Supplementary Data

Rational design, synthesis and pharmacological evaluation of a cohort of beta-adrenergic receptors ligands enables assessment of structureactivity relationships

Jacopo Tricomi,^a Luca Landini,^a Valentina Nieddu,^b Ugo Cavallaro,^b Jillian Baker,^c Athanasios Papakyriakou,^{d*} Barbara Richichi.^{a*}

^a Department of Chemistry, University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (Firenze, Italy)

^b Unit of Gynaecological Oncology Research, European Institute of Oncology IRCCS, Milan, Italy

[°] Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK.

^d Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", 15341 Agia Paraskevi, Athens, Greece

* Corresponding authors:

Athanasios Papakyriakou, thpap@bio.demokritos.gr

Barbara Richichi, <u>barbara.richichi@unifi.it</u>

Table of contents

Table S1	5
Table S2	6
Figure S1	7
Scheme S1	8
Table S3	8
Figure S2	8
Table S4	9
Figure S3	10
Figure S4	10
Figure S5	10
Figure S6	11
Figure S7	11
Figure S8	11
Scheme S2	12
Scheme S3	12
Scheme S4	13
Scheme S5	13
Scheme S6	13
Scheme S7	14
Synthesis of 1	14
Synthesis of 2	14
Synthesis of 3	14
Synthesis of 4	15
Synthesis of 5	15
Synthesis of 6	15
Synthesis of 7	15
Synthesis of 8	16
Synthesis of 1b	16
Synthesis of MC14	16
Synthesis of MC15	16
Synthesis of MC16	17
Synthesis of MC17	17
Synthesis of MC18	17
Synthesis of MC19	18
Synthesis of 21	18
Synthesis of 22	18
Synthesis of 23	18
Synthesis of 16	19
Synthesis of 25	19
Synthesis of 17	19

Synthesis of 27	19
Synthesis of 18	19
Synthesis of 29	20
Synthesis of 19	20
Synthesis of SR59230A	20
Synthesis of 30	20–21
NMR spectra of MC1	22–23
NMR spectra of MC2	24–25
NMR spectra of MC3	26–27
NMR spectra of MC4	28–29
NMR spectra of MC7	30–31
NMR spectra of MC8	32–33
NMR spectra of MC9	34–35
NMR spectra of MC10	36–37
NMR spectra of MC11	38–39
NMR spectra of MC14	40–41
NMR spectra of MC15	42–43
NMR spectra of MC16	44–45
NMR spectra of MC17	46–47
NMR spectra of MC18	48–49
NMR spectra of MC19	50–51
NMR spectra of MC20	52–53
NMR spectra of MC21	54–55
NMR spectra of MC22	56–57
NMR spectra of MC23	58–59
NMR spectra of MC24	60–61
NMR spectra of MC25	62–63
NMR spectra of MC26	64–65
NMR spectra of MC27	66–67
NMR spectra of MC28	68–69
NMR spectra of MC29	70–71
NMR spectra of MC30	72–73
NMR spectra of MC31	74–75
NMR spectra of MC32	76–77
NMR spectra of MC33	78–79
NMR spectra of MC34	80–81
NMR spectra of 1	82
NMR spectra of 2	83
NMR spectra of 3	84
NMR spectra of 5	85
NMR spectra of 6	86
NMR spectra of 7	87
NMR spectra of 8	88

NMR spectra of 1b	89
NMR spectra of 21	90
NMR spectra of 22	91
NMR spectra of 23	92
NMR spectra of 16	93
NMR spectra of 25	94
NMR spectra of 17	95
NMR spectra of 27	96
NMR spectra of 18	97
NMR spectra of 29	98
NMR spectra of 19	99
NMR spectra of 30	100
NMR spectra of SR59230A	101
References	102

Table S1. Chemgauss4 scores from FRED docking of the selected ligand poses in the inactive and active states of the β -ARs. The stereoisomer used is indicated in parenthesis and scores are color-coded from lowest (green) to highest (red) score. Docked poses that did not exhibit a proper orientation for the ethanolamine moiety for H-bonding interactions with D^{3.32} or N^{7.39} are indicated with an asterisk (*). Poses that displayed a reversed orientation of the ligand within the orthosteric site are marked with ([#]), whereas *n.d.* indicates failure to find any conformation.

