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Abstract. Integrate-and-fire networks have proven remarkably useful in
modelling the dynamics of real world phenomena ranging from earth-
quakes, to synchrony in neural networks, to cascading activity in social
networks. The reset process means that such models are inherently
discontinuous. Moreover, for jump interactions, which are a common
choice for many physical systems, the models are also nonsmooth. For
synchronous network states these processes can occur simultaneously,
and care must be taken with the mathematical analysis of solution sta-
bility. This leads to an ordering problem, that has no counterpart in
smoothly coupled limit cycle systems. Here we develop a set of network
saltation matrices that can be used with an appropriate ordering to
determine the instability of a synchronous network state. Moreover, we
show that smoothed versions of jump interactions do not capture the
behaviour of the nonsmooth model. Synchrony in the smoothed model
with reset is analysed using a generalised master stability function
(MSF), and the eigenspectra for smooth and nonsmooth interactions
are compared. We find that the one determined by the MSF organises
that found from the analysis of the nonsmooth model, though the latter
has further eigenvalues that can destabilise the synchronous state.

1 Introduction

The integrate-and-fire (IF) model has been a popular choice to describe an excitable
or oscillatory neuron since the work of Bruce Knight in the 1960s [1]. Since then
there have been several extensions of the model to allow for the generation of more
physiologically realistic firing patterns, such as the model of Gröbler et al. [2] for
a pyramidal cell in hippocampus CA3, and the Izhikevich model [3] which is now
widely used throughout computational neuroscience for a wide variety of cell types.
For a further discussion see [4]. At heart the IF model and its modern variants
make use of a reset process to mimic the return to rest seen in a real neuron after
the generation of an action potential. The time of reset is also used to signal the
time that an action potential is generated. The IF model has also been invoked
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outside of neuroscience, and typically to model systems with a threshold such as stick-
slip models of earthquakes [5], and social network models where a new behaviour is
enacted by an individual once threshold is reached [6]. The act of reset means that
IF models are inherently discontinuous. This is useful on one level since it means
that an oscillator can be built from even a one dimensional dynamical system, rather
than at least two dimensions as would be required for a smooth system in Euclidean
space. On the other hand one cannot simply use the techniques developed for smooth
dynamical systems, such as Floquet theory, to determine the stability of a periodic
orbit. Fortunately, a set of techniques developed for the study of impact oscillators,
such as those described by Müller to calculate Lyapunov exponents [7], allow for a
natural extension of many of the techniques from smooth dynamical systems theory
with the aid of saltation operators. In essence these describe how perturbations can be
propagated through a discontinuity, allowing for a meaningful linear stability analysis
of trajectories.

Networks built from IF nodes often make use of event times to generate inter-
actions. For example, in a neural context a popular model of a first order synaptic
current (which drives the IF dynamics) is one with a jump in a current followed
by an exponential decay. Thus, in addition to reset, one has nonsmooth synaptic
dynamics to contend with. Moreover, if an event time is defined by the time of reset
then both processes can occur simultaneously, and discontinuities and nonsmooth
dynamics can collide. Separation of the event and reset times by a delay can be
used to circumvent this analytically challenging scenario. The focus of this paper is
on developing an appropriate set of tools to handle the case that they occur simul-
taneously. In particular we are interested in the stability of synchronous states in
networks of synaptically coupled IF neurons with arbitrary topology, subject to the
constraint of a balance between excitation and inhibition. The case of purely pulsatile
interactions has been considered elsewhere by many authors, e.g. [8–13], following
the seminal work of Mirollo and Strogatz [14], and will not be considered further
here.

