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The use of materials to impose tissue-like architecture at cell resolution will be important if engineered 

functional replacements for damaged cardiovascular, pulmonary, renal or digestive tissues are to be 

authentically engineered. Here, we demonstrate a coordinated system for the fabrication and subsequent 

culture of tubular tissues composed of multiple layers, cell-types and materials with physiological 

dimensions and defined architectures at cell resolution. We developed an automated tube fabricator (ATF) 

that rolls 2D-matrices into 3D-tubular constructs directly from cells, hydrogels and scaffold biomaterials. 

Coordinated use of surface modification strategies allows 2D cell sheets and cell/biomaterial composites 

(i.e. hydrogels or electrospun scaffolds) to be fabricated which may be transferred into a perfusion 

bioreactor in a rapid and standardized procedure. To exemplify our strategy we fabricated structures 

resembling human mammary artery and gut; these can be imaged in situ and real-time electrical resistance 

measurements performed of the vessel walls, allowing non-invasive assessment of viability and 

functionality. Our system allows patterning at cellular resolution with variable tissue thickness, length, 

luminal diameter, and constituent biomaterial. This inherent flexibility will allow the recapitulation of the 

complex hierarchical biological architectures and generate functionality found natively in vivo. 

 

Introduction 

Various obstacles hinder tissue engineered vessel development including recreating the substantial 

mechanical strength and biological activity in situ grafts require on transplant. Furthermore these conduits 

need to be immunologically inert and non-thrombotic for successful long-term post-transplantation 

patency and for clinical adoption (Kakisis et al., 2005, Baguneid et al., 2006). Fundamental construct 

fabrication considerations include; dimension standardization, and for biologically active architectures, 

factors such as seeding, positioning and patterning of cells within different layers throughout tissues. To 

address these, various methodologies have been applied including synthetic scaffolds, biocompatible 

natural scaffolds, cell sheet technologies, automated (McAllister et al. 2006) or self-assembly of vessels 

(Baguneid et al., 2006, Kakisis et al., 2005, Peck et al., 2012, Nerem and Seliktar, 2001, Kubo et al., 2007, 

Williams et al., 2009). Some models have shown good patency in animal models (Niklason et al., 1999, Kim 

et al., 2008, Shum-Tim et al., 1999, Wang et al., 2013), with few progressing to human trials (Shin'oka et al., 
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2005, Shin'oka et al., 2001, McAllister et al., 2009). This limited success highlights the necessity to improve 

graft fabrication processes and facilitate the use of multi-phase materials to create tissues (Peck et al., 

2012, Baguneid et al., 2006). Multilayer tubes have been engineered using various approaches including 

manually rolling cell sheets around a mandrel (L'Heureux et al., 2006, L'Heureux et al., 1998, Seliktar et al., 

2000), tubular constructs requiring external structural supports to prevent tube disassembly (Papenburg et 

al., 2009), cell sheet rolling technologies (Kubo et al., 2007), or self-rolling stretched synthetic materials 

(Yuan et al., 2012). Manual rolling with or without additional external support is technically complex and 

requires lengthy tissue maturation, whilst the presence of stabilizing materials prevents usefulness in 

downstream applications. Self-rolling materials are generally not biocompatible for long-term viability, and 

the mechanical forces placed on cells may directly affect cell behaviour (Engler et al., 2006). The application 

of cell sheet patterning technologies allows precise positioning of cells within a 2D layer (Williams et al., 

2009), however the only previous example of an automated tube fabrication strategy required sheets to be 

suspended in solution, preventing controllable sheet orientation (Kubo et al., 2007). Here, we focused on 

devising a methodology to fabricate example tissues with these attributes. 
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Material and Methods 

Materials 

Materials were purchased from Sigma-Aldrich (Dorset, UK) unless stated otherwise. NIH-3t3 mouse 

embryonic fibroblasts (3T3s), human umbilical vein endothelial cells (HUVECs), BJ6 fibroblast cells and 

CACO-2 cells were obtained from the LGC Standards (Middlesex, UK). Primary human airway smooth 

muscle cells (SMCs) were isolated from bronchial biopsies at the Glenfield Hospital (Leicester, UK) as 

described previously.(Kaur et al., 2006) The research was approved by the Leicestershire Ethics Committee, 

and patients gave their written informed consent. HUVEC media was supplied by Promocell (Heidelberg, 