Compounds	Inactive state			Active state		
Compounds	β1	β2	β3	β1	β2	β3
SR59230A	-14.8	-14.4*	-14.4*	-14.7	-12.9	-12.3
MC1 (S)	-14.6	-14.8	-15.5	-14.9	-12.5	-11.1
MC2 (S)	-11.2	-14.3	-15.7	-11.0	n.d.	-2.3*
MC3 (<i>S</i> , <i>R</i>)	-13.2	-14.9	-14.3	-10.9	-6.9*	-9.3#
MC3 (S,S)	-15.3	-17.2	-17.4	-13.8	-9.9	-9.7#
MC4 (S)	-15.1	-16.8	-16.1	-14.2	-11.0#	-7.5
MC7 (S)	-13.1	-15.4	-15.0	-14.1	-8.6#	-7.3*
MC8 (<i>S</i> , <i>R</i>)	-14.3	-14.6	-14.6	-11.1	-12.1	-11.9#
MC8 (S,S)	-14.9	-16.1	-16.7	-14.9	-12.3	-11.2
MC9 (S)	-13.7	-14.8	-14.3	-15.5	-7.6	-9.8*
MC10 (S)	-14.5	-14.1	-17.2	-10.8	-10.7#	-12.2#
MC11 (S)	-14.5	-16.4	-16.6	-11.6	-8.9	-9.4
MC14 (<i>R</i>)	-12.5	-15.9	-14.3	-12.1	-8.1	-9.38*
MC15 (<i>R</i>)	-10.1*	-14.1*	-15.0*	-8.9*	-11.4#	-11.9#
MC16 (<i>R</i> , <i>R</i>)	-11.4	-12.6	-13.6*	-9.9	-8.1#	-11.2#
MC16 (<i>R</i> , <i>S</i>)	-12.2	-15.2	-15.4	-11.6	-8.4*	-8.7#
MC17 (<i>R</i>)	-9.4	-16.2	-14.9	-6.3*	-5.2	-6.1*
MC18 (<i>R</i>)	-9.9*	-13.5*	-13.1	-9.2*	-5.3*	-9.0*
MC19 (<i>R</i>)	-12.3	-14.5	-14.1*	-10.2	-11.8#	-14.4#
MC20 (S)	-14.7	-14.9	-16.8	-12.8	-12.1#	-12.1#
MC21 (S)	-15.5	-15.7	-15.1	-16.0	-10.0#	-8.5#
MC22 (S, <i>R</i>)	-16.9	-16.6	-15.2	-17.0	-11.8	-12.8
MC22 (S,S)	-17.5	-16.5	-17.0	-17.1	-13.2	-11.7
MC23 (S, <i>R</i>)	-15.4	-15.8	-15.7	-16.9	-13.3	-13.4
MC23 (S,S)	-17.7	-17.9	-18.7	-18.2	-13.5	-14.5
MC24 (S, <i>R</i>)	-14.5	-15.1	-14.6	-15.5	-13.1	-12.6
MC24 (S,S)	-15.1	-14.9	-15.4	-16.1	-12.4	-13.3
MC25 (S, <i>R</i>)	-14.8	-15.5	-14.2	-14.3	-10.2*	-11.9
MC25 (S,S)	-16.4	-15.5	-15.8	-16.3	-12.8	-12.6
MC26 (S)	-13.3	-14.2	-13.0	-13.9	-6.9	-8.5*
MC27 (S)	-14.9	-15.3	-14.3*	-14.7	-7.8	-8.3
MC28 (S)	-0.9*	-9.1*	-8.3*	-3.9	1.5#	-3.5*

