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 

Abstract— In this paper, we present an improved model of 

measurement standard uncertainty (MU) of the insertion loss 

(IL) in a reverberation chamber (RC), including frequency 

stirring (FS). Differently from the previous model, the enhanced 

one does not require specific conditions on the parameter to be 

measured. Such an enhancement is applicable for all usable 

measurement conditions in RCs. Moreover, a majorant is 

derived, that is obtained under a weak condition on the 

coefficient of variation (CV) of the parameter to be measured. 

Results from measurements support the validity of both the 

proposed enhancement and the majorant. 

 

Index Terms— Reverberation chamber (RC), frequency 

stirring (FS), mechanical stirring (MS), measurement 

uncertainty (MU). 

 

I. INTRODUCTION 

Measurement uncertainty (MU) quantification is important to 

improve the applications of reverberation chambers (RCs) 

[1]. Hybrid stirring increases the number of uncorrelated 

samples and, consequently, reduces the MU [1]-[7]. In this 

paper, we consider the hybrid stirring as realized by a 

combination of frequency stirring (FS) and mechanical 

stirring (MS) [2]-[3]. The FS measurements also allow us to 

represent the measured quantity in time domain [8]-[10]. The 

MU of the insertion loss (IL) in an RC with hybrid MS and 

FS was addressed in [11], where a model was developed and 

achieved under conditions of well-stirred fields. We refer to 

this model as the  previous model. In [11], MU is estimated 

following the approach described in [12], hence considering 

it as a type A uncertainty. This type of uncertainty is normally 

the main component for MU in RCs [13]. The type B 

evaluation uncertainty depends on Manufacturer’s 

specifications of the instrumentations, as well as on the 
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specific calibration procedure used for measurements, which 

can change from case to case. However, instrumentation and 

setting adopted in our measurements are also shown here. An 

extensive treatment of the MU in RCs was addressed in [13], 

where an approach similar to that in [11] was used, as it will 

be specified below. Nevertheless, some meaningful 

differences in the approaches should be discussed. We will 

discuss this in section V. The purpose of this paper is to 

enhance the previous model and its range of usability. The 

enhanced model does not require specific conditions for its 

validity; it is de facto a generalization of the previous model. 

It is found that such an enhancement is applicable for all 

usable measurement conditions of IL in RCs including 

conditions at low frequencies. A majorant of the standard MU 

is also obtained: it requires the coefficient of variation (CV) 

of the measured samples to be less than or equal to one. We 

find that the majorant retrieves the previous model. It can be 

applied when a conservative margin for statistical fluctuations 

is considered and the abovementioned CV is less than one. 

 

II THEORY 

We develop the enhanced theory by considering the IL as in 

[11]. We can write [11]: 
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where  N represents the ensemble average with respect to 

the N uncorrelated field configurations from MS, e.g., 

performed through metallic stirrer(s) only. E
2
 represents the 

squared amplitude of the transmission coefficient S21; it is a 

random variable (RV). Actually, IL is a sample mean (SM) 

and therefore has statistical fluctuations: it is an RV. We can 

write the mean, variance, and CV of the RV ILf, respectively, 

as follows
1
 [11]: 
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1 Differently from [11], here, the mean squared of the IL, as well as other 

squared means, is written with no brackets. 
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where N is the number of uncorrelated samples used to 

estimate the SM ILf, f is the frequency, and 2

2

, ,0E f
  is the 

variance of 2E . Note that the parameters of the RVs are 

marked by the subscript 0 as in [11]. In order to analyze the 

behavior of the enhanced model, we will use the following 

conditions: 
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where FSB means frequency stirring bandwidth and 2 , ,0E f
  is 

the CV of E
2
. Note that for well-stirred fields we have 

2,0 , ,0fIL f E f
IL   . In general, it turns out that 

2,0 , ,0fIL f E f
IL   , i. e., the condition (5b) is met in most 

cases for fields in RCs; often, both the conditions (5a) and 

(5b) are met. However, at low frequencies, both the 

exponential and the Rician distribution could be unmet, as 

well as both conditions (5a) and (5b). We want to develop a 

model valid under any condition (5a)-(5c). When the 

condition (5b) is met, the IL includes a direct (line-of-sight, 

or LOS) component, which can be both desirable [14] and 

undesirable: the latter is the typical case of RCs loaded [15]-

[16]. When the samples are acquired both by mechanical and 

frequency stirring
2
, then ILf  is denoted by ILN,f and we can 

write [11]: 
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where the subscript f indicates that the averages are made 