Germany). DMEM media, rat tail collagen I, mouse monoclonal anti-E-cadherin, and rhodamine-conjugated 

secondary antibody were obtained from Invitrogen Life Technologies (Paisley, UK). Lentiviral labelling of cell 

lines was performed as described previously (Dixon et al. 2011, Paik et al. 2012). Cells were infected with 

enhanced green fluorescent protein (GFP)- or monomeric red fluorescent protein (mRFP)-labelled lentivirus 

at confluence and selected with puromycin for 7 days which produced >95% labelled cells confirmed by 

flow cytometry.  

 

Cell Maintenance 

Cells were cultured in isolation at 37°C in a 5% CO2 incubator. 3T3, SMC, CACO-2, and BJ6 cells were 

maintained in DMEM media containing 10% (v/v) FCS and 1% penicillin/streptomycin. HUVEC cells were 

maintained in endothelial cell growth media supplemented with 0.02% (v/v) FCS, 0.004% (v/v) endothelial 

cell growth supplement, 0.1ng/ml epidermal growth factor, 1ng/ml basic fibroblast growth factor, 90 µg/ml 

heparin, 4 µg/ml hydrocortisone, and 1% penicillin/streptomycin. 

  

Preparation of Collagen cell sheets  

Collagen sheets (2mg/ml; 25x15mm2) loaded with cells (3t3s, 2x106/sheet) were crosslinked within filter 

paper frames for 1hr at 37°C and were cultured until confluency (3 days). Filter paper frames were used to 

transfer sheets to the ATF and the frame excised before fabrication. 
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Preparation of Thermo-responsive Surfaces and Monolayer or Micro-patterned Cell Sheets 

Non-treated tissue culture plastic was coated with 5µl/cm2 of 5% PNIPAAm (w/v) in distilled water using an 

EClA500 HP-CS gravity-fed air-brush at 20 pounds per square inch (psi) (The Airbrush Company Ltd., UK). 

For grafting these were heated to 65°C for 12 hours. 5µl/cm2 of 100% FCS was deposited on PNIPAAm-

coated dishes by air brushing coating the full surface for monolayers or through micropatterned stencils 

(Tannlin Ltd, UK) for patterning cells (Paik et al., 2012). Cells (6x106 cells) were seeded onto surfaces or 

micropatterns in media without FCS or Ca2+. For monolayers after confluency was achieved alginate-wetted 

(1.2% w/v) filter paper frames were placed onto the monolayer, the alginate crosslinked with 135mM CaCl2 

to adhere to the underlying outer portion of the monolayer and the sheet detached through reduction in 

temperature to 4°C and gentle agitation. For patterns alginate (1.2% w/v) was used to overlay the pattern 

within a filter paper frame, the alginate crosslinked and detached as above. Filter paper frames were used 

to transfer sheets to the ATF and the frame excised before fabrication. 

 

Electrospun Scaffold Fabrication 

Electrospun scaffolds was produced in a vented chemical fume hood at room temperature using 10% PET 

(w/v) (foods grade drinking bottle quality) dissolved in a 1:1 trifluoroacetic acid (TFA):di-chloromethane 

(DCM) (Fisher Chemicals, Loughborough, UK). Polymer solution was loaded into a syringe attached to a 

blunt 23-gauge (G) needle (BD Falcon™, Oxford, UK) and placed in a pump-driver (Harvard Apparatus Ltd., 

Kent, UK) extruding at 0.5ml/hr. A 15kV voltage was applied and nanofibres were collected on a steel 

collector plate positioned 15cm from the needle tip. Scaffolds were attached to Perspex frames and 

sterilized by UV-irradiation for 30min. For seeding scaffolds were soaked in media prior to CACO-2 cell 

seeding (1x106 Caco-2 cells/25x15mm2 scaffold). Perspex frames were used to transfer sheets to the ATF 

and the scaffold excised before fabrication. 
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Fabricating Vessels 