In Section 2 we introduce the equations for our IF system and construct a syn-
chronous orbit for a balanced network. We also introduce two forms of synaptic filter:
(i) a first order filter for a nonsmooth synapse, and (ii) a second order filter for a
smooth synapse. The latter has a limit that recovers the former and is useful for
highlighting the similarities and differences between smooth and nonsmooth systems.
An overview of linear stability for IF flows is given in Section 3, including how to
generate the saltation operations to treat (linearised) flow through reset and across
jump interactions. We first consider smooth synapses and show the master stability
function (MSF) approach for smooth systems can be easily augmented to generate a
spectral problem for the stability of the synchronous state. This spectrum is defined
by the zeros of a complex function, and this function is succinctly expressed in terms
of the IF node parameters and the Fourier transform of the synaptic filter. This
provides a convenient backdrop with which to compare and contrast to the spectra
for a network with nonsmooth synapses. Although there is no analogous MSF style
approach for this case, here we show that an appropriate linear stability analysis
can be developed by applying network saltation operations according to the order in
which perturbed state variables at the node level cross threshold. Illustrative appli-
cations of the linear stability for both smooth and nonsmooth systems are presented
in Section 4. Here we show that, although a smooth synaptic filter with a steep rise
time might be thought to give qualitatively similar network behaviour as for one with
a jump and decay, that this is not the case. In this limit we find that the spectra
from the smooth analysis coincides with that from the nonsmooth one, yet the latter
has further eigenvalues which can lead to different stability properties. Finally, in
Section 5 we discuss natural extensions of the work presented in this paper.
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2 IF networks with smooth and nonsmooth synaptic interactions

The IF model has a long history of use in computational and mathematical neu-
roscience tracing its roots back to the work of Lapicque in 1907 [15]. Here we
consider a network of IF nodes indexed by i = 1, . . . , N , each with a voltage variable
vi = vi(t) ≤ vth, t ≥ 0. An IF neuron is reset such that just after the neuronal voltage
reaches the threshold vth it is discontinuously changed to the reset value vr < vth.
Between reset and firing the voltage state variable of a (linear) IF neuron takes the
simple form

d

dt
vi = − vi

τm
+ I + Ii(t), (1)

for some constant drive I, and time-dependent input Ii(t). The parameter τm is
referred to as the single neuron membrane time constant (and note that for simplicity
we only treat identical neurons). A set of firing times is defined according to the
conditions

Tni = inf{t | vi(t) ≥ vth ; t ≥ Tn−1
i }, n ∈ Z. (2)

The firing times are the cornerstone for describing event driven synaptic interactions.
In this case the drive Ii(t) represents the summed activity from other neural nodes
in a network and is written

Ii(t) = σ
N∑

j=1

Wijsj(t− τij), (3)

for some synaptic signal sj(t). Here σ sets the overall scale of interaction strength,
Wij ∈ R specifies the specific strength of interaction between nodes i and j, with
a corresponding set of (axonal) communication delays τij ∈ R+. Motivated by the
prevalence of balanced networks in neuroscience we restrict attention to the case that∑N
j=1Wij = 0 for all i [16]. The synaptic signal takes the explicit event driven form

sj(t) =
∑

m∈Z
η(t− Tmj ), (4)

where η(t) is a normalised synaptic filter. This has the property that η(t) = 0 for t < 0
to ensure the causality of interactions. Many of the common choices for this filter that
are employed in large scale computational neuroscience studies can be described using
a Green’s function formalism in the sense that there is a linear differential operator
Q such that Qη(t) = δ(t). For example, for the choice of an exponential synaptic
response with η(t) = ηα(t) = αe−αtH(t), where H is a Heaviside function, we have
that Q = Qα with

Qα =

(
1 +

1

α

d

dt

)
. (5)

We shall refer to the exponential synapse model as nonsmooth since it is not contin-
uous at t = 0 (ηα /∈ C0). In contrast we shall refer to the difference of exponentials
function synapse with filter η(t) = ηαβ(t) = (α−1 − β−1)−1[e−αt − e−βt]H(t) as
smooth since it is continuous at t = 0 (ηαβ ∈ C0). The Green’s function for this
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filter is easily calculated as Q = Qαβ = QαQβ . The oft-encountered alpha function
synapse is simply the case where α = β.

