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Abstract 

The phytohormone abscisic acid (ABA) plays a key role regulating root growth, 

root system architecture and root adaptive responses, such as hydrotropism. 

The molecular and cellular mechanisms that regulate the action of core ABA 

signaling components in roots are not fully understood. ABA is perceived 

through receptors from the PYR/PYL/RCAR family and PP2C co-receptors. 

PYL8/RCAR3 plays a non-redundant role in regulating primary and lateral root 

growth. Here we demonstrate that ABA specifically stabilizes PYL8 compared to 

other ABA receptors and induces accumulation of PYL8 in root nuclei. This 

requires ABA perception by PYL8 and leads to diminished ubiquitination of 

PYL8 in roots. The ABA agonist quinabactin, which promotes root ABA 

signaling through dimeric receptors, fails to stabilize the monomeric receptor 

PYL8. Moreover, a PYL8 mutant unable to bind ABA and inhibit PP2C is not 

stabilized by the ligand, whereas a PYL85KR mutant is more stable than PYL8 at 

endogenous ABA concentrations. The PYL8 transcript was detected in the 

epidermis and stele of the root meristem; however the PYL8 protein was also 

detected in adjacent tissues. Expression of PYL8 driven by tissue-specific 

promoters revealed movement to adjacent tissues. Hence both inter- and 

intracellular trafficking of PYL8 appears to occur in the root apical meristem. 

Our findings reveal a novel non-cell-autonomous mechanism for hormone 

receptors and help explain the non-redundant role of PYL8 mediated root ABA 

signaling.   

Significance statement  

The phytohormone abscisic acid (ABA) controls root responses to 

environmental signals such as abiotic stress. ABA signaling in roots depends on 

the non-redundant role of the PYL8 receptor. This study reveals special 

features of this ABA receptor. ABA binding triggers hormone-dependent 

stabilization of PYL8 through reduced ubiquitination and induces nuclear 

localization of the receptor.  ABA-induced stabilization also allows movement of 

the PYL8 receptor from the root epidermis and stele to adjacent tissues. Hence, 

like mobile transcription factors that regulate plant development, the PYL8 
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protein can move between cells. In summary, our study reports a novel non-

cell-autonomous mechanism to regulate hormone perception and root growth. 

\body 

Introduction 

Responses to environmental conditions in plant roots are coordinated by 

different hormones. Thus, hormone signaling regulates root growth, root system 

architecture and tropic root responses (1-3). Abscisic acid (ABA) mediates root 

responses to different environmental factors, such as the presence of nitrate in 

the soil, water deficit, moisture gradients, salt or nutrient deficiency (4). ABA 

signaling through the PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE 

(PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR)- Protein 

phosphatases type 2C (PP2Cs) and ABA-activated SNF1-related protein 

kinases (SnRK2s) core components is linked to different plant adaptive 

responses to water deficit and osmotic and salt stress, such as the maintenance 

of primary root elongation and the repression of lateral root formation (4-10). 

For instance, in maize seedlings under water-deficit stress the primary root 

growth is maintained through ABA action, which acts partially through ethylene 

antagonism (5). In Arabidopsis roots exposed to salt stress, ABA also has a 

growth-promoting role during the recovery phase (11). Additionally, ABA 

signaling is required for root hydrotropism, an adaptive response that facilitates 

soil exploration under heterogeneous water availability (3). Regulation of root 

growth by ABA is closely connected with hydrotropism, as the hydrotropic 

response involves asymmetric ABA signaling in the root cortex through the 

PYR/PYL/RCAR-PP2C-SnRK2 core signaling pathway (3, 12, 13). Other 

environmental cues, such as salinity, induce root adaptations that are mediated 

by ABA (10, 14, 15). Nutrient-induced root plasticity is also regulated by ABA, 

for example the suberization of the endodermis in response to either sodium 

chloride treatment or sulfur or potassium deficiencies (14). Thus, harmful 

minerals can be excluded by the endodermis.  

Although the role of ABA in root physiology has been well studied, the 

molecular and cellular mechanisms that operate to coordinate the action of core 

components are not well known. For instance, the expression of the ABA-
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activated kinase SnRK2.2 is observed in all root tissues, but expression of the 

ABA receptor promoters is restricted to some of them (3, 13). Therefore, it is not 

well known how ABA perception is connected with the activation of SnRK2.2 in 

different root tissues. Additionally, different PYR/PYL/RCAR ABA receptors are 

expressed at high levels and contribute to the quantitative regulation of ABA 

sensitivity in the root, but uniquely the pyl8/rcar3 single knockout shows 

reduced sensitivity to ABA-mediated inhibition of root growth (8, 13). Therefore, 

PYL8/RCAR3 plays a non-redundant role for ABA signaling in the root, which 

relies on PYL8-mediated inhibition of at least five clade A protein phoshatases 

type 2C (PP2Cs), i.e. HAB1, HAB2, ABI1, ABI2 and PP2CA (13). Compared to 

other ABA receptors, PYL8 shows a unique expression pattern in the root 

epidermis and lateral root cap (13). Recent studies investigating the 

degradation of ABA receptors in seedlings have revealed that PYL8 is 

ubiquitinated and degraded by the 26S proteasome in Arabidopsis thaliana (16, 

17). In those studies, we found that ABA treatment increased PYL8 protein 

levels, but had no significant effect on other receptors such as PYR1 and PYL4 

(17). Moreover, ABA treatment limited PYL8 degradation in seedlings and 

reduced PYL8 polyubiquitination (16). It is currently unknown whether such a 

mechanism operates in root tissues or whether ligand perception by either 

PYL8 or other receptors is required to stabilize PYL8. Further investigation of 

ligand-induced effects on PYL8 stability might help explain its non-redundant 

role for ABA signaling in roots.  

Studies to investigate how different hormones control root growth, tropic 

root responses or stress adaptation have revealed single tissue layers or 

discrete spatial domains that are differentially targeted by hormones (1). For 

instance, auxin targets elongating epidermal cells during the gravitropic 

response whereas ABA targets elongating cortical cells during the hydrotropic 

response (3, 18). On the other hand, endodermal ABA signaling promotes 

lateral root quiescence under saline conditions (9). ABA also promotes 

quiescence of the quiescent center (QC), which may be considered as positive 

regulation of root growth as it promotes QC maintenance (19). However, ABA 

also inhibits cell division in the proximal part of Arabidopsis root meristem, 

which can explain the inhibitory effect of high ABA concentrations on root 

growth (19). In contrast, low levels of ABA promote root elongation through 
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increased rate of cell production and elongation (3). ABA signaling is also 

important in the mature root, where most of the absorption of minerals and 

water takes place (8). In agreement with the above mentioned physiological 

studies, the expression pattern of SnRK2.2 indicates that ABA signaling is 

required in all root tissues (3). Altogether these studies suggest that ABA 

perception in different root domains is important to regulate root physiology and 

root growth; however, a detailed molecular and cellular understanding of root 

ABA perception is still lacking in the different root tissues where ABA acts.  