 The ATF (developed and manufactured by the Medical Engineering Unit, University of Nottingham) consists 

of stepper-motor driven modules, a mandrel rotation module driven by two inversely rotating facing 

stepper-motors and a sample delivery module, and a stage to deliver the material to the mandrel rotation 

module. Distance between the stage and mandrel is manually (or automatically) controlled to bring the 

sample in contact with mandrel. Using the programmable system the automated fabrication was initiated 

and the mandrel rotation module rotated (0.1-1 rotations/second) to draw up the sample. This action 

occurs simultaneously as the stage advancing; the stage covering the same distance as the circumference of 

the mandrel at the same rate as mandrel rotation. The fabricated tube (directly integrated into the tube 

holder mounts) was transferred into the jig. For Fibrin hydrogel bonding; 20µl/cm2 of 16mg/ml Human 

Fibrinogen was incubated with cell sheets, hydrogels or biomaterial for 5mins at 25˚C. 20µl/cm2 of 200U/ml 

Human Thrombin was either airbrushed onto the tube mounts or incubated with the previously fabricated 

layer for 5mins at 25˚C. Bonding of the tube mounts and the first layer was allowed to take place for 5mins 

before fabrication. 

 

Transepithelial Electrical Resistance (TEER) Measurements with Calcium Depletion 

CACO-2 populated tubular constructs connected to the bioreactor system had electrodes inserted within 

the tube lumen and the perfusion chamber that were connected to an EVOM2 volt-ohm-meter (World 

Precision Instruments, Hitchin, UK). Background conductance was removed by subtracting acellular scaffold 

readings. Media was replaced with CRB (Dixon et al. 2014) for 5min at room temperature which was then 

replaced by growth media (which contains 2mM CaCl2). TEER readings were taken periodically over a 24hr 

time period and are expressed as a percentage of the initial TEER reading (Ω/Ω0)/cm2. 

Dextran Permeability 

CACO-2 populated tubular constructs were incubated in serum-free media at 37°C for 1hr. A solution 

containing both 4kDa FITC-tagged dextran and 70kDa-Rhodamine-tagged dextran (1mg/ml) was added to 

the tube lumen. Media in the perfusion chamber was replaced with CRB for 5min at room temperature 
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before replacing with normal media.  Samples were collected from the perfusion chamber over a 2hr 

period post-CRB application and fluorescence quantified on a plate reader (excitation 520nm/emission 

590nm) (Tecan Infinite M200, Reading UK).  

 

Immunocytochemistry 

Samples were calcium depleted for 5min before immediate fixation and permeabilization using 100% 

methanol at -20oC. Non-specific antibody binding was reduced by incubation in 3% (w/v) bovine serum 

albumin solution. Samples were incubated with anti-E-cadherin antibody overnight at 4oC, with protein 

expression visualised with species-appropriate secondary antibody.  

 

Construct Visualization  

Composite tubular formations were visualized using a Nikon Eclipse TS100 Microscope (Nikon Instruments, 

Surrey, UK). Entire surface micropatterns images were captured by Nikon SMZ 1500 microscope with a 

SPOT insight camera. To view 3D tubes, and E-cadherin staining a TCS LSI super zoom confocal microscope 

was used (Leica Microsystems, Milton Keynes, UK). 

 

Data and Statistical Analysis 

Data are presented for cells cultured on at least three separate occasions and are expressed as mean±SEM. 

Data were analysed (GraphPad Prism, San Diego CA) using unpaired T-test. 
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Results 

Development of the ATF 

To produce viable, multi-layered, 3D-tubular architectures from 2D-cellular sheets, we developed the ATF 

to perform pre-determined automated tube rolling protocols (Figure 1A & B). We have developed this 

technology to be unrestricted as to the material used for fabrication and to allow patterned materials to be 

employed in an orientated fashion. The device is integrated into a sterile culture hood and consists of 3 

stepper-motor driven modules: i) a ‘mandrel rotation’ module driven by two inversely rotating facing 

stepper-motors, ii) a ‘sample delivery’ module; a stage to deliver the material to the mandrel rotation 

module, and iii) a ‘transfer module’; a system to transfer the construct to a compatible perfusion 

bioreactor. The fabrication process is complete within minutes and can rapidly reset to build multi-layer, 

multi-phase or multi-material architectures. The distance between the stage and mandrel is automatically 

or manually controlled to bring the 2D-material in contact with mandrel (Figure 1A, No 10). Fabrication is 

remotely initiated and the mandrel rotates at the same speed as the delivery stage (programmed from 0.1-