Compounds	Inactive state			Active state		
compounds	β1	β2	β3	β1	β2	β3
MC29 (S)	-5.2	-9.6*	-9.6*	-6.7	-1.6#	-3.8*
MC30 (S)	-9.7	-12.8	-10.2	-3.4*	n.d.	-4.1 [#]
MC31 (S)	-10.7	-14.5	-12.3	-8.3	-2.2#	-5.1*
MC32 (S)	-10.3*	-14.1*	-13.7*	-12.0#	-0.1*	-7.4*
MC33 (S)	-11.9*	-14.0*	-14.5*	-8.6	2.0*	-5.3#
MC34 (S,S,R)	-8.3	-12.6	-11.6	-4.0	-6.2*	-9.0#
MC34 (S,S,S)	-14.6	-15.0	-14.2	-7.6	-8.6#	-10.5#

Table S2. Experimental details on the synthesis of epoxides **1-8**. Reaction conditions: K_2CO_3 , DMF, 50°C. *: compound **4** was used directly in the next step without any further purification.

Entry	Phenol	Yield	Epoxide
а	1р	83%	1
b	2р	94%	2
с	3р	51%	3
d	4р	-*	4
е	5р	8%	5
f	6р	57%	6
g	7р	74%	7
h	8p	70%	8

Figure S1: Structures of compounds **MC1–34** presented in this work. The (*S*)-aryloxy-propanolamine scaffold of propranolol is colored red, whereas (R) indicates compounds with the inverse stereochemistry.

Scheme S1. Reaction conditions: *a*) **9b**, K₂CO₃, dry DMF, 50°C, 48 h, 85%; *b*) see **Table S2**

Table S3. Experimental details on the synthesis of compounds **MC14-17** with the (R) configuration. Reaction conditions: dry 2-propanol, 40–96 h, r.t.

Entry	Epoxide	Amine	Yield	МС
а	1b	10	85%	17
b	1b	11	58%	16
С	1b	12	92%	15
d	1b	13	75%	18
е	1b	14	20%	19
f	1b	15	73%	14

Figure S2: Structure of known β -AR ligands: Fenoterol, L748,337, ICI 118,551, CGP 20712A.

Table S1. Dihedral angle values of the central HO–CH–CH₂–O aryloxy-propanolamine moiety. Docked poses that did not exhibit a proper orientation of the ethanolamine moiety for H-bonding interactions with $D^{3.32}$ or $N^{7.39}$ are indicated with an asterisk (*).

Compound	β1	β2	β3
SR59230A	177	177*	77*
MC1 (S)	163	163	177
MC2 (S)	177	177	157
MC3 (SR)	63	63	63
MC3 (SS)	63	63	63
MC4 (S)	63	63	63
MC7 (S)	63	83	63
MC8 (SR)	63	63	63
MC8 (SS)	63	63	63
MC9 (S)	63	63	63
MC10 (S)	63	83	177
MC11 (S)	63	63	63
MC14 (R)	80	80	160
MC15 (R)	60*	60*	80*
MC16 (RR)	180	80	60*
MC16 (RS)	180	160	160
MC17 (R)	60	60	80
MC18 (R)	60*	60*	80
MC19 (R)	80	80	80*
MC20 (S)	63	83	83
MC21 (S)	63	63	63
MC22 (SR)	83	177	163
MC22 (SS)	83	157	177
MC23 (SR)	177	177	177
MC23 (SS)	163	157	157
MC24 (SR)	177	177	177
MC24 (SS)	163	163	163
MC25 (SR)	63	177	83
MC25 (SS)	83	163	163
MC26 (S)	63	83	83
MC27 (S)	43	77	83*
MC28 (S)	177*	177*	177*
MC29 (S)	83	177*	177*
MC30 (S)	177	177	177
MC31 (S)	177	177	177
MC32 (S)	57*	163*	163*
MC33 (S)	163*	177*	163*
MC34 (SSR)	63	63	63
MC34 (SSS)	63	63	63

Figure S3. Superimposed bound poses of the enantiomeric ligands MC2/MC17 and MC11/MC14 when docked in the inactive state of β 2-AR.