over k uncorrelated frequency samples in FSB [11]. Here, we 

consider the averages with respect to N first and then those 

with respect to k [11]; it is implicit that we consider step-

tuned RCs [17]-[18]. The averages for each frequency point 

correspond to SMs including only the MS from to metallic 

stirrer(s). Such SMs are assumed to be uncorrelated RVs and 

they are denoted by ILf1, ILf2, ···, ILfk. Their corresponding 

mean values are denoted by ILf1,0, ILf2,0, ···, ILfk,0. The RV W 

given by (6) can be expressed as follows [11]: 
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Note that f = fk – f1, where f1 and fk are the minimum and the 

maximum frequency of the FS. We are interested in the mean 

and variance of W. We can write: 
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2 The MS considered in (6) is limited to metallic stirrer(s). 

We want to transform (9a) so that it gives a significant 

connection between MS and FS. We can write: 
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where 2 2

2 2 2

,0, ,0 , ,0 fE f E f
IL  . The mean 

2

,0fiIL  (i = 1, 2, …, k) 

changes as the frequency changes; the variations depend on 

the RC and FSB. The means 2

2

, ,0E f
  and 

2

,0fIL , as well as the 

corresponding sample estimates, can be thought of as two 

RVs, whose values are associated by the frequencies fi. We 

can write [19], [20]: 
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where 2

2

, ,0E f



 and 

2

,0fIL  are the means of 2

2

, ,0E f
  and 

2

,0fIL  

in the FSB, respectively; Cov means covariance; the subscript 

k means that the concerning parameter is referred to the FSB. 

The covariance is equal to zero when the RVs are 

uncorrelated or when (5a) is met; in the latter case, we can 

write: 2 2

2 2

,0 , ,0
 = const.

E E f
 


 . The RVs 2

2

, ,0E f
  and 

2

,0fIL , 

which are estimated by corresponding sample means from N 

uncorrelated sampling data of S21, are not totally uncorrelated 

in practice as the former includes an effect of the latter. 

However, when they are sufficiently uncorrelated (10a) can 

be well approximated as follows: 
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It is highlighted that (10b) is valid also in case of sample 

estimates. We can write [11]: 
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where 
,0f

 is the standard deviation of the means ILf1,0, ILf2,0, 

···, ILfk,0. 

A. Enhanced Model: Valid Under any Condition (5a)-(5c) 

Manipulating (9), (10b), and (11), we can write: 
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where W  and W  are the standard MU and the relative 

standard MU of W, respectively; the CV 
,0 ,0 0f f W   . 

When (5a) is met and 2 ,0E
  = 1, which corresponds to the 

case of well-stirred fields, (12) and (13) become equal to (10) 

and (13) in [11], respectively, as expected. Therefore, the 

term  2

1 2
2

, ,0E f



 defines an enhancement of the previous 

model. Practically, W  and W  are also RVs as parameters 

on the right side of (12) and (13), as well as those in the 
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equations below, are sample estimates. They depend however 

on N, in which case we omit the zero at their subscript. 

B. Variation of the Enhanced Model: Valid Under Condition 

(5a) 

When (5a) is met, a variation of the enhanced model (12)-

(13) can be obtained; in fact, (12) and (13) became as follows 

[21]: 
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where 2 2, ,0 , ,0E f E f
 


  for the assumption (5a). Since 

population parameters are estimated by the corresponding 

sample statistics
3
, which uses N uncorrelated sampling data of 

S21, we can de facto know if (5a) is met only when N is much 

greater than one: in such cases, the statistical fluctuations are 

substantially reduced. When N is not much greater than one, 

we can assume that (5a) is met and calculate its average in the 

FSB; the comparison of the results with those from 

measurements proves if the assumption holds true. 