1 rotations/second) to draw up and roll the sample. If required, thrombin/fibrinogen bonding can be 

employed to integrate multiple-phases; the mandrel coated with thrombin and the cell sheet/material 

treated with fibrinogen solution (Figure 1C). Contact between the thrombin (mandrel) and the fibrinogen 

(sheet/material) creates a fibrin hydrogel which securely bonds the surfaces. During fabrication, fibrin 

forms crosslinks between adjacent layers and creates a fully adhered structure. Fabricated tubes are 

securely integrated into tube holder mounts (Figure 1A, No 4) and transferred to sterile culture jigs using 

the rotating tube transfer Y-arm (Figure 1A, No 3). This can then be installed in the complementary 

bioreactor system (Figure 3A), ensuring no further tube manipulation is required for effective construct 

perfusion. (Tube fabrication demonstrated in Video S1). If necessary the fabricated vessels can be detached 

from the bioreactor manually which is not prevented by using Fibrin within the structure. 

Fabrication of vessels with varying dimensions and phases 

Construct dimensions can be manipulated by varying different parameters: Wall thickness is determined by 

the 2D-material thickness and/or number of rotations around the mandrel (5µm->1cm). Length can be 
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adjusted by repositioning the mandrel rotation motors (Figure 1B; purple arrows) and/or varying cell-sheet 

width (<1mm-5cm). Here we demonstrated short vessels of several centimetres but clinically relevant 

lengths (15-60cm long) could be fabricated by modifying the motor distance and using further cell sheets to 

bond the junctions between several tube sections. Luminal diameter is varied using differently sized holder 

mounts (100µm-5cm). This flexibility ensures constructs possess dimensions comparable to various human 

tubular tissues. As examples, using a PET electrospun scaffold and alginate composite, we fabricated single-

phase tubular architectures with dimensions applicable to grafts from the aorta, gut, trachea, medium 

diameter arteries and urethra (Figure 1D). 

Multi-phase constructs are fabricated by sequentially rolling cellular-sheets/materials. A tri-phasic tubular 

structure consisting of a single cell monolayer and two cell-seeded collagen gels was fabricated (Figure 2A) 

as an exemplar. Initially a GFP-labelled NIH3T3 (GFP-3t3s) cell monolayer was rolled around the mandrel 

(1.05 rotations, 5µm layer thickness), followed by an mRFP- (mRFP-3t3s) and a GFP-3t3s seeded collagen 

gel (both 1.05 rotations, ~250µm layer thickness) (Figure 2A-E). Cell monolayers were created by surface 

modification of non-tissue culture-treated surfaces airbrushed with the temperature-sensitive polymer 

poly(N-isoproplacrylamide) (PNIPAAm) and foetal calf serum (FCS) prior to cell culture to confluence 

(Williams et al., 2009). PNIPAAm grafting was conducted using temperature-dependent absorption (65°C 

for 12 hours). This was chosen over other techniques such as UV- or microwave-radiation due to ease of 

processing samples. For simplicity and before temperature-sensitive detatchment, cell monolayers were 

cross-linked to an outer paper frame coated in alginate. This suspends the monolayer between the support 

allowing it to be easily transferred to the ATF for fabrication (Figure S1). A temperature reduction (4°C) 

allows the harvest of a complete cell monolayer sheet (Figure S2A) without damaging cell-deposited 

extracellular matrix (ECM)(Shimizu et al., 2001, Shimizu et al., 2006).  We analysed the complete fabricated 

tubes demonstrating layer integrity was maintained, with no significant cell migration into adjacent phases 

(Figure 2D: hydrogel to hydrogel; Figure 2E: monolayer to hydrogel) after 7 days of culture. Importantly 

however layers were integrated with cells at the phase surfaces in direct contact (Figure 2D; white arrow 

show integration, black arrows show phase interface).  
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Creation of patterned architectures 