For an overview of phase-locked states in IF networks and their analysis for smooth
interactions we refer the reader to [17]. Here we focus on the analysis of the syn-
chronous state. The balance condition ensures that a synchronous network state with
Tmi = m∆ for all i can exist with vi(t) = v(t) where v(t) is a ∆-periodic solution,
v(t) = v(t+ ∆), that evolves according to

d

dt
v = − v

τm
+ I, 0 ≤ t ≤ ∆. (6)

The period ∆ is easily calculated by integrating the trajectory between reset and
firing threshold, using v(0) = vr and enforcing the constraint v(∆) = vth to yield
∆ = τm log[(Iτm− vr)/(Iτm− vth)]H(Iτm− vth). To determine the linear stability of
the synchronous state one must consider the evolution of small perturbations through
the firing and reset process and their effects on event driven interactions. We shall
now exploit the sub-threshold linearity of the model to show how the full nonsmooth
flow of the network can be constructed by augmenting the smooth sub-threshold flow
with a set of appropriate saltation operations.

3 From smooth to nonsmooth analysis

Saltation matrices have been used extensively in the study of nonsmooth mechanical
systems, and for an overview see [18]. Their use for studying IF dynamics is less
common, though they have previously been used to construct Liapunov exponents
to probe chaotic response [19,20]. We begin with a discussion that highlights their
need, and derive the form of the saltation rules that can correctly map linearised
flows through events (reset or interaction). We then consider smooth synapses for
which we need only treat saltation through reset and construct the MSF. For non-
smooth synapses a quite different approach is needed to determine the stability of
the synchronous state that takes into account the possibility that perturbed node
trajectories can overtake one another.

3.1 Saltation operators for IF networks

The effect of reset can be incorporated into the dynamical description given by
(1) under the replacement Ii(t) → Ii(t) − (vth − vr)

∑
m≤M(i,t) δ(t − Tmi ), where

M(i, t) indexes the last time that node i fired before time t. A variation of parameters
method can then be used to integrate the dynamics up to time t as

vi(t) = e−t/τmvi(0) + Iτm(1− e−t/τm) + σ
N∑

j=1

Wij

∑

m≤M(j,t)

ψ(t− Tmj − τij)

− (vth − vr)
∑

m≤M(i,t)

e−(t−Tm
i )/τm . (7)

Here ψ is a new temporal filter given by the convolution:

ψ(t) =

∫ t

0

e−(t−s)/τmη(s)ds. (8)
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We may now treat small perturbations around an arbitrary trajectory vi(t) by con-
sidering ṽi(0) = vi(0) + δvi(0) and Tmi → Tmi + δTmi , with δTmi � 1. Hence, using
(7), we have to first order in δTmi that

δvi(t) = δvi(0)e−t/τm − σ
N∑

j=1

Wij

∑

m≤M(j,t)

ψ′(t− Tmj − τij)δTmj

− (vth − vr)

τm

∑

m≤M(i,t)

e−(t−Tm
i )/τmδTmi , (9)

where δvi(t) = ṽi(t)− vi(t). It is a simple matter to show that ψ′(t) = η(t)−ψ(t)/τm.
The perturbations of the threshold crossings may be calculated by Taylor expansion
of the threshold condition ṽi(T

m
i + δTmi ) = vth . Denoting the difference between the

perturbed and unperturbed trajectories just before the firing event at Tmj as δv−i (Tmj )

and that after as δv+
i (Tmj ) we have to first order that

δTmi = −δv
−
i (Tmi )

ṽ′i(T
m−
i )

. (10)

Hence, firing events in the network cause the perturbations δvi(t) to jump discontin-
uously to some new value according to equations (9) and (10). We find that the jump
induced by reset is given by

δv+
i (Tmi ) =

[
1 +

(vth − vr)/τm

ṽ′i(T
m−
i )

]
δv−i (Tmi ), (11)

and the jump induced by interaction is given by

δv+
i (Tmj + τij) = δv−i (Tmj + τij) + σWij

ψ′(0)

ṽ′j(T
m−
j )

δvj(T
m
j ). (12)