 

Results 

ABA specifically stabilizes the PYL8 receptor 

ABA receptor stability and degradation is an emerging topic in ABA signaling 

(16, 17, 20, 21). In order to obtain a comprehensive picture of the turnover of 

ABA receptors, we analyzed protein dynamics of ten epitope (HA)-tagged 

receptors (PYR1, PYL1, PYL2, PYL4, PYL5, PYL6, PYL7, PYL8, PYL9 and 

PYL10, the most highly expressed gene products of the gene family) in 2-week-

old plants. Treatment with the translation inhibitor cycloheximide (CHX) led to 

diminished protein synthesis of all ABA receptors, whereas treatment with the 

proteasome inhibitor MG132 led to their accumulation (Fig. 1A). Interestingly, 

addition of ABA specifically led to the accumulation of PYL8 protein (Fig. 1A). 

ABA treatment of transgenic lines that express GFP-tagged versions of PYL2, 

PYL4, and PYL8 also revealed a selective ABA-induced accumulation of PYL8 

(Fig. 1B and C). qRT-PCR analyses corroborated that this effect was not 

caused by changes in the expression of 35S promoter-driven  3HA- or GFP-

tagged transgenes (SI Appendix, Fig. S1). ABA therefore appears to enhance 

PYL8 accumulation in these lines through a post-transcriptional mechanism. 

Confocal laser scanning microscopy (CLSM) also revealed that GFP-PYL8 

exhibited a predominantly nuclear localization in root cells following ABA 

treatment, whereas GFP-PYL2 and GFP-PYL4 localized to both the nucleus 

and cytosol of mock or ABA-treated roots (Fig. 1C). 

 To gain insight on the root localization of PYL8, we expressed PYL8-GFP 

driven by its own promoter in a pyl8-1 mutant background (ProPYL8:PYL8-GFP 

pyl8-1). PYL8-GFP complemented the ABA-insensitive pyl8-1 phenotype in a 
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root growth assay, indicating that PYL8-GFP is functional (Fig. 2A).  Next, we 

analyzed PYL8-GFP protein levels in roots by immunoblotting and found that it 

was increased 5-7 fold after ABA treatment (Fig. 2B). qRT-PCR analysis 

showed that ABA treatment does not induce upregulation of the PYL8 

transcript; in fact ABA down-regulates PYL8 gene expression (Fig. 2B), in 

agreement with previous reports in seedlings (22, 23). Instead, ABA treatment 

led to an accumulation of PYL8-GFP in the nucleus; as observed for GFP-PYL8 

expressed from a 35S promoter (Fig. 1C and 2C). Next, we investigated 

whether PYL8-GFP fluorescence may report changes in ABA concentration in 

the root. A dose-response analysis indicated that PYL8-GFP fluorescence was 

sensitive to changes in ABA concentration induced by exogenous ABA addition 

or osmotic stress (Fig. 2D-E; SI Appendix, Fig. S2A-B). Finally, a kinetic 

analysis of PYL8-GFP fluorescence was performed in response to 10M ABA 

treatment and a gradual increase of the fluorescent signal, which could be 

detected from 30 min after ABA treatment, was observed (SI Appendix, Fig. 

S2C). We conclude that ABA specifically stabilizes the PYL8 receptor and leads 

to its accumulation in root cell nuclei. 

 

PYL8 stabilization in roots is triggered by ligand binding and requires 

PP2C interaction 

In order to investigate whether the enhanced PYL8-GFP fluorescence observed 

after ABA treatment requires ligand perception by PYL8 or simply reflects 

hormone signaling through other ABA receptors that also operate in the root  

(13), we switched on ABA signaling through quinabactin (QB) treatment. QB is 

an ABA agonist that does not activate the PYL8 receptor (SI Appendix, Fig. 

S3A) instead activating ABA signaling primarily through dimeric ABA receptors 

such as PYR1, PYL1 and PYL2, which are expressed at high level in the root 

and contribute to the quantitative regulation of ABA signaling (13, 24, 25). QB 

treatment was able to upregulate the expression of the ABA-responsive 

ProRAB18:GFP reporter, but in contrast to ABA, QB did not enhance PYL8-

GFP fluorescence (Fig. 3A).  Therefore, the PYL8-GFP accumulation appears 

to require ABA perception by PYL8.  

To ascertain whether ABA treatment leads to decreased degradation of 

PYL8 in roots, we performed a CHX ± ABA experiment using the 
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ProPYL8:PYL8-GFP pyl8-1 line and analyzed PYL8 protein levels in roots (Fig. 

3B). Whilst CHX treatment in the absence of ABA led to a 60% reduction of 

PYL8 after 120 min, the simultaneous presence of ABA slowed PYL8 

degradation to a reduction of only 20%. QB was not effective in slowing PYL8 

degradation (Fig. 3B). ABA may prevent degradation of PYL8 in roots through 

reduced polyubiquitination of the receptor (16). To investigate this possibility, 

we performed immunoprecipitation of HA-PYL8 in mock and ABA-treated root 

samples. Immunoprecipitated HA-PYL8 was analyzed using anti-HA and anti-

Ub (P4D1) antibodies and the ratio of Ub(n)-PYL8 to PYL8 was found to be 

approximately 6-fold higher in mock compared to ABA-treated roots (Fig. 3C). 

Thus, even though the total PYL8 protein level was increased about 4-fold after 

ABA treatment, the amount of polyubiquitinated PYL8 was diminished in ABA-

treated roots compared to mock conditions (Fig. 3C). In contrast, ABA treatment 

did not affect the ubiquitination ratio of PYL2 and PYL9 compared to mock 

conditions (Fig. 3C).  