To demonstrate the utility of our technology inter- and intra-layer cell patterning (with micrometre 

resolution over an extended distance) within the tubular architectures was achieved by adapting our 

previous high-resolution cell patterning technology (Figure S2A)(Paik et al., 2012). We employed 

micropatterned stencils and airbrushing to generate 50µm-wide lines of PNIPAAm interspersed with 50µm 

intervals on non-tissue culture plastic surfaces which we used to pattern GFP-3T3s (Figure 2F). We chose 

such large spacing between patterned lines to help visualisation however smaller gaps could be used to 

create orientated sheets rather than simple micropatterns. Patterns could be transferred by overlaying and 

detaching alginate-crosslinked sheets. These sheets maintained cellular patterning and were fabricated into 

vessels using the ATF (Figure 2G). In many tubular tissues luminal capacity is controlled by the surrounding 

smooth muscle cells (SMCs) which orientate uni-axially to ensure co-ordinated muscle contraction (Dobrin, 

1978). We therefore used this patterning to demonstrate effective cell alignment that can be directed into 

a helical orientation (evident in the larger airway bronchioles and small resistance arteries)(Jeffery, 2001, 

Rhodin, 1980) or herringbone alternating orientations  (found in larger elastic arteries which maintain wall 

structural integrity)(Rhodin, 1980). The herringbone motif was recapitulated using micro-patterning and 

ATF sheet fabrication; GFP-3T3 and mRFP-3T3 micropatterned cell sheets at 60° (mRFP-3T3) and 120° (GFP-

3T3) from horizontal respectively (Figure S3; example orientation). These two layers were fabricated 

sequentially to produce a 3D-tubular architecture with a herring bone motif found in native blood vessels 

(Rhodin, 1980) (Figure 2H), and previously modelled in 2D (Williams et al., 2011). Using materials such as 

aligned electrospun fibres would be useful to create orientation of cells which precisely mimic the in vivo 

situation (Morris et al. 2014).  

 

Fabrication of an arterial biomimetic 

We recapitulated a complete vascular conduit comprising of four cell layers to mimic the individual regions 

found within a blood vessel wall (Rhodin, 1980)  (Figure 2I) with dimensions comparable to an adult internal 

mammary artery (IMA) routinely used in heart bypass surgery (2.3-3.4mm external diameter, 0.6-0.75mm 
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wall thickness)(van Andel et al., 2003, Karaman et al., 2012). To ensure clear visualization of each cell-type 

post-fabrication, GFP-labelled HUVEC endothelial cells (GFP-HUVEC), mRFP-labelled smooth muscle cells 

(mRFP-SMC), and GFP-labelled BJ6 fibroblast cells (GFP-BJ6) were generated by lentiviral genetic 

modification (Dixon et al., 2011). Initially, individual 2D-sheets of GFP-HUVEC cells (3x106 cells), two aligned 

sheets of mRFP-SMC (1x106 cells), and a sheet of GFP-BJ6 cells (3x106 cells) were cultured as 2D-sheets for 2 

days before sequential cell-sheet rolling and tube imaging (Figure 2J). The two SMC layers were rolled in 

the same orientation to allow visualization of the individual cell layers.  

 

Creation of tubular tissues with Gut-like Barrier function 

Electrospun scaffolds are another biomaterial extensively used in tissue engineering that can mimic the 3D 

nano-topography of basement membranes on which epithelial cells reside in tubular architectures (Dalton 

et al., 2012, Teo and Ramakrishna, 2006, Booth et al., 2012). Exploitation of such technology has been 

mainly concentrated on regenerative purposes, with tissue engineered vascular (Shin'oka et al., 2005, 

Patterson et al., 2012, Kim et al., 2008, Wang et al., 2013) and tracheal (Jungebluth et al., 2011) grafts 

successfully transplanted into humans. To demonstrate the versatility of the ATF in fabricating various 

biomaterials, a simple epithelial tubular structure populated with the gut epithelial CACO-2 cell-line on a 

nanofibrous polyethylene terephthalate (PET) electrospun scaffold was created (Figure 3C). The 

epithelium’s primary function is to provide a physical barrier between adjacent environments whilst 

allowing a controlled para-cellular flow of nutrients and ions, and maintaining cellular polarization and 

structural integrity (Mullin et al., 2005). Inter-cellular barrier junctions consist of tight- and adheren-

junctions to control barrier integrity and porosity (Schneeberger and Lynch, 2004, Gumbiner, 1996). The 

trans-epithelial electrical resistance (TEER) was measured as an indicator of barrier function. During initial 

2D-cell sheet culture period, CACO-2 cells showed a TEER increase, with negligible increases seen after 10 

days indicating functional barrier formation. 3D-tubular, cell-populated scaffolds were fabricated on the 

ATF and transferred to the compatible bioreactor system (Figure 3A). Real-time TEER measurements within 

the bioreactor system were taken by inserting electrodes inside the lumen of the tube (Figure 3A [V2 & I2] 

& 3B), and externally to the construct in the bioreactor perfusion chamber (Figure 3B, V1 & I1). These 
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electrodes were connected to an EVOM2 machine measuring voltage (V1 & V2) and amplitude (I1 & I2) to 

quantify resistance across the tubular wall (Figure 3A). 