Equations (11) and (12) provide the rules for saltation, and to close the equations we
see that we need rules for estimating ṽ′i. For systems with smooth synaptic interac-
tions the natural estimate is ṽ′i ' v′i, though for nonsmooth interactions one needs to
be more careful. Moreover, from (12) we see that if ψ′(0) = 0 then there are no jumps
due to synaptic interactions, and we only have to consider those from reset. For an
exponential synapse ψ′(0) = ηα(0) = α, whilst for a difference of exponentials func-
tion ψ′(0) = ηαβ(0) = 0. In the former case we must be very careful when considering
issues of linear stability for zero delays (τij = 0 for all i, j) because there are two types
of jump that can occur simultaneously in time. For the latter case one need only treat
jumps arising from reset. This suggests that the stability analysis of network states
for nonsmooth synapses (such as an exponential function) cannot be treated with the
same tools as for smooth synapses (such as a difference of exponentials function), at
least for the case of zero delays. We now present two different approaches for assess-
ing the stability of the synchronous state, one approach for smooth synapses and the
other for nonsmooth.
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3.2 MSF for smooth synapses

In essence the MSF is a tool for assessing the linear stability of synchronous states in
networks of smoothly coupled oscillators (typically with a graph Laplacian form of
coupling) [21]. It is highly practical since the network stability is determined in terms
of a reduced system, with a dimension the same as that of the phase-space for a single
node, parametrised by an eigenvalue of the coupling matrix. This means that once the
MSF is constructed it can be used to assess the stability of the synchronous state in a
network of arbitrary topology. In previous work Ladenbauer et al. [22] have developed
an MSF method to classify synchronous states of a spiking neuronal network with
delayed nonsmooth interactions (and the delay ensures that the reset and jumps do
not collide). They focused on a nonlinear planar IF node, for which periodic orbits
and Floquet multipliers needed to be computed numerically. The linear IF model
considered here is much simpler and far more analytical progress can be made.

For simplicity we shall focus on the choice of a common delay and set τij = τ ≥ 0
for all i, j, and absorb this single delay into an effective synaptic filter ζ(t) = η(t− τ).
We consider the synchronous state as discussed in Section 2, with si(t) = s(t) for all
i and si(t) =

∑
m∈Z ζ(t −m∆). The variational equation around the synchronous

solution, (obtained by considering (vi(t), si(t)) = (v(t), s(t)) + (δvi(t), δsi(t)), and
Tmi = m∆ + δTmi ), takes the form

d

dt
δvi = −δvi

τm
+ σ

N∑

j=1

Wijδsj , (13)

where

δsi(t) =
∑

m∈Z
ζ ′(t+m∆)(−δT−mi ). (14)

From (10) (and using the synchronous orbit as a reference trajectory with v′i = v′)
we have that δTmi = −δvmi /v′(∆−), where δvmi = δv−i (m∆). Thus, we have a history
dependent variational problem that can be solved with the choice

δvmi = δvi(0)λm, λ ∈ C. (15)

A computationally useful form of (14) can be obtained using an integral representa-
tion for ζ(t) as

ζ(t) =
1

2π

∫ ∞

−∞
dω eiωtζ̃(ω). (16)

In this case we have that

δsi(t) =
δvi(0)

v′(∆−)

∑

m∈Z
λ−m

∫ ∞

−∞

dω

2π
eiω(t+m∆) iω ζ̃(ω). (17)

To evaluate the term
∑
m∈Z λ

−meim∆ we use the formal (Dirac-comb) result that

∑

m∈Z
eixm∆ =

2π

∆

∑

n∈Z
δ(x− 2πn/∆), (18)
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and set x = i∆−1 lnλ+ ω in (17) to obtain

δsi(t) =
δvi(0)

v′(∆−)

1

∆

∑

n∈Z
ζ̃(ωn − iγ)(γ + iωn)e(γ+iωn)t. (19)

Here we have introduced the Floquet exponent γ = ∆−1 lnλ and ωn = 2πn/∆. If
we define a vector δv = (δv1, . . . , δvN ) and a matrix that is the eigenvectors of the
matrix W (with components Wij), with WP = PΛ, where Λ = diag(ν1, . . . , νN ) is
the associated diagonal matrix of eigenvalues, then (13) can be diagonalised to the
form

d

dt
δu(t) = −δu(t)

τm
+ σΛ

F (t, γ)

v′(∆−)
δu(0), (20)

where δu = P−1δv, and F (t, γ) = ∆−1
∑
n ζ̃(ωn − iγ)(γ + iωn)e(γ+iωn)t. We may

integrate the above between firing to give

δui(∆) = δui(0
+)e−∆/τm + σ

νi
v′(∆−)

G(γ)δui(0), (21)

where

G(γ) = e−∆/τm

∫ ∆

0

ds es/τmF (s, γ) =
1

∆

∑

n∈Z

ζ̃(ωn − iγ)(γ + iωn)(eγ∆ − e−∆/τm)

τ−1
m + γ + iωn

.

