fig. 1C); note that the ‘R= -0.25’80

they state on p.1437 is the standardized path coefficient within their structural equation model81

(SEM), which is a partial correlation coefficient, controlling for effects of both seasonal82

temperature range and precipitation on mean elevational range size. They based their83

conclusions on this ‘best model’, but when we used their data to rerun their model, we found84

several errors in their reported results, as follows.85

Crucially, while the key result of Chan et al.’s analysis (a negative diurnal86

temperature rangemean elevational range size effect) was significant within their ‘best87

model’ (Fig. 1B), this model should have been rejected. Their stated procedure was to first88

reject any of their 29 SEMs that failed to meet all of the following criteria for model-fit89

statistics: root mean square error of approximation (RMSEA) < 0.08, comparative fit index90

(CFI) > 0.95 and standardized root mean square residual (SRMR) < 0.1. For models meeting91

these criteria they then selected the model with the lowest SRMR (even though SRMR does92

not penalize model complexity; Hooper et al., 2008). According to their Table S2, sixteen of93

their 29 SEMs meet their criteria, including their ‘best model’ (Fig. 1B; model 28 in their94
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Table S2). However in the case of the ‘best model’ the RMSEA value was incorrectly95

reported as 0.062 when actually RMSEA = 0.178 (Fig. 1B,C), which makes their ‘best96

model’ unacceptable by their criterion (note also that the 90% confidence interval for the97

RMSEA does not include 0.08). The actual value is also far in excess of other commonly98

used RMSEA thresholds for model acceptability (e.g. 0.10, 0.06, 0.05; Browne & Cudeck,99

1993; Hu & Bentler, 1999; Shipley, 2000).100

For their ‘best model’ only, Chan et al. (2016) also reported the result of a χ² test 101 

(testing discrepancy between the data and the model), a standard test of acceptability of an102

SEM. Models for which the data and the model are significantly different (P < 0.05) should103

be rejected before considering model-fit statistics such as RMSEA or SRMR (Shipley, 2000;104

Grace, 2006). Very importantly, Chan et al. (2016) reported P = 0.157 for their χ² test, but the 105 

correct P-value is 0.005 (Fig. 1C), indicating an unacceptable model. Thus, Chan et al.’s key106

conclusion (empirical evidence for a ‘novel macrophysiological principle’) was based on107

incorrectly reported results and misinterpreted significance; the model should have been108

rejected twice over.109

We further note how weak the model is, even if we ignore the fact that it should have110

been rejected. It is normal in macroecology to report the R2 (proportion of variation in the111

dependent variable(s) accounted for) when using the SEM approach (e.g. Hawkins & Porter,112

2003; Hawkins et al., 2007; Jetz et al., 2009; Oberle et al., 2009; Spitale et al., 2009; Jonsson113

et al., 2011). Chan et al. (2016) did not do so, thus failing to report that only 11% of the114

variation in mean elevational range size was accounted for by their ‘best model’ (Fig. 1C).115

The direct effect of diurnal temperature range on mean elevational range size within their116

model (the key result of their study) accounted for only 6% of the variation. Further, this key117

direct effect was not significant (P > 0.05) for any of the taxa when analyzed separately (Fig.118



Page 6

S11 of Chan et al., 2016). Thus, even taking the model at face value, the evidence for Chan et119

al.’s main conclusion is tenuous.120

We are unable to meaningfully improve on the analysis of this dataset that was121

published by McCain (2009), so we do not attempt to provide a new ‘best model’. We do122

note, however, that of the remaining 15 SEMs reported by Chan et al. (2016; their Table S2)123

as meeting their criteria of RMSEA < 0.08, CFI > 0.95 and SRMR < 0.1, the model that their124

selection criteria would choose as ‘best’ is model 3 (SRMR = 0.0416). This SEM only125

includes latitude and precipitation, and therefore does not include diurnal temperature range.126

Thus their reported results and selection criteria suggest a model that rejects their own127

findings. However, we hesitate to conclude much here because we cannot replicate the results128

reported for model 3 in Chan et al. (2016), nor those for many of the other models reported in129

their Table S2.130

Another key criticism of Chan et al.’s (2016) analysis is that it suffers from bias and131

pseudoreplication, with respect to taxon sampling and geographical distribution of samples.132