Relative levels of extracellular and intracellular calcium can directly affect epithelial layer barrier integrity 

(Cereijido et al., 1978, Gumbiner and Simons, 1986), a phenomenon applied to examining the modulation 

of barrier integrity in gut and kidney models (Gumbiner and Simons, 1986, Ye et al., 1999, Ivanov et al., 

2004b, Kwak et al., 2012). This short-term, reversible effect is induced through the dis-assembly of the 

inter-cellular junctional complexes (Ivanov et al., 2004a). CACO-2 populated tubes were incubated in a 

calcium reducing buffer (CRB), known to chelate calcium (Dixon et al. 2014) for 5 minutes before replacing 

with normal media (containing 2mM Ca2+) for a further 24hrs. Epithelial barrier permeability during this 

period was measured through TEER and para-cellular permeability. The reduction of extracellular calcium 

produced an instantaneous drop in TEER (67±5vs 144±8 Ω/cm2; mean ± SEM, n=3) with the re-introduction 

of calcium providing an equally robust restoration in electrical resistance that returned to initial levels after 

24hrs (Figure 3E). Inter-cellular junction integrity was visualised by immunostaining the adheren-junction 

protein E-cadherin at 5min and 24hrs post-calcium depletion. The classic “chicken-wire” E-cadherin 

distribution prior to calcium reduction was disrupted at 5min and restored after 24hrs (Figure 3D). In 

parallel, barrier integrity was monitored by small-molecule permeability. Using fluorescently-labelled 

dextran (4kDa FITC-dextran and 70kDa Rhodamine-dextran) allowed the analysis of different sized molecule 

diffusion within individual samples. Dextran was applied to the lumen of either blank electrospun scaffold 

tube, or a CACO-2 populated tube, and samples were taken from the perfusion chamber over a 2hr time 

course. Diffusion through acellular tubes was greater than cellular tubes (Figure 3F), whilst CRB treatment 

of cellular tubes significantly increased the rate of dextran diffusion over the time course. Lower weight 

dextran (4kDa) showed an increased diffusion rate compared to larger dextran molecules (70kDa) (Figure 

3G). These data indicate CACO-2 fabricated architectures possess functional barrier properties that restrict 

para-cellular diffusion in a size dependent manner.  Therefore we fabricated an intestinal tubular tissue 

that could be employed for drug screening strategies.   
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Discussion 

Here we have demonstrated an automated fabrication system to create multi-layer, multi-phasic, 

patterned tubular structures in which biomaterials, hydrogels or cells can be used as the base material. In 

conjunction with previously described patterning technology (Paik et al. 2012) and temperature-responsive 

polymers (PNIPAAM) (Williams et al., 2009) this technology allows precise positioning of cells in 3D 

architectures.  

This study has demonstrated that dimension standardization can be achieved in biologically active 

architectures and issues such as seeding, positioning and patterning of cells within different layers 

throughout tissues can be addressed directly during fabrication beyond the attempts of other studies (Peck 

et al., 2012, Baguneid et al., 2006). Manual fabrication of vessels used in previous studies (L'Heureux et al., 