(22)
Now we can apply the saltation operator (11) to construct δui(0

+) = κδui(0), where
κ = v′(∆+)/v′(∆−). Rearranging, and remembering δui(∆) = λδui(0), then gives

{
(λ− 1)v′(∆−)− σνiG(lnλ/∆)

}
δui(0) = 0, (23)

where we have used the result that v′(∆+)/v′(∆−)e−∆/τm = 1. Hence the MSF can

be defined in terms of the roots of E(λ;χ) = 0, where χ ∈ C and

E(λ;χ) = (λ− 1)(−vth/τm + I)− χG(lnλ/∆). (24)

We see that there is a root with λ = 1 for χ = 0 as expected. The MSF is the largest
real part of the Floquet exponent γ = ∆−1 lnλ, and the synchronous state is stable
if the MSF is negative at all the points where χ = σνi. We note that this recovers a
previous result in [17] obtained using a firing-map argument. Thus to determine the
stability of the synchronous state we need only to prescribe the Fourier transform
of the synaptic filter. For the delayed exponential synapse η(t) = ηα(t) we have that

ζ̃(ω) = αe−iωτ/(α + iω), and for the difference of exponentials choice η(t) = ηαβ(t)

we have that ζ̃(ω) = αβe−iωτ/[(α+ iω)(β + iω)].
In Figure 1 we show plots of the MSF for the case of zero and non-zero delays.

We observe that the difference of exponentials synapse (a) with α = 1 and β = 10
is qualitatively similar to the alpha synapse with α = 1 (c). The MSF for the differ-
ence of exponentials synapse (a) is also almost identical to the MSF for the delayed
exponential synapse (b) with delay τ = 0.1. This is in line with our intuition, as for
β � α, the difference of exponentials synapse has a sharp rise with a rise time of
approximately β−1, before decaying exponentially with a rate close to α. For larger
delays, the MSF can change shape quite substantially as shown in (d) for a delayed
exponential synapse with τ = 0.5.
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Fig. 1. MSF for different synaptic filters. The colours correspond to the MSF, so that
negative (blue) regions indicate stability. (a) Difference of exponentials synapse with (α, β) =
(1, 10). (b) Delayed exponential synapse with (α, τ) = (1, 0.1). (c) Alpha synapse with α = β
and α = 1. (d) Delayed exponential synapse with (α, τ) = (1, 0.5). Other parameters: vr = 0,
vth = 1, I = 2, and τm = 1.

3.3 Ordering for nonsmooth synapses

In pulse-coupled networks trajectories of nodes may jump over one another giving
rise to an ordering problem when considering linear stability [13,23]. The same issue
occurs for non-pulsatile forcing where nonsmooth interactions can cause jumps in the
velocities of network trajectories, and one must be careful when propagating per-
turbations around a synchronous solution. If one component of a perturbed network
state crosses threshold it will affect the gradients of the other components. To develop
a computationally useful framework for using saltation operations in a setting with
velocity jumps it is more natural to consider the network evolution as a whole, rather
than attempt to diagonalise it as done in Section 3.2. This has recently been done
for a network of piecewise linear neural mass models [24], and here we adapt this
approach to treat the spiking nature of IF processes. For clarity of exposition we
shall focus on the case of an exponential synapse and no delays.