Figure S4. Superimposed poses of **MC3** (*S*,*S*) in the three β -ARs illustrating the position of critical residues that facilitate the variable orientation of 1,4-benzodioxane moiety.

Figure S5. Bound pose of **MC3** (*S*,*S*) superimposed with **MC22** (*S*,*S*) in complex with the inactive and active states of β 1-AR, illustrating the hydrogen bonding interactions of the chromanone group of **MC3** with S5.46 and between the isoquinoline ring of **MC22** and S5.42.

Figure S6. Bound pose of **MC24** (*S*,*S*) in the inactive state of β 1- and β 2-AR, illustrating the different network of hydrogen-bonding interactions of the dioxole moiety with critical TM5 residues.

Figure S7. Surface representation of the ligand-binding site of β 2-AR (A) and β 3-AR (B) in the inactive state, illustrating the different shape of the cavity that affects the bound conformation of **MC11**.

Figure S8. Bound pose of **MC27** in complex with β 1-AR (A) and β 2-AR in the inactive state, illustrating the difference in hydrogen-bonding interactions with key residues.

Scheme S2. Reaction conditions: *a)* Boc₂O, DCM, r.t., 2 h, 87%; *b)* Fe, acetic acid, water, ethanol, 40°C, 2 h, 91%; *c)* triethylamine, pyridine, Ac₂O, DCM, r.t., 1 h, quantitative yield; *d)* TFA, DCM, r.t., 2 h, quantitative yield.

Scheme S3. Reaction conditions: *a)* **24**, triethylamine, DCM, r.t., 95 h, 88%; *b)* TFA, DCM, r.t., 2.5 h, quantitative yield.

Scheme S4. Reaction conditions: *a)* **24**, triethylamine, DCM, r.t., 24 h, 85%; *b)* TFA, DCM, r.t., quantitative yield.

Scheme S5. Reaction conditions: *a)* **24**, triethylamine, DCM, r.t., 23 h, 81%; *b)* TFA, DCM, r.t., 2 h, quantitative yield.

Scheme S6. Reaction conditions: a) 30, dry 2-propanol, r.t., 85 h, 69%

Scheme S7. reaction conditions: *a*) **11**, 2-propanol:DMSO 5:1, r.t., 68 h, 26%; *b*) TFA, DCM, r.t., 4 h, quantitative yield.

Synthesis of 1. To a stirred solution of 7-hydroxy-2,2-dimethylchroman-4-one (**1p**) (353 mg, 1.83 mmol) in dry *N*,*N*-dimethylformamide (6 mL), anhydrous K₂CO₃ was added. After 10 min, **9** (508 mg, 5.50 mmol) was added. The reaction mixture was stirred at 50° C for 23 h, then it was filtered on Celite 521 and purified by flash chromatography on silica gel (dichloromethane:acetone 50:1, Rf = 0.3) to give **1** (380 mg, 83%) as a white solid. ¹H-NMR (400 MHz, CDCl₃) δ : 7.85 (d, J_{B-C} = 8.8 Hz, 1H, H_B), 6.61 (dd, J_{C-B} = 8.8 Hz, J_{C-A} = 2.4 Hz, 1H, H_C), 6.44 (d, J_{A-C} = 2.4 Hz, 1H, H_A), 4.34-4.30 (A part of an ABX system, J_{A-B} = 11.1 Hz, J_{A-X} = 3.0 Hz, 1H, H-1), 4.02-3.98 (B part of an ABX system, J_{B-A} = 11.1 Hz, J_{B-X} = 5.8 Hz, 1H, H-1), 3.53-3.31 (m, 1H, H-2), 3.03-2.99 (m, 1H, H-3), 2.83-2.79 (B part of an ABX system, J_{B-A} = 4.8 Hz, J_{B-X} = 2.6 Hz, 1H, H-3), 2.72 (s, 2H, Hx), 1.50 (s, 6H, CH₃). ¹³C-NMR (100 MHz, CDCl₃) δ : 191.00, 164.97, 161.90, 128.39, 114.59, 109.47, 102.05, 79.66, 68.97, 49.78, 48.63, 44.61, 26.72, 26.57. ESI-MS *m*/*z*: [M+Na]⁺ calcd. for C₁₄H₁₆NaO₄ 271.09, found 271.14. [α]_{D²⁰} = + 20.1 (c = 0.9, CHCl₃).