The results described above using QB treatment suggest that PYL8 

stabilization and/or accumulation requires ABA perception by the receptor. In 

order to obtain further evidence we analyzed the PYL8K61R Y120A mutant, which is 

predicted to be unable to bind ABA because it is impaired both in the salt bridge 

formed between the highly conserved K61 residue and the carboxylate of ABA, 

and the hydrogen bond formed by Y120 with the ABA carboxylate group 

through an internal water molecule (13). Accordingly, recombinant PYL8K61R 

Y120A protein was unable to inhibit PP2C HAB1 (Figure 3D). We generated GFP-

PYL8K61R Y120A transgenic lines and analyzed them following ABA treatment 

(Fig. 3E). Both CLSM and immunoblot analysis of root protein extracts revealed 

that GFP-PYL8K61R Y120A fails to accumulate after ABA treatment, in contrast to 

wild-type PYL8 (Figure 3E).  We conclude that either ABA perception and/or 

PP2C interaction are required to trigger PYL8 stabilization. Recent proteomic 

studies led to the identification of ubiquitinated residues in PYL8 (26). In 

contrast to the K61 residue that affects ABA binding, other N-terminal Lys 

residues of PYL8 are not predicted to be involved in ABA binding (26). We 

therefore decided to mutate those Lys residues which are potential 

ubiquitination sites (26) but presumably do not impair PYL8 function, i.e. Lys24, 

Lys38, Lys59, Lys70 and Lys84, and generated the quintuple Lys-Arg PYL8 
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mutant (abbreviated as 5KR). We found that in vitro activity of the 5KR mutant 

was comparable to wild-type PYL8 (Fig. 3D). Interestingly, GFP- and HA-tagged 

lines of PYL85KR showed a 2-3 fold increase of protein levels compared to wild 

type in the absence of exogenous ABA treatment   (Fig. 3E; SI Appendix, Fig. 

S3B). We analyzed seedling establishment in the presence of 0.5 M ABA and 

ABA-mediated inhibition of root growth in response to 10 M ABA (SI Appendix, 

Fig. S3C-D). In both cases, HA-tagged lines of PYL85KR showed enhanced 

sensitivity to ABA compared to lines expressing wild-type PYL8. These results 

suggest that ubiquitination and regulation of PYL8 protein stability is crucial for 

proper response to ABA.  

In order to investigate whether intracellular movement of PYL8 affects 

plant sensitivity to ABA, we have compared sub-cellular localization and ABA 

sensitivity of GFP-PYL8, GFP-PYL85KR and GFP-PYL8K61R Y120A lines (SI 

Appendix, Fig. S4). The line expressing GFP-PYL8, which accumulates GFP-

PYL8 in the nucleus after ABA-treatment, shows enhanced sensitivity in ABA-

mediated inhibition of root growth and repression of lateral root formation 

compared to wild-type Col-0 (SI Appendix, Fig. S4). Some nuclear accumulation 

of GFP-PYL85KR was observed at endogenous ABA levels (SI Appendix, Fig. 

S4A), which correlated with enhanced sensitivity to ABA compared to GFP-

PYL8 line (SI Appendix, Fig. S4B-C; see also Fig. S3C-D). In contrast, lines 

expressing GFP-PYL8K61R Y120A, which does not accumulate in nucleus after 

ABA treatment, behave as wild-type Col-0 in root growth assays (SI Appendix, 

Fig. S4). Therefore, nuclear accumulation of GFP-PYL8 induced by ABA is 

required for ABA response.   

 

PYL8 behaves non-cell-autonomously in root tissues  

In order to study the effect of ABA treatment on PYL8 expression in the root 

apex, we performed GUS staining after mock or 50M ABA treatment for 3h 

(Fig. 4A). In control root apices, GUS expression driven by the PYL8 promoter 

was detected in lateral root cap (LRC), root epidermis and stele cells (SI 

Appendix, Fig. S5A-B), as previously reported (13). This PYL8 expression 

pattern was similar in ABA-treated plants, although some attenuation of PYL8 

expression was apparent (Fig. 4A). To gain further insight about the expression 
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of PYL8 in the root apex, we performed in situ hybridization using a digoxigenin-

labeled antisense RNA probe to detect the PYL8 mRNA in Col-0 (Fig. 4B). 

Under both mock and ABA-treatment conditions the PYL8 transcript was mainly 

detected in the epidermis. Weak staining of stele cells using the antisense RNA 

probe was also detected, but was attenuated after ABA treatment (Fig. 4B).  

Since ABA signaling has been reported to regulate distinct processes in 

different root tissues (3, 9, 19) and PYL8 plays a key role in root ABA 

perception, we investigated the localization of the PYL8 protein in the root apex. 

Using CLSM we analyzed the ProPYL8:PYL8-GFP lines either after mock or 

ABA treatments. Interestingly, expression of PYL8-GFP in mock-treated roots 

was weakly detected in the epidermis and stele, whereas following ABA-

treatment it was clearly visible in LRC, epidermis, cortex, endodermis, stele, 

quiescent center and columella cells (Fig. 4C). PYL8-GFP expression in the 

epidermis was markedly enhanced by ABA treatment (SI Appendix, Movie S1). 

Since the PYL8 transcript was not detected in the cortex or endodermis, we 

conclude that the PYL8 protein is translocated to adjacent tissues from cells 

where it is initially synthesized. This movement is reminiscent of mobile 

transcription factors (TFs) such as SHORT ROOT (SHR) that regulate root 

development (27). To further investigate the movement of PYL8 between 

different root layers, we expressed PYL8-GFP driven by WER and WOL tissue-

specific promoters (3) (SI Appendix), and examined the localization of the 

fluorescent protein by CLSM (Fig. 4D-E). Quantification of CLSM images was 

performed with an updated version of CellSeT software (Fig. 4D-E), which 

performs tissue-scale measurements from confocal microscope images (SI 

Appendix). When PYL8-GFP was expressed under control of the WER 

promoter, which drives expression in epidermis and LRC (as confirmed by a 

pWER:GFP control), we could also detect PYL8-GFP at least in cortex cells 

(Fig. 4D). In the case of WOL-driven expression, whereas the GFP control was 

detected in the root vascular cylinder and pericycle as expected, we could 

detect PYL8-GFP additionally in the lateral root cap, epidermis, cortex and 

endodermis (Fig. 4E). Taken together, these results suggest that the PYL8 

protein can move from the cells where its transcript is produced.  
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The ABA-insensitive phenotype of pyl8-2 in root growth assays was not 

complemented when PYL8 was expressed driven by either WER or WOL 

promoters (SI Appendix, Fig. S6). PYL8 mRNA expression driven by its 

endogenous promoter is mostly localized in LRC, epidermis and the vascular 

bundle, and is able to complement the ABA insensitivity of pyl8 in root growth 

assays (Fig. 2A). Driven by WER promoter PYL8 protein was markedly 

detected in lateral root cap and epidermis, and weakly in cortex, suggesting that 

complementation requires intercellular movement of the protein to other root 

layers. Driven by WOL promoter PYL8 protein was detected in most of root 

tissues; however expression levels were markedly lower than those obtained 

using the endogenous PYL8 promoter (Fig. 4E and 4C). Therefore, although 

intercellular movement of the protein seems to be necessary, it is not sufficient 

unless suitable levels of the protein are achieved. Taken together, these results 

suggest that combined expression in epidermis and vascular bundle is required 

for complementation of the pyl8 phenotype (Fig. 2A).   