We introduce a vector z = (v1, . . . , vN , s1, . . . , sN ) ∈ R2N and write the
synchronous state as z = (v, . . . , v, s, . . . , s) and a perturbed state as z̃ =
(ṽ1, . . . , ṽN , s̃1, . . . , s̃N ). For an exponential synapse s(t) = s0e−αt for 0 ≤ t < ∆ with
s(t) = s(t + ∆) and s0 = α/(1 − e−α∆). We define a set of perturbed firing times

according to T̃mi = Tmi + δTmi , where Tmi = m∆ for all i and δTmi � 1. We shall
now consider an ordering of the perturbed firing times around the time m∆ such
that δTmp1 < δTmp2 < . . . < δTmpN < 0. Here p is a permutation of the node indices such
that p1 represents the index of the component of the perturbed network trajectory
that reaches threshold first, and pN the component that reaches threshold last. For
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vth

vr
t

v

v

Tm(= m∆)

v

ṽpi

T̃m
pi+1

ṽpi+1

T̃m
pi

ṽpi

ṽpi+1

δvpi+1
(T̃pi

)

δvpi(T̃pi)

Fig. 2. Schematic showing how the voltage gradient of trajectories evolves through the
threshold process, and a depiction of the various perturbed voltage components and
perturbed event times used in the linear stability analysis.

T̃mpi ≤ t < T̃mpi+1
the perturbed system is continuous and we have that

δz(T̃mpi+1
) = δz(T̃mpi ) + [z̃′(T̃mpi )− z′(T̃mpi )](δTmpi+1

− δTmpi ), (25)

where δz = z̃− z. In Figure 2 we provide a schematic showing how components of the
perturbed network trajectory are affected by reset. Initially all voltage components

have the same velocity as the synchronous orbit. At time T̃mpi neuron pi reaches
threshold and resets. Due to nonsmooth interactions neuron pi+1 experiences an
instantaneous change in its voltage gradient. After all neurons have crossed threshold
they all have the same velocity as the synchronous orbit (to first order) due to the
balanced nature of interactions. The time difference δTmpi+1

− δTmpi between events

can be computed by considering the equation v(T̃pi) = vth− δvpi(T̃pi) = ṽpi+1
(T̃pi)−

δvpi+1
(T̃pi) and Taylor expanding around T̃pi+1

to give

δTmpi − δT
m
pi+1

=
δvpi+1

(T̃mpi )− δvpi(T̃mpi )

ṽ′pi+1
(T̃pi+1

)
, (26)

where we set δTpN+1
= 0 = δvpN+1

. The natural estimator of ṽ′pj (T̃mpi+1
) is

ṽ′pj (T̃mpi+1
) =

{
ṽ′pj (T̃mpi ) + ασWpj ,pi pj ≥ pi+1

−vr/τm + I + ασ[Wpj ,pj +Wpj ,pi ] pj < pi+1.
(27)

Here ṽ′i(T̃
m
p1 ) ' v′(∆−) = −vth/τm + I for all i = 1, . . . , N .

Similarly, the natural estimator of s̃′j(T̃
m
pi+1

) (for an exponential synapse) is

s̃′j(T̃
m
pi+1

) = s̃′j(T̃
m
pi ), for j 6= pi, and

s̃′pi(T̃
m
pi+1

) = s̃′pi(T̃
m
pi )− α2. (28)

Here, s̃′i(T̃
m
p1 ) ' s′(∆−) = −αs0e−α∆ for all i = 1, . . . , N . Equations (27) and (28)

capture the jump dependence of the perturbed system, and also allow us to construct
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the vector z̃′(T̃mpi ) that appears in (25). Using the above we may now write (25) in
the succinct form

δz(T̃mpi+1
) = Km(pi)δz(T̃

m
pi ), i = 1, . . . , N, (29)

where we set T̃mpN+1
= m∆ and Km(pi) is the network saltation matrix:

Km(pi) =




I2N −

(z̃′(T̃m
pi

)−z′(T̃m
pi

))eTpi
v′(∆−) i = N

I2N +
(z̃′(T̃m

pi
)−z′(T̃m

pi
)(eTpi

−eTpi+1
)

v′(∆−)+ασ
∑i

j=1Wpj+1,pj

i 6= N.
(30)

Here em = (fm, O) ∈ R2N with fm a canonical basis vector in RN and O the zero
vector in RN . For times away from firing the linearised dynamics takes the simple
form

d

dt
δz = Jδz, (31)

where the Jacobian J ∈ R2N×2N has a block structure:

J =

[
−IN/τ σW

0N −αIN

]
, (32)

and 0N denotes the N × N zero matrix. Thus, we may evolve an initial network
perturbation δz(0) up to some time m∆ using δz(m∆) = Γ (m)δz(0), with

Γ (m) = Km(pN ) · · ·Km(p1)G(∆)Km−1(pN ) · · ·Km−1(p1) (33)

×G(∆) · · ·K2(pN ) · · ·K2(p1)G(∆)K1(pN ) · · ·K1(p1)G(∆), (34)

where G(t) = exp(Jt). If the order of firing is fixed for all m then Km(pi) = K1(pi) for
all m and Γ(m) = κm, κ = K1(pN ) . . .K1(p1)G(∆), and stability can be determined
in terms of the eigenvalues of the matrix κ, with synchrony stable if all the eigenvalues
of κ (excluding the one of unity arising from time-translation symmetry) lie within
the unit disc in the complex plane. However, a persistent ordering of firing times from
cycle to cycle is non-generic and instead must be determined self-consistently. This
means that there is no simple prescription for determining stability. In a practical
sense one can consider the spectrum of Γ(m) for large m and consider synchrony to
be stable if all eigenvalues lie within the unit disc for a large set of initial random
perturbations.

4 Examples

To help contrast the differing network behaviours arising from nonsmooth and smooth
synaptic filters we consider the limit β →∞ for a difference of exponentials synaptic
filter. In this case the nonsmooth exponential filter is recovered from the smooth
difference of exponentials filter:

ηα(t) = lim
β→∞

ηαβ(t). (35)
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Fig. 3. Spectral analysis of the synchronous state in an IF ring network with nonsmooth
synapses for N = 31 nodes. (a) Graph showing the functional form of a single row in a
balanced circulant matrix using (36) with d = 1. (b) The eigenspectrum for the case of a
nonsmooth exponential synapse with α = 2 is shown with green circles. The eigenspectrum
for a smooth difference of exponentials synapse with (α, β) = (2,100) is shown with red
circles. (c) A zoom of (b) interior to the unit disc. (d) A zoom of (b) on the edge of the unit
disc. The zooms show that the eigenvalues of the nonsmooth system cluster around those of
the smooth system. Other parameters as in Figure 1 with σ = 0.125.

We first consider a ring with an odd number of nodes and a strength of interactions
that depends on the distance between nodes as illustrated in Figure 3a. The strength
of interactions is given by Wij = w(i+j−1) mod N , where the wi are chosen such that

{w1, w2, . . . , w(N−1)/2} = {wN , wN−1, . . . , wN+1−(N−1)/2}
= S−1{e−d, e−2d, . . . , e−d(N−1)/2}, (36)

which is balanced by the choice of w(N−1)/2+1 = −1 and a constant S =∑(N−1)/2
k=1 e−dk. We find that the eigenvalues of the nonsmooth (exponential synapse)

system cluster around those of the smooth system (difference of exponentials with
large β). The nonsmooth system has (combinatorially) more eigenvalues than those
from the smooth system and they can reside outside of the unit circle. This reaf-
firms the notion that it can be dangerous to use a smoothed system to predict the
behaviour of a truly nonsmooth system. Changing the scaling d has no qualitative
effect on the stability of the synchronous state.
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Fig. 4. Spectral analysis of the synchronous state in an IF ring network with nonsmooth
synapses for N = 31 nodes. (a) Graph showing the functional form of a single row in a bal-
anced circulant matrix with components wi, i = 1, . . . , N , such that Wij = w(i+j−1) mod N .

Here the wi are chosen such that Pr(w = k) = (1 − p)k−1p with p = 0.2 (a geometric distri-
bution), and then shifted to ensure a balanced network. (b) The eigenspectrum for the case
of an exponential synapse with α = 2 is shown with green circles. The eigenspectrum from
a smooth difference of exponentials synapse with (α, β) = (2,100) is shown with red circles.
(c) A zoom of (b) interior to the unit disc. (d) A zoom of (b) on the edge of the unit disc.
The zooms show that the eigenvalues of the nonsmooth system cluster around those of the
smooth system. Other parameters as in Figure 1 with σ = 0.0125.