Synthesis of 2. To a stirred solution of 7-hydroxy-2H-chromen-2-one (**2p**) (1.007 g, 6.21 mmol) in dry *N*,*N*-dimethylformamide (20 mL), anhydrous K₂CO₃ (1.716 g, 12.42 mmol) was added. After 30 min, **9** (2.43 mL, 31.05 mmol) was added. The reaction mixture was stirred at 50°C for 24 h, then it was filtered on Celite 521 and purified by flash chromatography on silica gel (dichloromethane:acetone 30:1, Rf = 0.4) to give **2** (1.28 g, 94%) as a white solid. ¹H-NMR (400 MHz, CDCl₃) δ : 7.65 (d, *J*_{D-E} = 9.5 Hz, 1H, H_D), 7.39 (d, *J*_{C-A} = 8.5 Hz, 1H, H_C), 6.91 (d, *J*_{B-A} = 2.4 Hz, 1H, H_B), 6.85 (dd, *J* = 6.1 Hz, *J* = 2.4 Hz, 1H, H_A), 6.28 (d, *J*_{E-D} = 9.5 Hz, 1H, H_E), 4.37-4.35 (A part of an ABX system, *J*_{A-B} = 11.0 Hz, *J*_{A-X} = 2.8 Hz, 1H, H-1), 3.99-3.95 (B part of an ABX system, *J*_{B-A} = 11.0 Hz, *J*_{B-X} = 6.0 Hz, 1H, H-1), 3.44-3.37 (m, 1H, H-2), 2.98-2.93 (m, 1H, H-3), 4.00-3.96 (B part of an ABX system, *J*_{B-A} = 11.0 Hz, *J*_{B-A} = 11.0 Hz, *J*_{B-X} = 6.0 Hz, 1H, H-3). ¹³C-NMR (100 MHz, CDCl₃) δ : 161.52, 161.01, 155.68, 143.33, 128.87, 113.34, 112.89, 112.81, 101.61, 69.24, 49.75, 44.47. ESI-MS *m/z*: [M+Na]⁺ calcd. for C₁₂H₁₀NaO₄ 241.05, found 241.09. [α]_{D²⁰} = + 8.2 (c = 0.9, CHCl₃).

Synthesis of 3. To a stirred solution of sesamol (**3p**) (250 mg, 1.80 mmol) in dry N, N-dimethylformamide (4 mL), anhydrous K₂CO₃ (497 mg, 3.6 mmol) was added. After 10 min,

9 (502 mg, 5.42 mmol) was added. The reaction mixture was stirred at 50° C for 50 h, then it was filtered on Celite 521 and purified by flash chromatography on silica gel (ethyl acetate:petroleum ether 1:4, Rf = 0.2) to give **3** (178 mg, 51%) as a yellow solid. ¹H-NMR (400 MHz, CDCl₃) δ : 6.69 (d, *J*_{A-B} = 8.5 Hz, 1H, HA), 6.52 (d, *J*_{C-B} = 2.5 Hz, 1H, Hc), 6.33 (dd, *J*_{B-A} = 8.5 Hz, *J*_{B-C} = 2.5 Hz, 1H, H_B), 5.91 (s, 2H, H_D), 4.17-4.13 (A part of an ABX system, *J*_{A-B} = 11.0 Hz, *J*_{A-X} = 3.1 Hz, 1H, H-1), 3.89-3.85 (B part of an ABX system, *J*_{B-A} = 11.0 Hz, *J*_{B-X} = 5.7 Hz, 1H, H-1), 3.34-3.30 (m, 1H, H-2), 2.93-2.84 (m, 1H, H-3), 2.75-2.71 (B part of an ABX system, *J*_{B-A} = 4.9 Hz, *J*_{B-X} = 2.7 Hz, 1H, H-3). ¹³C-NMR (100 MHz, CDCl₃) δ : 153.95, 148.25, 142.01, 107.89, 105.82, 101.20, 98.33, 69.75, 50.15, 44.68. ESI-MS *m/z*: [M+Na]⁺ calcd. for C₁₀H₁₀NaO₄ 217.05, found 217.12. [α]_D²⁰ = + 16.0 (c = 1, CHCl₃).