Unlike McCain (2009), they did not attempt to reduce these problems before analyzing the133

data. The first bias problem is that montane gradients in dry climates are substantially over-134

represented in the data set. Only ~30% of the world’s land surface outside the Antarctic/polar135

deserts is under arid climates (Hess & McKnight, 2013), but 47% of the 137 montane136

gradients used in Chan et al. were classified as ‘dry’ mountains by McCain (2009), who used137

an unbiased criterion to assign each montane gradient into dry (humidity index < 0.50) or138

humid (humidity index > 0.50) class. Importantly, the dry mountains in the data are139

geographically biased (particularly in south-western USA and northern Africa, in latitudes140

higher than most other montane gradients used).141

We re-ran Chan et al.’s model after attempting to address the over-representation of142

dry montane gradients in their data. Specifically, we first divided the 137 montane gradients143
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into two subsets: ‘dry’ or ‘arid’ according to McCain (2009; N = 64), and the remaining144

samples (‘humid mountains’; N = 73). Next, we re-ran Chan et al.’s ‘best model’ on each145

subset, finding a diurnal temperature range effect on mean elevational range size only for dry146

mountains (Fig. 2A,B) and only a weak one (Fig. 2B). Then, we addressed the problem of147

over-representation of arid montane gradients in the data set by reducing the proportion of148

arid mountains from 47% to 30% (by randomly sampling 32 of the 64 arid mountain data-149

points), to match the proportion of arid land in the world. Following a suggestion by Chan et150

al. (responding to an early version of this paper), we performed this procedure 100 times,151

each time combining the 32 randomly sampled dry gradients with all 73 humid ones and152

running their ‘best model’ on each resulting dataset. The average value of the 100153

standardized diurnal temperature rangemean elevational range size path coefficients was -154

0.209, and the mean of the 100 associated P-values was 0.121 (Fig. 2C), which is155

substantially larger than the standard significance threshold (P < 0.05, used by Chan et al.).156

Thus, removing just one of the biases in the data overturns the key empirical conclusion of157

Chan et al. (2016). Note that the reduction in sample size from 137 to 105 would play little158

part in the ‘loss’ of significance; 105 remains quite a large sample and is much bigger than159

the 64 dry samples in Fig. 2B.160

Problems of bias and pseudoreplication in the analysis of Chan et al. (2016) go further.161

The 137 montane gradients in the full dataset were located in only 82 sites, some more162

localized than others, with the same site appearing up to 6 times for different taxa. These 82163

sites were primarily in four clusters (western New World, Mediterranean region, south-164

eastern Africa plus Madagascar, south-eastern Asia; Fig. S1 of Chan et al., 2016). Thus, the165

montane gradients in the dataset are strongly biased geographically. The dataset is also biased166

with respect to taxon sampling. On average, each site has only 1.7 gradients (137/82), each167

taxon only 20 gradients (range 12–33), and taxon samples are substantially biased168
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geographically. For example, lizard gradients occurred only in two of the four sample clusters169

(none in the south-eastern Asian and south-eastern African clusters; Fig. S1 of Chan et al.,170

2016). In the paper from which the data are taken (McCain, 2009), Christy McCain discussed171

the biases and because of them she did not perform an analysis of the ‘vertebrates’ group as a172

whole. In contrast, the analysis of Chan et al. (2016) was of this composite group. McCain173

(pers. comm.) strongly cautions against this, arguing in particular that including the rodent174

data in the analysis is inappropriate because rodents have the opposite elevational range size175

trend to the other vertebrate groups.176

Following this advice, our final reanalysis started by excluding the rodent data and177

shows that removing a single, pseudoreplicated data-point again overturns the key empirical178

conclusion of Chan et al. (2016). Eyeballing Fig. 3 (equivalent to Fig. 1D of Chan et al.,179

which itself suggests the same issue) suggests that the two data-points in the bottom-right180

corner of the scatterplot are highly influential in the analysis of the link between daily181

temperature variation and mean elevational range size. In fact, each point is pivotal:182

excluding either point from the analysis changes the key diurnal temperature rangemean183

elevational range size path in the SEM from significant to non-significant (P = 0.024 to P =184