 Finally, given the importance of ABA signaling in the mature root, 

expression of PYL8-GFP was examined in the root differentiation zone after 

ABA treatment and was localized in the epidermis, cortex, endodermis, 

pericycle, and vascular tissue (SI Appendix, Fig. S5C-D). In particular, a 3D 

reconstruction after CSLM imaging revealed the presence of PYL8 in 

procambial cells of the vascular tissue (SI Appendix, Movie S2), which suggests 

a possible role of PYL8 in vascular development.  

Discussion 

We report that, unlike other ABA receptors, PYL8 exhibits distinct regulatory 

properties.  For example, PYL8 is transcribed in the epidermis and stele of the 

root apex but the PYL8 protein is also present in the cortex and endodermis. 

Hence, comparison of the PYL8 transcript expression with the localization of the 

PYL8 protein reveals translocation of the ABA receptor from epidermis or stele 

to adjacent tissues, including the cortex and endodermis (Figure 5A). Moreover, 

when PYL8-GFP was expressed driven by the WOL promoter, which is 

specifically expressed in the root vascular cylinder, the protein moved as far as 

the lateral root cap (Figure 4E). Hence, PYL8 appears to regulate ABA signaling 

in the root apex through a non-cell autonomous mechanism. However, it seems 
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that both intercellular movement and appropriated protein levels are required for 

complementation of the ABA-insensitive phenotype of pyl8 in root growth 

assays (Fig. 4C and Fig. 2A). The regulatory behaviour exhibited by PYL8 is 

reminiscent of mobile TFs involved in plant development that perform non-cell-

autonomous actions by trafficking from cell to cell through plasmodesmata (28, 

29). For instance, SHORT ROOT (SHR) which is synthesized in all stele cells 

except the phloem, moves to adjacent cells including the endodermis and 

phloem (28, 29). The movement of SHR relies on the endomembrane system, 

interaction with the SHR interacting embryonic lethal (SIEL) protein and 

association to endosomes in a SIEL-dependent manner (27). Interestingly, ABA 

receptors traffic through endosomes (20, 21). In addition to degradation in the 

vacuole, endosome trafficking can promote signaling functions both in plants 

and animals by facilitating the movement of proteins between cells (30).  

 We also report that ABA specifically stabilizes PYL8 compared to other 

ABA receptors and induces its accumulation in root nuclei. We demonstrate that 

this requires ABA perception by PYL8 and leads to diminished ubiquitination of 

PYL8 in roots. Thus, the inactive PYL8K61R Y120A protein is not stabilized by ABA 

in roots, and activation of root ABA signaling in the absence of ligand binding by 

PYL8  (as occurs after QB treatment) fails to stabilize PYL8. Different reporters 

for direct visualization of ABA concentration changes have been described (31-

34). However, reporters based on the overexpression of PP2Cs or ABA 

receptors affect ABA sensitivity per se, for instance ABAleon lines show 

reduced sensitivity to ABA (33) whereas ABACUS lines show enhanced ABA-

mediated inhibition of root growth compared to wild type (34). The 

ProPYL8:PYL8-GFP pyl8-1 line here described showed wild-type sensitivity to 

ABA-mediated inhibition of root growth (Fig. 2A), which is a requisite for a root 

ABA biosensor. Additionally both kinetic and dose-response analyses indicate 

that PYL8-GFP might be used as an ABA biosensor in roots to detect 

exogenous ABA (SI Appendix, Fig. S2). Moreover, the PYL8-GFP biosensor 

harbors the potential to specifically identify PYL8 agonists through in vivo 

screening, which is required to confirm the bioactivity of molecules identified by 

in vitro or in silico screening. However, the current version of the PYL8-GFP 

biosensor needs to be improved to a ratiometric version in order to achieve a 

wider dynamic range of sensitivity to ABA changes (33, 34). 
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Although the main function of PYL8 is the ABA-dependent inhibition of 

clade A PP2Cs such as ABI1 and PP2CA (13), an additional role independent 

of the core ABA signaling pathway has also been reported (35). Thus, PYL8 

promotes lateral root growth by interacting with the TFs MYB77, MYB44 and 

MYB73 to augment auxin signaling, which points to an additional nuclear role of 

PYL8 (35). ABA perception by PYL8 in the nucleus is required to inhibit PP2C 

activity and hence relieve repression of ABA signaling by the SWI/SNF 

chromatin remodeling ATPase BRAHMA (36).  Failure to inhibit nuclear PP2C 

activity, as exemplified by the phosphatase abi1Gly180Asp that is refractory to 

inhibition by ABA receptors, blocks ABA signaling and inhibits ABA response 

element-binding bZIPs that mediate transcriptional response to ABA  (37, 38). 

Interestingly, we observed enhanced nuclear localization of PYL8 in root cells 

after ABA treatment, which suggests that both intra- and inter-cellular 

movement of PYL8 occurs (Figure 5B). Further insight into the cellular 

mechanisms involved in movement of ABA receptors is a key issue for future 

research. We note that the enhanced localization of PYL8 in the nucleus 

together with diminished polyubiquitination induced by ABA can reduce 

degradation of the receptor through the vacuolar pathway (20, 21) and 

contributes to stabilization of the receptor (Figure 5B). The mechanism whereby 

ABA specifically reduces polyubiquitination of PYL8 is another challenging issue 

to be investigated.    

Materials and Methods 

Detailed description is provided in SI Appendix for plant material and growth 

conditions, generation of HA-tagged and GFP-tagged lines and ProPYL8:PYL8-

GFP pyl8-1 lines, expression of PYL8-GFP in root driven by tissue-specific 

promoters, generation of PYL8 mutations, in vivo protein analysis and 

degradation assays, root growth assays, RT-qPCR analysis, GUS staining, 

PP2C inhibition assays, RNA in situ hybridization, Confocal Laser Scanning 

Microscopy (CLSM), measurements and statistical analysis. 
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Figure legends.  