2006, L'Heureux et al., 1998, Seliktar et al., 2000) is not easily achievable when multi-layer, –phasic 

patterned architectures are required which prompted the development of the ATF system. An automated 

system presents theoretical advantages over manual fabrication. However cost and system complexity 

must be offset with an improvement in vessel quality, speed of production and less need for technical 

ability needed for manual fabrication. Previous cell sheet rolling technologies (Kubo et al., 2007; McAllister 

et al 2006) have produced fabricated vessels however the technicality of manipulating delicate and 

hydrated hydrogels or cell sheets prompted us to develop a system in which 2D materials are fed into the 

fabrication mechanism yielding much more reproducible constructs and allowed patterned cellular 

structures to be fabricated (Williams et al., 2009). Furthermore by integrating the ATF system to transfer 

constructs to perfusion chambers directly the inherent variability of manual manipulation to allow 

bioreactor mounting and perfusion is removed. We demonstrated the use of fibrin to bond sheets during 

fabrication. Fibrin confers the advantage of rapid adherence between fabricated sheets but does have it 

disadvantages; Fibrin inclusion adds cost and could interfere with fusion of layers due to the biological 

activity of cells following fabrication during maturation. Furthermore the fibrin component was not 

sufficient to provide sufficient mechanical strength to create viable blood vessel mimetic constructs. 

Importantly, Fibrin is not essential to our system and its use could be emitted. Further analyses regarding 
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any thrombogenic activity of Fibrin in these constructs will also need to be tested before in vivo translation 

however this is unlikely (Kheirabadi et al. 2006). 

Even with our technology, materials that are fully bioactive and provide the substantial mechanical strength 

will need to be developed if living tissue is to be engineered as vascular grafts. However as the ATF system 

can be employed with any 2D material this methodology could be used to fabricate vessels with such 

materials (Kakisis et al., 2005, Baguneid et al., 2006).  Using the ATF system for fabrication of vasculature 

employing materials with the correct mechanical properties is now the focus of future work.  

 

Conclusion 

This novel automated platform allows accurate, standardized and repeatable fabrication of tubular 

architectures; comprised of multiple compact, stable and secure cell and/or material layers. These 

fabricated tissues are directly transferred to a compatible perfusion bioreactor without further 

manipulation. Rolling of each layer takes less than a minute and because no external material is required to 

maintain the structure except the cells with or without a biomaterial, it can be considered as an authentic 

living structure. We demonstrated our systems utility in fabricating vessels with arterial-like cell patterning 

and gut-like barrier function. This technology is easily adaptable to fabricate multiple biomaterial-types to 

engineer a variety of biologically stable tissues directed for regenerative or in vitro diagnostic protocols. 
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Figure 1. Automated tube fabricator (ATF) and fabricated vessels. A) Schematic of ATF. Sample sheets are 

delivered through an x-axis sliding stage from a computerised stepper motor (which can be positioned in 

the y-axis; purple). Tubes are rolled onto a mandrel driven by paired computerised stepper motors (green). 

Samples are attached to the stage using a vacuum line (red). After rolling, the machine may be reset to roll 

subsequent layers or the tube transferred to culture jigs (orange). B) Photograph of the ATF. Numbers 

indicate the features as described on the schematic. C) Flow diagram of tube fabrication process including 

the movements of the ATF (colour labels match the scheme and photograph). D) Examples of tubular 

constructs of different sizes and thicknesses fabricated using the ATF. Tubes were fabricated from PET 

electrospun scaffolds and alginate. These mimic the gross dimensions of Aorta/gut, Trachea, Medium 

artery and Urethra (left-right). Top image shows tube diameter bottom image shows wall thickness (wt). 

Rotation symbol indicates the number of rotations/layers used for fabrication. Examples of two internal 

mammary artery (IMA)/ coronary artery (CA) sized vessels with 1 or 3 rotations. E) Example of a vessel 

fabricated by the ATF (with IMA dimensions) within the perfusion bioreactor system. Bar is 3mm. 
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Figure 2. 
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Figure 2. Multi-layer & -thickness vessel fabrication. A) Schematic of the monolayer and collagen hydrogel 

sheets employed for multi-layer and –thickness tube fabrication using fluorescently labelled NIH3t3 cells. B) 

Cross-sectional image of the multiple layers within fabricated tube. Bar is 2 mm. C) High-magnification 

images of the interface between the hydrogels (D) and the monolayer/hydrogel (E) layers within tube wall. 