0.087 and 0.065, respectively). Examination of influential points should routinely be done,185

and here it is particularly apposite: these two pivotal points are pseudoreplicates. Both are186

from Martin (1961), both are reptile groups (one snakes and the other lizards) from the same187

study site (the Chiricahua Mountains in Arizona, USA), and both have exactly the same data188

for all the environmental variables. Note that many of the other data-points have similar189

pseudoreplication problems, including others that are influential in pulling the regression line190

in a negative direction (e.g. the two left-most points in Fig. 3, with the lowest diurnal191

temperature range, are both from a site in the Calabria region in Italy, and both are amphibian192

taxa [frogs and salamanders] taken from the same study).193
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Finally, we note in passing that, using their ‘best model’, Chan et al. (2016) reported a194

significant, negative effect of mean annual precipitation on seasonal temperature range (their195

Fig. 1A), which they claimed as a ‘novel pattern found in [their] study’ (their Fig. 1C, which196

states ‘P < 0.05’). However, our reanalysis showed that this path was non-significant (Fig.197

1C), using the established biological alpha of 0.05, which was used in Chan et al. to198

determine statistical significance (as shown in their Fig. 1A).199

In sum, re-analyzing McCain’s (2009) data provides no meaningful advance on the200

conclusions she originally published. Although Chan et al.’s theoretical extension of201

Gilchrist’s model is interesting, the patterns predicted by this ‘macrophysiological principle’202

have not yet been empirically supported: there is currently no reliable evidence that daily203

climate variation affects species’ elevational range sizes.204

205
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266

267
Figure 1 (A) Scatterplot of mean elevational range size against diurnal temperature range268
(DTR) for terrestrial vertebrate species in the 137 elevational gradients used in Chan et al.269
(2016) (Pearson’s correlation results are shown). (B) The ‘best’ structural equation model270
(SEM) of Chan et al., showing relationships among mean annual precipitation (MAP),271
absolute latitude (LAT), diurnal temperature range (DTR), and seasonal temperature range272
(STR) in explaining variation in mean elevational range size. The statistics are as reported by273
them, and three key errors are highlighted in red. (C) Values were taken from (B) except for274
R2 values and the corrected values (highlighted in blue) which resulted from when we ran the275
same SEM using the same data, model and software as in Chan et al. We also used LAVAAN276
package to repeat the analysis [see Appendix S1 in Supporting Information for code and277
results when repeating the analyses using the LAVAAN package (version 0.5-20) in R (cran.r-278
project.org/web/packages/lavaan)]. In (B) and (C), solid arrows are significant (P < 0.05) and279
dashed arrows are not significant. Numbers next to arrows and boxes are unstandardized280
slopes and intercepts, respectively, unless otherwise indicated. RMSEA is root mean square281
error of approximation; SRMR is standardized root mean square residual; CFI is comparative282
fit index.283

284
285
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286

287
Figure 2 Structural equation models (SEM) showing relationships among mean annual288
precipitation (MAP), absolute latitude (LAT), diurnal temperature range (DTR) and seasonal289
temperature range (STR) in accounting for variation in mean elevational range size of290
terrestrial vertebrate species. Numbers next to arrows are standardized path coefficients;291
numbers next to boxes are R2 values. Solid arrows are significant (P < 0.05); dashed arrows292
are not significant (P > 0.05). P-values are shown only for the focal path (see text). (A) SEM293
using the subset of 73 mountain gradients that were not indicated as ‘dry’ or ‘arid’ by294
McCain (2009). (B) SEM using the subset of 64 mountain gradients that were indicated as295
‘dry’ or ‘arid’ by McCain (2009). (C) SEM using the 73 non-dry mountain gradients and 32296
of the 64 dry mountain gradients, showing mean values for 100 randomizations.297

298
299
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300
Figure 3 Partial residual plot of the modelled relationship between diurnal temperature range301
and mean elevational range size. This is the equivalent of Fig. 1D in Chan et al. (2016), but302
here using a dataset that excludes rodents (see text for explanation). The two influential303
points discussed in the text are indicated. Both represent reptile groups from the same study304
in the same study site, with identical values for all the environmental variables. Removing305
either makes the negative relationship non-significant.306

307