Fig. 1. ABA treatment specifically increases PYL8 protein levels in 

seedlings. (A) Effect of CHX, MG132 or ABA treatment on protein levels of HA-

tagged receptors. 10-d-old seedlings expressing HA-tagged receptors were 

either mock- or chemically-treated with 50M CHX, MG132 or ABA for 6 h. 

Immunoblot analysis using anti-HA was performed to quantify protein levels. * 

indicates P<0.05 (Student’s t test) compared to the corresponding mock-treated 

sample. (B) Effect of ABA treatment on GFP-PYL2, GFP-PYL4 and GFP-PYL8 

protein levels. Seedlings expressing GFP-tagged PYL proteins were either 

mock- or 50M ABA-treated for 6 h. Immunoblot analysis using anti-GFP was 

performed to quantify protein levels. (C) ABA treatment leads to selective 

accumulation of GFP-PYL8 in the nucleus. CLSM analysis of Arabidopsis root 

differentiation zone in lines expressing GFP-tagged PYL proteins that were 

either mock- or ABA-treated for 1 h. Scale bars=30 μm. 

Fig. 2. ABA increases PYL8 protein levels in roots through a 

posttranscriptional mechanism. (A) PYL8-GFP complements the ABA-

insensitive pyl8-1 phenotype. 5-d-old seedlings germinated on MS plates were 

transferred to new plates lacking or supplemented with 10M ABA and 

quantification of root growth was performed after 10 d. Data are averages ±SD 

from three independent experiments (n=20). * indicates P<0.05 (Student’s t 

test) compared to Col-0 in the same assay conditions. (B) ABA treatment leads 

to accumulation of PYL8-GFP protein and down-regulation of PYL8-GFP mRNA 
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in roots. 10-d-old seedlings expressing PYL8-GFP were either mock- or 50M 

ABA-treated for 3 h and protein or RNA extracted from root tissue. Immunoblot 

analysis using anti-GFP was performed to quantify protein levels of PYL8-GFP 

(asterisk) in roots. A major 30 kDa root protein was used to normalize protein 

loading. qRT-PCR analyses were performed to quantify mRNA expression of 

PYL8-GFP. * indicates P<0.05 (Student’s t test) compared to mock-treated 

samples. (C) ABA treatment leads to accumulation of PYL8-GFP in the nucleus. 

CLSM analysis of Arabidopsis root expressing ProPYL8:PYL8-GFP in the pyl8-

1 background after mock- or ABA-treatment for 6 h. Scale bars=25 μm. (D) 

Dose-response analysis of PYL8-GFP accumulation in response to treatment 

with the indicated ABA concentrations for 6h. Fluorescence was quantified in 

arbitrary units (a.u.) using images acquired by CLSM. (E) Accumulation of 

PYL8-GFP after 250 mM sorbitol treatment. Fluorescence was measured after 

treatment with 125 mM or 250 mM sorbitol (S) or 50 uM ABA for 3 h. Scale 

bars=30 μm. * indicates P<0.05 (Student’s t test) compared to mock-treated 

samples. 

Fig. 3. ABA perception by PYL8 is required to trigger its stabilization via 

reduced receptor ubiquitination. (A) QB treatment does not lead to 

accumulation of PYL8-GFP. QB induces ABA signaling in the root as revealed 

by the pRAB18:GFP reporter. CLSM analysis of Arabidopsis root apex 

expressing either ProPYL8:PYL8-GFP in the pyl8-1 background or 

ProRAB18:GFP in wt after mock-, 20M ABA- or 50M QB-treatment for 1 h. * 

indicates P<0.05 (Student’s t test) compared to mock (DMSO)-treated sample. 

(B) ABA prevents degradation of PYL8-GFP in roots whereas QB does not. 10-

d-old seedlings expressing PYL8-GFP were treated with 50M ABA for 6 h to 

induce accumulation of PYL8. After washing out ABA, a CHX treatment in the 

absence or presence of 50M ABA or QB was performed for 60 or 120 min. 

Protein extracts of roots were analyzed using an anti-GFP antibody (-GFP). 

The histogram shows the quantification of the PYL8-GFP protein during the 

CHX treatment. * indicates P<0.05 (Student’s t test) when CHX+ABA treatment 

was compared to CHX or CHX+QB treatments, respectively. (C) ABA treatment 

increases total HA-PYL8 protein levels in root but reduces polyubiquitinated 

PYL8 forms. Protein extracts were prepared from mock or ABA-treated root 
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samples and submitted to immunoprecipitation using anti-HA antibodies. 

Immunoprecipitated PYL8 (IP HA) was analyzed by immunoblotting using anti-

HA and anti-Ub (P4D1) antibodies. The ratio of polyubiquitinated to non-Ub 

PYL8, PYL2 and PYL9 protein was quantified in mock- and ABA-treated 

samples. * indicates P<0.05 (Student’s t test) compared to ABA-treated sample. 

(D) The PYL8K61R Y120A mutant is unable to inhibit PP2C HAB1, whereas activity 

of PYL85KR is similar to PYL8 wt. Phosphatase activity of HAB1 was measured 

in the presence of PYL8 wt, PYL8K61R Y120A or PYL85KR mutants and different 

ABA concentrations. (E) CLSM of Arabidopsis root apex (left panels) and 

immunoblot analysis of root protein extracts reveal that the PYL8K61R Y120A 

mutant is not stabilized by ABA. Transgenic seedlings expressing GFP-PYL8, 

GFP-PYL8K61R Y120A or GFP-PYL85KR were either mock- or 50M ABA-treated 

for 3 h, root protein extracts were prepared and immunoblot analysis was 

performed using anti-GFP to quantify protein levels (right panels). * indicates 

P<0.05 (Student’s t test) when the indicated samples were compared. 

Fig. 4. Expression of PYL8 transcript and protein in roots. (A) GUS 

expression driven by the ProPYL8:GUS gene in the root apex. GUS staining 

after mock- or 50M ABA treatment. Scale bars=100 μm (B) Localization of 

PYL8 mRNA in the root apex. In situ hybridization was performed on 

longitudinal sections of the root apex of mock- or 50M ABA-treated seedlings 

using PYL8 antisense or sense probes. The PYL8 transcript was visualized 

using anti digoxigenin-AP antibody and NBT/BCIP staining. Scale bars=10 μm. 