C. Some Detail on the Behavior of the Enhanced Model and 

its Variation 

Note that 2 , ,0E f



 and  2

1/2
2

, ,0E f
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
 are mean and root mean 

square (RMS) of 2 , ,0E f
  in the FSB. They tend to the same 

value when the variance of 2 , ,0E f
  or of the concerning 

sample estimate tends to zero in the FSB. In section IV, it is 

shown that when N is greater than or equal to eight, (12)-(13) 

practically give the same results of (14)-(15). When N is less 

than eight, results from (14)-(15) give smaller values than the 

corresponding ones from (12)-(13), as expected. It will be 

shown that results from (12)-(13) match those from 

measurements. Moreover, on equal N value, the difference 

between results from (12)-(13) and those from (14)-(15) is 

maximum when the K-Factor is zero. By measurements, 

which are the samples of S21 taken in the RC at frequencies fi 

(i = 1, 2, …, k) within the FSB, one can estimate the means 

ILf1,0, ILf2,0, ···, ILfk,0, as well as 
2

0W , 2 , ,0E f



, and 

2

,0f . The 

variances are estimated as sample variances. Then, by using 

(12)-(15), we can calculate the corresponding standard and 

relative standard MUs. For k = 1, the achieved models 

retrieve the pure MS model of (3) and (4), of which they are 

extensions. Since the means ILf1,0, ILf2,0, ···, ILfk,0 are 

estimated by the corresponding sample means, their statistical 

fluctuations increase with the decrease of N; in particular, 

both 2 , ,0E f



 and  2

1/2
2

, ,0E f
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 are appreciably underestimated 

 
3 This is the reason why the symbol 2 , ,0E f


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 is used in (14) and (15) 

instead of 2 , ,0E f
 . 

when N is small [13]. It will be confirmed by results in 

section IV. 

D. Models Including the Effect of Statistical Non-Uniformity 

By following assumptions and developments in [11, after eq. 

14], we can write: 
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where the subscripts p, mp, and sp mean p independent 

positions of at least one of the two antennas, multiple 

positions, and a single position, respectively; 
2

, ,0sp p  is the 

variance due to the lack of perfect uniformity [11]. Note that 

the constancy of 2 , ,0E f



 for all positions p is acceptable in 

this context. If k = 1 (only MS), then (16) becomes as 

follows: 
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It is useful to recast (16) as: 
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where 
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It is also useful to introduce the ratio 
2 2
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 2 , ,0sp p p  .  (22) 

Equations (21) and (22) allow to estimate standard MU 

contributions 1 and 2. However, the two quantities are not 

completely uncorrelated [11]. It is important to note that the 

value of 2 , ,0E f



 mostly affects 1; that is, it affects (12)-(15). 

The total relative MU can be written as follows: 
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where 
2

1,r  and 
2

2,r  are the contributions to the relative MU, 

which correspond to the uncertainties squared 
2

1  and 
2

2 , 

respectively. 

E. Majorant of the Enhanced Model: Valid Under Condition 

(5b) 

Note that if (5b) is met, we can write: 
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Interestingly, the right sides of (24) and (25) are the same as 

in the previous model, and they give majorants of the 

corresponding standard MUs. It is specified that the subscript 

c in (24) and (25) denote that fields meet the condition (5b). 

It is important to emphasize that (12) and (13), as well as the 

corresponding (20) and (23), are a general model for the 

standard MU of the IL in RCs, i.e., (10)-(13), as well as (24) 

and (27) in [11], are a particular case of (12)-(13) and (20) 

and (23), respectively, which are retrieved when 2 ,0E
  = 1. 

F. Connection between the CV of E
2
 and the K-Factor 

Finally, it is useful to express the CV 2 , ,0E f
  by the K-Factor, 

which is denoted by Kf,0. When the transmission coefficient 

S21 has a Rician distribution, we can write: 
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where 
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2f f f E f
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µ1,f,0 and µ2,f,0 are the means of the real and imaginary part, 

respectively, of the coefficient S21, and E
2

,f,0 is the variance 

of those parts. From (26), one notes that if Kf,0 is constant in 

the FSB then also 2 , ,0E f
  is constant. 