Black arrows show phase interface. Bar is 2mm. D) Confocal image showing complete integration of both 

hydrogel layers and interaction of cells from both layers. E) Confocal image showing interaction of cell 

monolayer and hydrogel layer. Bar is 100µm on left panel and 20µm on right panel in D & E. Black bars 

show phase interface. F) Representative 2D cell-sheet patterning (50µm width with 50µm gaps). Patterned 

PNIPAAm-polystyrene surfaces with GFP-labelled NIH3t3s cells (Bright-field and fluorescence images). Bar is 

200µm. G) Transfer of patterned cells to alginate hydrogel sheet (Bright-field and fluorescence images). H) 

Alginate sheets patterned with GFP- and mRFP labelled NIH3t3 cells were excised to produce angled 

(horizontal +/- 30˚; 60 and 120˚) 2D cell-sheets and rolled on the AFM to produce a tubular herringbone 

pattern; green-only, red-only and merged channels are shown. Bar is 1.5mm. I) Schematic of a muscular 

artery structure (0.3-10mm diameter vessels) showing Intima (Endothelial), Media (Smooth muscle) and 

Adventitia (Fibroblast). J) Fabrication of Biomimetic vessels. Fluorescently-labelled human endothelial 

(HUVEC-GFP), smooth muscle cells (SMC-mRFP) and fibroblasts (BJ6-GFP) were sequentially rolled to 

fabricate a tube mimicking muscular vessel architecture. The vessel was fabricated to create a sectioned 

structure to aid visualization. Bar is 2mm. 
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Figure 3. 
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Figure 3. Real-time measurements of vessels. A) Photograph of perfusion bioreactor containing a tubular 

construct. The construct is held in position on culture jigs and is continually perfused using a peristaltic 

pump. Tube is shown with electrodes connected to an EVOM2 machine to allowing measurements of real-

time electrical resistance (TEER); Amplitude (I) and voltage (V) are measured within the lumen (V2 & I2) and 

externally to the tube within the perfusion chamber (I1 & V1). B) Photograph of construct secured in 

perfusion chamber with electrodes inserted within lumen. Bar is 10mm. C) Scanning electron microscope 

image of an acellular PET electrospun scaffold. Bar is 10µm. D) Immunostaining of E-Cadherin (red) in a 

confluent layer of CACO-2 cells on the PET electrospun scaffold before Ca2+ depletion, 5min, and 20min 

post-Ca2+ depletion (left to right). Bar is 60µm. E) Electrical resistance through CACO-2 tube after Ca2+ 

depletion. CACO-2-populated PET electrospun scaffold tube was fabricated and loaded into the perfusion 

bioreactor with electrodes placed as shown in (A). Ca2+ was depleted for 5min before replacement in 

normal media. Electrical resistance was measured periodically over a 24hr period. F) Para-cellular 

permeability through a CACO-2 tube. Acellular and CACO-2 populated electrospun tubes were placed in 

perfusion bioreactor. Serum-free media containing both 4kDa FITC-tagged and 70kDa Rhodamine-tagged 

dextran was perfused through the tube lumen. Samples from the perfusion chamber were taken over a 2hr 

period, and fluorescence expressed as a percentage of total initial fluorescence. G) Para-cellular 

permeability through a CACO-2 tube pre- and post-Ca2+ depletion. 
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Figure S1. 

 

 

 

 

 

 

 

 

 

Figure S1. Detachment of cell-only sheets and vessel fabrication. A) A mRFP-labelled NIH3t3 monolayer 

cell-only sheet detached from a PNIPAAm surface by lowering temperature. Sheets were transferred on 

filter paper frames (coated in cross-linked alginate). Bar is 12mm. B) Light and C) fluorescence microscopy 

of a detached mRFP-labelled NIH3t3 sheet. Bar is 100µm. A tube fabricated using the ATF from a cell-only 

sheet with 3 (Figure 1E) or D) 15 rotations. Bar is 3mm. ø is tube diameter. 
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Figure S2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2. Cell pattern transfer for tube fabrication. A flow diagram using photographic images of the 

process used to pattern cells on PNIPAAM-coated polystyrene and subsequently transfer patterns to 

alginate sheets. Bar is 20mm. 
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Figure S3. 

 

Figure S3. Excision of cell patterns for tube fabrication. A) A GFP-labelled NIH3t3 hydrogel sheet was 

excised to produce sheets of required cell orientations. B) An excised sheet with cell lines 60˚ from 

horizontal. C) A tube fabricated using the ATF from the sheet in B) showing helically orientated cells 

patterns. Bar is 0.5mm. 

 

 