(C) CSLM visualization of PYL8-GFP driven by the PYL8 promoter after mock- 

or ABA-treatment. Localization of PYL8-GFP after ABA treatment was detected 

in the root apical meristem, columella and lateral root cap. Scale bars=25 μm. 

Abbreviations: ep, epidermis; c, cortex; e, endodermis; st, stele; qc, quiescent 

center; lrc, lateral root cap; col, columella; csc, columella stem cells. (D-E) 

CSLM visualization of GFP or PYL8-GFP proteins expressed under the control 

of the pWER and pWOL promoters in pyl8-2 background. In order to stabilize 

PYL8, seedlings were treated with 50M MG132 and ABA for 6 h. Scale 

bars=10 μm. Histograms indicate tissue-scale measurements of CLSM images 

using CellSeT software. * indicates P<0.05 and **P< 0.01 (Student’s t test) 

compared to GFP control. 
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Fig. 5. Proposed model for ABA-dependent stabilization and movement of 

the non-cell-autonomous ABA receptor PYL8. (A) PYL8 translocation from 

epidermis (blue arrows) and stele (red arrows) to adjacent tissues. 

Translocation could be promoted by increased ABA levels or follow a default 

mechanism that is reinforced by ABA-induced accumulation of PYL8. The 

intercellular movement of PYL8 is accompanied by intracellular trafficking and 

increased nuclear accumulation in response to ABA. (B) ABA reduces 

polyubiquitination of PYL8 through an unknown mechanism, which stabilizes 

and increases PYL8 protein levels. ABA also enhances PYL8 localization in the 

nucleus (n), which prevents vacuolar degradation and might represent an 

additional mechanism to increase PYL8 levels.   
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SI Materials and methods 
 
Plant material and growth conditions. Arabidopsis thaliana plants were routinely 

grown under greenhouse conditions (40-50% relative humidity) in pots containing a 1:3 

vermiculite-soil mixture. For plants grown under growth chamber conditions, seeds were 

surface sterilized by treatment with 70% ethanol for 20 min, followed by commercial 

bleach (2.5 % sodium hypochlorite) containing 0.05 % Triton X-100 for 10 min, and 

finally, four washes with sterile distilled water. Stratification of the seeds was conducted 

in the dark at 4ºC for 3 days. Seeds were sowed on Murashige-Skoog (MS) plates 

composed of MS basal salts, 0.1% 2-[N-morpholino]ethanesulfonic acid, 1% sucrose and 

1% agar. The pH was adjusted to 5.7 with KOH before autoclaving. Plates were sealed 

and incubated in a controlled environment growth chamber at 22ºC under a 16 h light, 8 h 

dark photoperiod at 80-100 E m-2 sec-1.  

Generation of HA-tagged and GFP-tagged receptor lines and ProPYL8:PYL8-GFP 

pyl8-1 lines. HA-tagged PYR1/PYL4/PYL5/PYL8 transgenic lines have been described 

previously (1, 2, 3). HA-tagged PYL1/PYL2/PYL6/PYL7/PYL9/PYL10/PYL85KR 

constructs were done in pAlligator2 and transgenic lines were generated as described (3). 

GFP-PYL4 transgenic line has been described previously (4). GFP-PYL2, GFP-PYL8 

and GFP-PYL8K61R Y120A and GFP-PYL85KR constructs were done in the pMDC43 vector 

and transgenic lines were generated as described (4). The PYL8K61R, Y120A mutant was 

generated using overlap extension by PCR and SLIM-PCR procedures (see below for 

details) and primers described in Table S1. The PYL85KR mutant was obtained as a 

synthetic DNA fragment (see below for details). To express PYL8 under control of its 

native promoter, a 2.9 kb fragment comprising 2 kb PYL8 promoter and the PYL8 

genomic sequence lacking the stop codon was amplified by PCR using primers 

FproPYL8 and RnostopPYL8 (Table S1). It was cloned into pCR8/GW/TOPO and 

recombined by Gateway LR reaction into pMDC107 destination vector. The pMDC107-

based construct carrying the ProPYL8:PYL8-GFP gene was transferred to Agrobacterium 

tumefaciens pGV2260 by electroporation and used to transform pyl8-1 plants 

(phosphinothricin resistant) by the floral dipping method. Seeds of transformed plants 

were harvested and plated on hygromycin (20g/ml) selection medium to identify T1 
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transgenic plants and T3 progenies homozygous for the selection marker were used for 

further studies.  

Expression of PYL8-GFP in root driven by tissue-specific promoters. The PYL8-

GFP coding sequence was amplified by PCR from the pMDC83_PYL8-GFP template 

using the primers FwPstIPYL8 and RvBamHIGFP. Next, it was cloned into 

pCR8/GW/TOPO, verified by sequencing and recombined by Gateway LR reaction into 

pWOL_GW destination vector, which drives expression of PYL8-GFP in root vascular 

cylinder and pericycle (5). Additionally, PYL8-GFP was excised using a PstI-BamHI 

double digestion and cloned into pG0229-T WER, which drives expression in epidermis 

and lateral root cap (6). The resulting constructs pWOL:PYL8-GFP and pG0229-T 

WER:PYL8-GFP were transferred to Agrobacterium tumefaciens pGV2260 by 

electroporation and used to transform Col-0 and pyl8-2 (kanamycin resistant) plants by 

the floral dipping method. Seeds of transformed plants were harvested and plated on 

phosphinothricin (20M) selection medium to identify T1 transgenic plants and T3 

progenies homozygous for the selection marker were used for further studies.  