We next consider a ring with randomly generated weights. We take N i.i.d vari-
ables from a geometric distribution, then subtract the arithmetic mean to obtain
a balanced interaction row vector (Fig. 4a). We then generate a circulant coupling
matrix using this weight vector. The spectra from the linear stability analysis is shown
in Figure 4. Here we also find that the spectra from the nonsmooth system is organ-
ised around that from a smooth system. The former is obtained by considering 1000
randomly generated threshold crossings. We see that inside the unit disc, eigenvalues
of the smooth system tend to cluster around those of the nonsmooth system, but
their structure is much less organised outside the unit disc.

Finally, we consider a globally coupled network with nonsmooth synapses and
σ > 0. Similarly to the case of pulse-coupled oscillators [12], we find that the stability
of the synchronous state can change with the number of neurons in the network. In
contrast, for smooth synapses the stability is determined entirely by the eigenvalues
of the graph Laplacian, which do not vary as a function of N (for a globally coupled
network). For this special case (with permutation symmetry) all possible orderings
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Fig. 5. A plot showing the stability of the synchronous state in a globally coupled balanced
network with Wij = 1/N − δij and an exponential synapse in the (α,N) plane according to
the nonsmooth linear stability analysis. The grey shaded region indicates unstable and the
white stable. The inset shows a plot of the MSF (only negative where coloured blue) for a
smooth difference of exponentials synapse with a fast rise time, namely with (α, β) = (2,100).
The cross indicates the (N − 1 degenerate) eigenvalue at −1 for the graph Laplacian of the
globally coupled network. Parameters as in Figure 1 with σ = 0.2.

lead to the same stability calculation. We exploit the fact that we need only compute
one set of eigenvalues and sweep the parameter space of α and N to determine
stability, and show the results in Figure 5. We discover that for a given α, networks
below a critical size have a stable synchronous state, and that this number increases
with α. Just beyond an instability the eigenmode from our linear analysis is found
to be an excellent predictor of the emergent network state. Numerical simulations
were performed using a 2nd-order Runge–Kutta method with linear interpolation to
increase the accuracy of spike time estimates, as described in [25]. The synchronous
state in a corresponding network with a smooth (fast) synapse would always be
unstable, as indicated by the MSF shown in the inset of Figure 5.

For the case that σ < 0 the smooth system has a stable synchronous state. In
contrast the nonsmooth system is always unstable. However, the basin of attraction
for the smooth case becomes vanishingly small as β →∞ and direct numerical sim-
ulations of the two systems (with conflicting stability predictions) would both show
non-synchronous behaviour.

5 Discussion

Network science is a rapidly growing field of research, and plays a key role in under-
standing complex phenomena. In an age where large data sets are becoming more
available, for example from connectomes and social media networks, it is more impor-
tant than ever that we develop the tools to analyse dynamical systems on graphs. In
this paper, we have made a small step in this direction with a presentation of tools
for analysing the synchronous state for both smooth and nonsmooth input currents
in IF networks with arbitrary topology subject to a row sum constraint. One impor-
tant message that we reaffirm is that one must be careful when using a smoothing
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approach to understand the behaviour of a nonsmooth system [26]. We have seen
here that a second order synapse with a fast rise time does not accurately capture
the behaviour of a truly first order synapse (with a jump) when considering the linear
stability of the network synchronous state. Although the spectrum from the smoothed
model can approximate a subset of the spectrum from the nonsmooth problem, the
latter can have further eigenvalues.

The techniques that we have presented are readily extended to cover oscillator net-
works without balance where non-synchronous phase-locked states are more generic.
Moreover, they are also extendable to nonlinear IF models that are piece-wise linear
(PWL). A very recent treatment of cluster states in PWL planar IF models with
smooth synapses can be found in [27]. Another interesting extension would be to
consider delays, which are especially important in large scale brain modelling [28].
The MSF has recently been extended to cover heterogenous delays [29] for smooth
dynamical systems, and it would be interesting to revisit this for IF networks.
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