 

III. MEASUREMENTS SETUP 

Measurements are made in the RC at Università Politecnica 

delle Marche, Ancona, Italy, which is operated in step mode 

to produce the measurements used in this paper. The 

measurement setup and acquisition settings are the same as in 

[11], except that in this case two type of configurations of the 

antennas are used for measurements: one configuration 

minimizes the direct coupling between the antennas, which 

are distant and cross-polarized, and the other one maximizes 

it. In the latter case, the antennas are on the LOS at a known 

distance from each other; they are tip-to-tip positioned and 

co-polarized; several distances are used for measurements but 

only results concerning the distances of 0.05 m and 0.3 m are 

shown for the sake of brevity. The former and latter 

measurement configurations are here called A and B, 

respectively. It is specified that the measurement setup 

includes a four-port VNA, model Agilent 5071B, and two 

antennas, model Schwarzbeck Mess-Elektronik USLP 9143, 

whose usable frequency range (FR) ranges from 250 MHz to 

7 GHz for EMC tests. The IF bandwidth and source power, 

which determine the instrument measurement uncertainty 

along with the set FR and amplitude of the measured 

transmission coefficient, are set to 3 kHz and 0 dBm, 

respectively. It is specified that the standing wave ratio 

(SWR) of the antennas in free space is less than or equal to 

1.75 from 250 MHz to 8.2 GHz and it is 3, which is the 

maximum value, at 200 MHz. Note that corrections for 

impedance mismatches, which are important in the RC at low 

frequencies, are not necessary for the verification of the 

proposed model [11]. Hence, measurements are extended to 

200 MHz to test the model where the CV of E
2
 can fluctuate 

around the unity. Over the FR from 0.2 GHz to 8.2 GHz, 

16,001 frequency points are acquired with a step frequency 

(SF) of 500 kHz for a number of mechanical positions M = 64 

[11]. Note that the number 64 corresponds to the total number 

of acquired stirrer positions, which in turns corresponds to the 

total number of acquired (frequency) sweeps (M = 64) [11]. 

The total sweeps are divided in n sets of (frequency) sweeps, 

so that each set includes N sweeps and M = n · N. The 

settings n and N can be changed to test the enhanced model 

[11]. For each sweep, the total number of processed 

frequency points  = 16,000 is divided in q sets of 

frequencies, so that f = (k – 1) · SF and  = k · q. Differently 

from the notation in [11], the symbol for the total frequency 

points is denoted here by  to avoid confusion with the 

symbol of the K-Factor. The value of q is the number of FSB 

or f included in the FR. The mean W0 in (12) is estimated n 

times and the standard deviation of such n averages Wi (i = 1, 

2, ···, n) is calculated [11]. The calculated standard deviation 

is an estimate of the measured standard uncertainty. When 

such an uncertainty is normalized to the average of the 

averages Wi, an estimate of the relative standard uncertainty is 

obtained. The measured standard MU is compared to the 

corresponding expected standard MUs, which are obtained by 

applying (12), as well as (14), and (24). They are applied by 

using any of the n estimates Wi and the corresponding 

estimates of 
2

,0f ,  2

1/2
2

, ,0E f



, and 2 , ,0E f




; clearly, the 

estimates of  2

1/2
2

, ,0E f



 and 2 , ,0E f




 are also calculated n 

times, and they are used in (12) and (14), respectively, as 

mentioned above. Similarly, the measured relative standard 

MU is compared to the corresponding expected relative 

standard MUs, which are obtained by applying (13), (15), and 

(25). The unorrelation of samples is verified by calculating 

the autocorrelation function (ACF). Here, the uncorrelation 

threshold used is 1/e, where e is the Neper’s number. 

Thresholds of 0.5 and 0.7 could be also used [22]. However, 

the higher the threshold the higher the residual correlation of 

samples [21]. Note that the 64 frequency sweeps of each IL 

measurement can be thought as a matrix of 64 rows and 

16,001 columns, where only the frequency changes (FS) 

along each row, whereas only the stirrer position (MS) 

changes along each column. The ACF is calculated for both 

row and column. For measurements where the IL includes a 

significant variable LOS component, the ACF is considerably 

affected. A short sequence of frequency samples, where the 

average of the direct component is removed, could be 

considered, as made in [21]; this method has the drawback to 

use only a few samples for the estimate of the ACF and, 

however, it is unreliable [21]. Here, the direct component is 

removed before we calculate the ACF for measurements 

concerning the configuration B; it is removed for each 

frequency point, i.e., it is removed for both MS and FS. The 

direct component to be removed is obtained by using all 64 
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sweeps. For both measurements from configuration A, where 

it is not necessary to remove the residual direct component, 

and measurements from configuration B, acceptable results 

are obtained according to the abovementioned threshold, 

which are not explicitly shown here for the sake of brevity. 