Synthesis of 4. To a stirred solution of 5-hydroxy-2,3-dihydro-1H-inden-1-one (**4p**) (200 mg, 1.33 mmol) in dry *N*,*N*-dimethylformamide (4.5 mL), anhydrous K₂CO₃ (367 mg, 2.66 mmol) was added. After 10 min, **9** (369 mg, 3.99 mmol) was added. The reaction mixture was stirred at 50° C for 22 h, then it was filtered on Celite 521. Compound **4** is used in the nucleophilic epoxide opening reaction without further purification. $[\alpha]_D^{20} = + 27.7$ (c = 0.9, CHCl₃).

Synthesis of 5. To a stirred solution of 5-hydroxyquinoline (**5p**) (317 mg, 2.18 mmol) in dry *N*,*N*-dimethylformamide (6 mL), anhydrous K₂CO₃ was added. After 10 min, **9** (605 mg, 6.54 mmol) was added. The reaction mixture was stirred at 50° C for 50 h, then it was filtered on Celite 521 and purified by flash chromatography on silica gel (ethyl acetate:petroleum ehter $3:2 \rightarrow 4:1$, Rf = 0.3) to give **5** (35 mg, 8%) as an orange solid. ¹H-NMR (400 MHz, CDCl₃ +5% CD₃OD) δ : 9.09 (s, 1H, H_D), 8.40 (d, *J*_{F-E} = 5.9 Hz, 1H, H_F), 8.02 (d, *J*_{E-F} = 5.9 Hz, 1H, H_E), 7.53-7.44 (m, 2H, Hc and H_B), 8.02 (d, *J* = 5.9 Hz, 1H, H_A), 4.43-4.39 (part A of ABX system, *J*_{A-B} = 11.1 Hz, *J*_{A-X} = 2.8 Hz, 1H, H-1), 4.08-4.04 (part B of ABX system, *J*_{B-A} = 11.1 Hz, *J*_{B-X} = 5.8 Hz, 1H, H-1), 3.47-3.43 (m, 1H, H-2), 2.95-2.93 (m, 1H, H-3), 2.83-2.79 (part B of ABX system, *J*_{B-A} = 4.8 Hz, *J*_{B-X} = 2.7 Hz, 1H, H-3). ¹³C-NMR (50 MHz, CDCl₃ +5% CD₃OD) δ : 153.12, 151.35, 141.82, 129.37, 128.51, 127.55, 119.96, 115.43, 109.13, 69.11, 50.07, 44.55. ESI-MS *m/z*: [M+Na]⁺ calcd. for C₁₂H₁₁NNaO₂ 224.07, found 224.15. [α]_D²⁰ = + 14.7 (c = 1, CHCl₃).