Generation of PYL8 mutations. The K61R mutation was introduced into PYL8 coding 

sequence by overlap-extension PCR using the primers FK61R and RK61R, cloning into 

pCR8/GW/TOPO and verification by sequencing. Next, the PYL8K61R coding sequence 

was excised using an NcoI-EcoRI double digestion and cloned into pETM11 to obtain 

recombinant protein. SLIM-PCR (7) was used to generate the Y120A mutation into the 

pETM11-PYL8K61R template using the following primers: PYL8Y120A-F3, 

PYL8Y120A-FT3, PYL8Y120A-R3 and PYL8Y120A-RT3 (Table S1). Next, the 

PYL8K61R Y120A coding sequence was cloned into pCR8/GW/TOPO, verified by 

sequencing and subsequently recombined using LR Gateway into pMDC43 vector. The 

quintuple Lys-Arg PYL8 mutant (Lys24Arg, Lys38Arg, Lys59Arg, Lys70Arg and 

Lys84Arg) was obtained as a synthetic DNA fragment (Invitrogen), which was amplified 

using Fpyl8-1NcoI and RvStop PYL8 primers and cloned into pCR8/GW/TOPO, verified 

by sequencing and subsequently recombined into pMDC43 and pAlligator2. PYL85KR 

coding sequence was excised using an NcoI-EcoRI double digestion from 

pCR8/GW/TOPO and cloned into pETM11 to obtain recombinant protein.   
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In vivo protein analysis and degradation assay. Surface sterilized seeds of transgenic 

lines overexpressing HA-tagged or GFP-tagged PYR/PYL receptors were sown in MS 

plates and grown for 4 days. Seedlings were transferred to liquid culture and grown for 

10 days in 2 mL of liquid MS medium. Then, they were either mock-treated or incubated 

with 50 M MG132, 50 M ABA or 50 M MG132+50 M ABA for 6h. Plant material 

was collected and frozen in liquid nitrogen at the indicated times. When indicated roots 

were sectioned and used to prepare protein extracts. Plant material (0.1 g) was extracted 

in 2 volumes of  50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1% Triton X-100, 3 mM DTT 

and 1x Complete Protease Inhibitor Cocktail (Roche). After protein quantification of each 

plant extract, 10 g of total protein was loaded on a 10% SDS-PAGE gel. Proteins were 

transferred onto Immobilon-P membranes (Millipore) and probed with anti-HA 

horseradish peroxidase (HRP) antibody (Roche; 1:1000 dilution) or an anti-GFP 

monoclonal antibody (clone JL-8; Clontech; 1:10000 dilution) as primary antibody and 

ECL anti-mouse peroxidase (GE Healthcare; 1:5000 dilution) as secondary antibody. 

Detection was performed using the ECL select Western blotting detection kit (GE 

Healthcare). Image capture was done using a cooled CCD camera system and the image 

analyzer LAS3000 and quantification of the protein signal was done using Image Guache 

V4.0 software. The signal intensities of the digitalized images were quantified using 

Image-Gauge version 4.0 using Rubisco to normalize protein loading.  

The effect of ABA treatment on PYL8-GFP protein levels was analyzed in root 

tissue of the ProPYL8:PYL8-GFP pyl8-1 transgenic line. Two-week-old plants grown in 

liquid culture were 50 M ABA-treated for 6 h and root tissue was collected and frozen 

in liquid nitrogen. For the analysis of PYL8-GFP stability, after ABA treatment for 6 h, 

plants were washed out and then submitted to a 100 M CHX chase for 60 or 120 min in 

the absence or presence of 50 M ABA or QB. Root tissue was collected and frozen in 

liquid nitrogen. Protein extraction was performed as described above and 150 g of total 

protein were analyzed by using the anti-GFP (JL8 clone, Clontech) antibody. The band 

intensities were quantified as described above. Immunoprecipitation of HA-PYL8 was 

conducted in protein extracts (2.5 mg total protein) obtained from sectioned roots that 

were either mock or ABA treated. Protein extracts were incubated with 50L of anti-HA 

antibody coupled to paramagnetic beads (Miltenyi Biotec) at 4ºC for 3 h. The 
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immunoprecipitated proteins were eluted following the manufacturer´s instructions and 

analyzed using anti-HA-HRP antibody or anti-Ub antibody (P4D1; Santa Cruz 

Biotechnology; 1:1000 dilution) as primary antibody and ECL anti-mouse peroxidase as 

secondary antibody. 

Root growth assay. Seedlings were grown on vertically oriented Murashige and Skoog 

plates for 4-5 days. Afterwards, 20 plants were transferred to new plates that lacked or 

were supplemented 10 M ABA. The plates were scanned on a flatbed scanner after 10 

days to produce image files suitable for quantitative analysis of root growth using the 

NIH Image software ImageJ version 1.37. When indicated the total number of lateral 

roots was also scored in plants grown in medium lacking or supplemented with 10 M 

ABA.  

RT-qPCR. RNA was extracted from seedlings that were either mock- or 50 M ABA 

treated using NucleoSpin® RNA Plant kit from Machery-Nagel, following the 

manufacturer’s instructions. cDNA was synthesized from 2 μg of total purified RNA 

using 30 U of RevertAid Reverse Transcriptase (Thermo Scientific). RT-qPCR was 

performed using PyroTaq EvaGreen qPCR Master Mix 5X from Cultek, which includes 

EvaGreen® Dye and carboxy-X-rhodamine (ROX) as a passive reference dye. The 

reaction was performed in a final volume of 10 μL using 0.4 μL of cDNA. The primer 

pairs used for this analysis are listed in Table 1. qPCR was performed in the 7500 Fast 

Real-Time PCR System from Applied Biosystems.  

PP2C inhibition assays. Phosphatase activity was measured using pNPP as a substrate 

(15 mM), 1μM of the PP2C NHAB1 and 2 μM of the indicated receptors. 

Dephosphorylation of pNPP was monitored with a ViktorX5 reader at 405 nm (8). 

Concentrations of 0, 4, 11, 33, 111, 333 and 1000 nM ABA were used for dose-response 

assays. Values are expressed as percentage of activity with respect to those in the absence 

of ligand. 

GUS staining. The b-glucuronidase histochemical assay was performed basically as 

described (9). Whole seedlings were submerged in GUS-staining solution: 5-bromo-4-

chloro-3-indolylglucuronide (X-Gluc), K+ ferricyanide/ ferrocyanide. After GUS 

staining, roots were clarified in acidified methanol solution, followed by neutralization 
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and incubation in ethanol. Root GUS staining was also visualized using modified PS-PI 

staining and CLSM as described previously (9). 

RNA in situ hybridization. RNA in situ hybridization with digoxigenin-labelled probes 

was performed basically as described previously (10). For in situ experiments 2 days old 

WT (Col-0) seedlings were either mock or 50 μM ABA treated for 6 hours and fixed for 

15 minutes under vacuum at room temperature in FAE solution (ethanol:acetic 

acid:formaldehyde:water, 50:5:3.5:41.5, v/v/v/v). The FAE solution was refreshed and 

the samples were incubated for additional 16 hours at 4ºC. Afterwards, the seedlings were 

dehydrated, paraffin-embedded and sectioned to 7 mm. After dewaxing in histoclear and 

rehydration, sections were treated for 20 minutes in 0.2 M HCl, neutralized for 10 

minutes in 2´ SSC and incubated for 30 minutes with 1 mg/ml Proteinase K at 37°C. 