However, to ensure uncorrelated samples in all the FR and for 

any FSB, a decimation of samples from 1 through 8 is made 

for samples concerning the configuration B. Similarly, a 

decimation of samples from 1 through 2 is made for samples 

concerning the configuration A. Hence, SF becomes 1 MHz 

for configuration A measurements and 4 MHz for 

configuration B measurements. Finally, we note that when an 

appreciable direct component is not present or when it is 

removed and the stirred component dominates, the 

uncorrelation can be verified by using the correlation 

coefficient (CC) applied to the amplitude squared of samples 

[23]. By using such a method, it is confirmed that the results 

deteriorate when the FSB increases, as well as when it is too 

small, with respect  to the number of samples [23]. 
 

IV. RESULTS 

The effect of the enhancement of the previous model and of 

the majorant is well-visible in 1. Therefore, in order to make 

the verification of the proposed models effective and simple, 

we use (12)-(13), (14)-(15), and (24)-(25). Fig. 1 and 2 show 

the standard MUs and the relative standard MUs given by 

(12), (14), (24), and (13), (15), (25), respectively, for 

measurements concerning the configuration A. Note that f = 

(k - 1) · 1 MHz. Fig. 3 shows a detail of Fig. 2 at low 

frequencies. From Fig. 4 to Fig. 7, the CV f, the CV 2 ,E f
  

along with its average value and RMS value, and K-Factor 

are shown; in particular, Fig. 6 shows a detail of Fig. 5 at low 

frequencies. All processing settings (N, k, etc.) are reported in 

the figure captions. 
 

 
Fig. 1. Standard MU from the configuration A; for measured and expected 

standard uncertainties, M = 64,  = 8,000, N = 8, n = 8, and k = 10 (f = 9 

MHz). 

 

  
Fig. 2. Relative standard MU from the configuration A; for measured and 

expected relative standard uncertainties, M = 64,  = 8,000, N = 8, n = 8, 

and k = 10 (f = 9 MHz). 
 

 

 
Fig. 3. Enlargement of the Fig. 2 at low frequencies. 

 

 
Fig. 4. CV f from the configuration A; N = 8, k = 10 (9 MHz). 

 

 
Fig. 5. CV 2 ,E f

  from the configuration A, its average value, and RMS 

value in the FSB; for all traces, M = 64,  = 8,000, and N = 8. k = 1 for blue 

and unmarked trace and k = 10 (f = 9 MHz) for the green and red traces, 

which are cross-marked and circled-marked, respectively. 

 

 
Fig. 6. Enlargement of the Fig. 5 at low frequencies. 

 

 
Fig. 7. K-Factor from the configuration A; for both traces M = 64,  = 

8,000, and N = 64. k = 1 for blue and unmarked trace and k = 10 (f = 9 

MHz) for red and cross-marked trace. 
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Fig. 8. Relative standard MU from the configuration A; for measured and 

expected relative standard uncertainties, M = 64,  = 8,000, N = 8, n = 8, 

and k = 100 (f = 99 MHz). 

 

 
Fig. 9. Relative standard MU from the configuration A; for measured and 

expected relative standard uncertainties, M = 64,  = 8,000, N = 8, n = 8, 

and k = 200 (f = 199 MHz). 

 

 
Fig. 10. Relative standard MU from the configuration A; for measured and 

expected relative standard uncertainties, M = 64,  = 8,000, N = 2, n = 32, 

and k = 100 (f = 99 MHz). 

 

All Figs show the expected statistical fluctuations. The 

comparison between measured standard MUs and 

corresponding expected standard MUs shows that (12)-(13), 

as well as (14)-(15) are supported by measurement results. In 

order to prove that the models works also for different FSBs, 

expected relative standard MSs are shown in Fig. 8 and Fig. 

9, where k = 100 (f = 99 MHz) and k = 200 (f = 199 

MHz), respectively. It is also confirmed that expected results 

from (24) and (25) are the same as those from (12) and (13), 

respectively, when K = 0, which implies 2 1
E

   (the equal 

sign has to be taken in (24)-(25)), except at the low 

frequencies (f < 250 MHz), where a deviation is expected and 

observed (see Fig. 3). By Figs. (1)-(9), it is also noted that 

(12)-(13) and (14)-(15) give practically the same results for N 

= 8. In Fig. 10, where N is 2, it is well visible the difference 

between results from (13) and (15). Such a difference is due 

to the statistical fluctuations, which increase as N decreases, 

as mentioned above; the same applies to (12) and (14). The 

slight difference between results from (13) and (25), which is 

visible in Fig. 10, as well as those between results from (12) 

and (24), when in (24)-(25) the equal sign has to be taken, is 

due to the N value; it decreases as N increases because both 

2 , ,0E f



 and  2

1/2
2

, ,0E f



 are underestimated when N is small, 

as mentioned above. It is important to note that the measured 

standard MU and the expected standard MU from (12), as 

well as the corresponding relative standard MUs, match also 

when N is small (N < 4) for the effect of such an 

underestimate (see Fig. 10 for the relative standard MUs); 

otherwise, the abovementioned difference is acceptable from 

N = 4 [11]. Figures from 11 to 15 show results of 

measurements concerning the configuration B for d = 0.05 m. 

In particular, Figs. 11 and 12 show expected standard MUs 

and expected relative MUs along with the corresponding 

measured MUs. The FSB is 96 MHz. One notes that expected 

and measured results match again. Note that (24) and (25) are 

clearly majorants of the corresponding measured uncertainties 

in these cases. 
 

 
Fig. 11. Standard MU from the configuration B, d = 0.05 m; for measured 

and expected standard uncertainties, M = 64,  = 2,000, N = 8, n = 8, and k 

= 25 (f = 96 MHz). 

 

 
Fig. 12. Relative standard MU from the configuration B, d = 0.05 m; for 

measured and expected standard uncertainties, M = 64,  = 2,000, N = 8, n 

= 8, and k = 25 (f = 96 MHz). 

 

 
Fig. 13. CV f from the configuration B, d = 0.05 m; N = 8, k = 25 (96 

MHz). 

 

 
Fig. 14. CV 2 ,E f

  from the configuration B (d = 0.05 m), its average value, 

and RMS value in the FSB; for all traces, M = 64,  = 8,000, and N = 8. k = 

1 for blue and unmarked trace and k = 25 (f = 96 MHz) for the green and 

red traces, which are cross-marked and circled-marked, respectively. 
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Fig. 15. K-Factor from the configuration B, d = 0.05 m; for both traces M = 

64,  = 2,000, and N = 64. k = 1 for blue and unmarked trace and k = 25 (f 

= 96 MHz) for red and cross-marked trace. 

 

Figs. (16)-(20) show results of measurements concerning the 

configuration B for d = 0.3 m. 
 

 
Fig. 16. Standard MU from the configuration B, d = 0.3 m; for measured 

and expected standard uncertainties, M = 64,  = 2,000, N = 8, n = 8, and k 

= 25 (f = 96 MHz). 

 

 
Fig. 17. Relative standard MU from the configuration B, d = 0.3 m; for 

measured and expected standard uncertainties, M = 64,  = 2,000, N = 8, n 

= 8, and k = 25 (f = 96 MHz). 
 

 
Fig. 18. CV f from the configuration B, d = 0.3 m; N = 8, k = 25 (96 

MHz). 

 

 
Fig. 19. CV 2 ,E f

  from the configuration B (d = 0.03 m), its average value, 

and RMS value in the FSB; for all traces, M = 64,  = 8,000, and N = 8. k = 

1 for blue and unmarked trace and k = 25 (f = 96 MHz) for the green and 

red traces, which are cross-marked and circled-marked, respectively. 

 

 
Fig. 20. K-Factor from the  configuration B, d = 0.3 m; for both traces M = 

64,  = 2,000, and N = 64. k = 1 for blue and unmarked trace and k = 25 (f 

= 96 MHz) for red and cross-marked trace. 

 

It is important to note that results from (12)-(13) are 

essentially the same as those from (14)-(15) except for N < 8 

as Fig. 10 shows. However, we consider ultimately the 

enhanced model (12)-(13) even though we believe that the 

variation (14)-(15) can generally be used for N ≥ 8. Finally, 

we highlight that results in [21, Figs. 22-25], where no 

decimation was applied, did not match well because samples 

were partially correlated. The effect of a residual correlation 

is also appreciable in [21, Fig. 9] for f > 5 GHz. 
 