Proteinase action was blocked with 5 minutes incubation in 2 mg/ml Gly and 10 minutes 

postfixation in 4% formaldehyde. Tissue sections were washed in PBS, dehydrated 

through an ethanol series and dried under vacuum before applying the hybridization 

solution (100 mg/ml tRNA; 6´ SSC; 3% SDS; 50% formamide, containing approx. 100 

ng/ml of antisense DIG-labeled RNA probe). Sections were hybridized overnight at 

52°C, washed twice for 90 minutes in 2´ SSC; 50% formamide at 53°C and the DIG-

antibody incubation and color detection with NBT-BCIP as substrates was performed 

according to the manufacturer instructions (Boehringer).  

The PYL8 RNA antisense and sense probes were generated using as template the 

253-bp fragment of the PYL8 coding sequence comprising nucleotides 507-760, which 

was amplified by PCR and cloned in both orientations into the EcoRI site of pBluescript® 

SK (+/-)vector. Antisense and sense RNA probes were obtained by in vitro transcription 

using the T7 RNA polymerase and labeling with digoxigenin-UTP (Roche).  

 

CLSM. Confocal imaging was performed using a Zeiss LSM 780 AxioObserver.Z1 laser 

scanning microscope with C-Apochromat 40x/1.20 W corrective water immersion 

objective. The following dyes or fluorophores were used: Propidium iodide (Sigma-

Aldrich), at a final concentration of 10 µg/mL (561 nm/600-660       nm); FM4-64 

(SynaptoRed™, Biotium), at a final concentration of 10 µM (561 nm/620-700 nm); GFP 

(488 nm/500-530 nm). Pinholes were adjusted to 1 Air Unit for each wavelength. For the 
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GFP quantitative z-scan analysis of the roots the power of the 488 nm laser was set at 

3.0% transmission to gain master of 830. If not specified, sections of 55 µm were 

analyzed compiling 23 slices with an interval of 2.50 µm. Post-acquisition image 

processing was performed using ZEN (ZEISS Efficient Navigation) Lite 2012 imaging 

software and ImageJ (http://rsb.info.gov/ij/).  

Measurements and statistical analysis. Primary root length was measured with the 

ImageJ software. Tissue-scale measurements of CLSM images were performed using 

CellSeT software (11) available from https://www.cpib.ac.uk/ tools-

resources/software/cellset/. Significant differences were calculated using Student’s T-test 

for single comparisons and Tukey HSD test for multiple comparisons (* p < 0.05; ** p < 

0.01). Values are averages obtained from three independent experiments ±SD.  
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SI Table 
 
Table S1. List of oligonucleotides used in this work. 
 
ACTGTGAAGCAAACCCTATA    FpromPYL8 
ACCATGGAAGCT AAC GGG ATT GAG  Fpyl8-1NcoI 
TTAGACTCTCGATTCTGTCGT                                        RvStop PYL8   
GACTCTCGATTCTGTCGTGTC   RnostopPYL8 
AAACTGCAGAAGAAGATGGAAGCTAACGGGATT FwPstIPYL8 
AAAGGATCCTTACTTGTACAACTCATCCATGCC RvBamHIGFP 
CCACAGAAGTATAGGCCGTTTATCAGT  FK61R PYL8 
ACTGATAAACGGCCTATACTTCTGTGG         RK61R PYL8 
ATCATCTCTCTTCACCCCGAGACTATA   PYL8Y120A-F3  
CTTAAGAACGCTTCTTCAATCATCTCTCTTCACCCCGAGACTATA PYL8Y120A-FT3  
TCTATGATCACCACCAACGATTCTGAT   PYL8Y120A-R3 
TGAAGAAGCGTTCTTAAGTCTATGATCACCACCAACGATTCTGAT PYL8Y120A-RT3 
ACCATGGCGAATTCAGAGTCCT   FNco5g46790PYL1 
GGATCCTTACCTAACCTGAGAAGAGTTGT RBamHI5g46790PYL1 
ACCATGGGCTCATCCCCGGCCGTGA   FwNcoPYL2 
TTATTCATCATCATGCATAGGTG    RvStopPYL2 
ACCATGGCAACGTCGATACAGTT     FNcoI2g40330PYL6 
TTACGAGAATTTAGAAGTGTT       R2g40330PYL6 
ACCATGGAGATGATCGGAGGAGAC   F PYL7 
TCAAAGGTTGGTTTCTGTATGATTC   R PYL7 
ACC ATG GTG GAC GGC GTT GAA GGC  FwNcoIPYL9 
TCA CTG AGT AAT GTC CTG AGA    RvPYL9 
ACCATGGACGGTGACGAAACAAAGAAG   F PYL10 
TCATATCTTCTTCTCCATAGATTC    R PYL10 
TCTTTAGCTGATATCTCTGAACGTC  F507PYL8 
AAGAGGGTTTGAAAGTGAAATGACC  R760PYL8 
CATAACCCAACGCATCCA    FwPYL2 RT-qPCR 
AACTCAAGCCGCTCGGTA    RvPYL2 RT-qPCR 
CTCCGGGACCGTCGTTGT    FwPYL4 RT-qPCR 
GGGTGGTGAAAGCCGGAA    RvPYL4 RT-qPCR 
TGTAGCTCTACGCTTGTT    FwPYL8 RT-qPCR 
GTTGCTGGTAGTCCAGAT    RvPYL8 RT-qPCR 
ACCAGTGTACCTCTGCTC    FwPYL9 RT-qPCR 
TCTAAGACTGCCGATTTC    RvPYL9 RT-qPCR 
AGTGGTCGTACAACCGGTATTGT   Fw ACT8 RT-qPCR 
GAGGATAGCATGTGGAAGTGAGAA  Rv ACT8 RT-qPCR 
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SI Movies 

 
Movie S1. Expression of PYL8-GFP in epidermis of the root apex from ProPYL8:PYL8-
GFP pyl8-1 seedlings treated with 10 M ABA for 6h. 3D reconstruction obtained from a 
z-series including 56 images. 
 
 
 
 

 
Movie S2. Expression of PYL8-GFP in mature root of ProPYL8:PYL8-GFP pyl8-1 
seedlings treated with 50 M ABA for 6h. 3D reconstruction obtained from a z-series 
including 56 images. 
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