V. DISCUSSION 

The standard MU of the IL of an RC, as well as the relative 

standard uncertainty, is estimated for type A evaluation 

uncertainty; they are compared to the corresponding 

measured uncertainties. The estimate of the MU is obtained 

so that the uncertainty component 2 due to the non-

uniformity of the field in the RC is highlighted and separately 

obtained, except the multiplying factor  2

, ,01 sp p  present in 

1. The non-uniformity is affected by the load in the RC and 

it increases as the load increases. Such a component of 

uncertainty is connected to location, orientation, and 

polarization of both the transmitting and the receiving 

antennas for a given RC. The model gives good results at low 

frequencies as well. The non-uniformity of the field in an RC, 

which is estimated by 2 cannot be neutralized by the increase 

of sample dimension N  k, even though, a marginal reduction 

of such a component of MU could be achieved by a widening 

of the FSB [11]. This aspect is very important when 2 has to 

be reduced. This could be the case where the effect of a 

strong load on the uniformity has to be reduced or when a 

very low total uncertainty is necessary. In [13], the PDFs of 

the interest sample statistics are theoretically achieved; the 

theory is applied to 
2
 parent distributions with two or six 

degrees of freedom according to the sample statistic to be 

processed. The RVs, which are represented by the same 

amount of samples N  k  p from hybrid stirring, are all 

assumed to be identically distributed (ID), so that the 

theoretical PDF is achieved, as well as the concerning 

uncertainty. It is specified that M in [13] corresponds to k in 

[11] and here, when MS and FS, but no position stirring, is 

considered whereas M corresponds to the product k  p in 

[11], and in this paper when MS, FS, and position stirring are 

considered. It is important to highlight that the standard MU 

obtained here and in [11] is equivalent to that obtained in [13] 

for the average power, when the dependence on the frequency 

and the non-uniformity of the field are negligible in the FSB. 
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For such measurement conditions, the averages W and Wmp 

certainly exhibit PDFs that can be approximated by a Gauss 

normal sampling distribution, according to the total number 

of acquired samples N  k  p, and the confidence intervals can 

also be obtained. However, one can note that the N  k  p RVs 

are not strictly ID as the IL is subject to the non-uniformity of 

fields inside an RC. Such variations are affected by the load 

of the RC as mentioned above. In other words, the RVs have 

all the same PDF type, but they have not strictly the same 

mean and standard deviation; that is, they are not strictly 

statistically equivalent. At low frequencies, the distributions 

of the field and power deviate from the idealized theoretical 

ones; therefore, the theory applied to 
2
 is an approximation 

at low frequency. From the experimental point of view, when 

all samples are mixed up together, the total uncertainty is 

obtained. However, the assumption of RVs ID simplifies the 

theoretical developments and is certainly acceptable for small 

FSB and little non-uniformity of the field in the RC. The 

theory can also be extended to cases where fields are partially 

incoherent, i.e., cases where K > 0 [13, pag. 31]. In [13], 

many PDFs of practical interest and the related uncertainties 

are achieved, as well as the corresponding confidence 

intervals, including the PDF and the uncertainty of the 

maximum value for both field and power. The standard 

“uncertainty of the uncertainty” is also achieved. Results from 

some applications expected for the standard [1] are also 

shown. Finally, we believe that the averages W and Wmp 

exhibit PDFs approximately normal in all common usable 

measurement conditions in RCs including loaded RCs [20], 

[24]. Similarly, we believe that the assumption of RVs ID 

made in [13], along with the extension of the theory to cases 

where K > 0, causes an acceptable approximation in all 

common usable measurement conditions in RCs including 

loaded RCs. 
 

VI. CONCLUSIONS 

In this paper, an enhancement of the previous model for the 

standard MU in an RC is shown: it is de facto a 

generalization of the previous model. A majorant of the 

standard MS is derived as well. By results from 

measurements, it is shown that enhanced model works well 

for both high and low frequencies. It includes the previous 

model as a particular case and does not require specific 

conditions for its validity. The majorant is based on a weak 

condition on the CV of the parameter to be measured, i.e., it 

has to be less than or equal to one. The majorant, which just 

corresponds to the previous model, could be used when the 

abovementioned CV is less than one and a conservative 

margin is considered for the statistical fluctuation. However, 

it does not work well at low frequencies, where the condition 

for its validity does not hold true. Finally, the comparison 

between the model shown here and that in [13] was 

discussed; it is concluded that both approaches are practically 

sound. 
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