Synthesis of 6. To a stirred solution of 4-hydroxyquinoline (**6p**) (317 mg, 2.18 mmol) in dry *N*,*N*-dimethylformamide (6 mL), anhydrous K₂CO₃ was added. After 10 min, **9** (605 mg, 6.54 mmol) was added. The reaction mixture was stirred at 50° C for 50 h, then it was filtered on Celite 521 and purified by flash chromatography on silica gel (ethyl acetate:methanol 20:1 → 10:1, Rf = 0.35) to give **6** (250 mg, 57%) as a white solid. ¹H-NMR (400 MHz, CDCl₃) δ: 8.45 (dd, *J* = 8.1, 1.5 Hz, 1H, H_B), 7.67 (ddd, *J* = 8.6 Hz, *J* = 7.1 Hz, *J* = 1.6 Hz, 1H, H_D), 7.52-7.48 (m, 2H, Hc and H_F), 7.40-7.36 (m, 1H, H_A), 6.26 (d, *J* = 7.8 Hz, 1H, H_E), 4.50-4.46 (A part of an ABX system, *J*_{A-B} = 15.8 Hz, *J*_{A-X} = 2.3 Hz, 1H, H-1), 4.16-4.12 (B part of an ABX system, *J*_{B-A} = 15.8 Hz, *J*_{B-X} = 5.4 Hz, 1H, H-1), 3.36-3.32 (m, 1H, H-2), 2.89-2.87 (m, 1H, H-3), 2.55-2.51 (B part of an ABX system, *J*_{B-A} = 4.5 Hz, *J*_{B-X} = 2.5 Hz, 1H). ¹³C-NMR (50 MHz, CDCl₃) δ: 178.14, 143.39, 140.20, 132.32, 127.22, 127.07, 123.83, 115.14, 110.45, 53.64, 49.78, 45.17. ESI-MS *m/z*: [M+Na]⁺ calcd. for C₁₂H₁₁NNaO₂ 224.07, found 224.13. [α]_{D²⁰} = + 35.2 (c = 1.2, CHCl₃).

Synthesis of 7. To a stirred solution of 2-ethylphenol (**7p**) (500 mg, 4.09 mmol) in dry N,N-dimethylformamide (1 mL), anhydrous K₂CO₃ was added. After 10 min, **9** (1.136 g, 12.28

mmol) was added. The reaction mixture was stirred at 50° C for 23 h, then it was filtered on Celite 521 and purified by flash chromatography on silica gel (ethyl acetate:petroleum ether 1:10, Rf = 0.2) to give **7** (542 mg, 74%) as a white solid. ¹H-NMR (400 MHz, CDCl₃) δ : 7.20-7.16 (m, 2H), 6.94 (at, J = 7.4 Hz, 1H), 6.84 (d, J = 8.1 Hz, 1H), 4.26 (dd, J = 11.0 Hz, J = 3.0 Hz, 1H), 3.99 (dd, J = 11.0 Hz, J = 5.5 Hz, 1H), 3.41-3.38 (m, 1H), 2.93 (at, J = 4.5 Hz, 1H), 2.81 (dd, J = 5.0 Hz, J = 2.7 Hz, 1H), 2.70 (q, J = 7.5 Hz, 2H), 1.24 (t, J = 7.7 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ : 156.20, 132.93, 129.14, 126.80, 121.06, 111.26, 68.52, 53.52, 50.40, 44.66, 23.34, 14.23. ESI-MS m/z: [M+Na]⁺ calcd. for C₁₁H₁₄NaO₂ 201.09, found 210.13. [α] ρ ²⁰ = + 7.2 (c = 0.9, CHCl₃).

Synthesis of 8. To a stirred solution of methyl (tert-butoxycarbonyl)tyrosine (**8p**) (300 mg, 1.01 mmol) in dry *N*,*N*-dimethylformamide (5 mL), anhydrous K₂CO₃ was added. After 10 min, **9** (239 μL, 3.07 mmol) was added. The reaction mixture was stirred at 50°C for 26h, then it was filtered on Celite 521 and purified by flash chromatography on silica gel (dichloromethane:acetone 30:1, Rf = 0.3) to give **8** (248 mg, 70%) as a white solid. ¹H-NMR (400 MHz, CDCl₃) δ: 7.02 (d, J = 8.5 Hz, 1H, H-a), 6.83 (d, J = 8.6 Hz, 1H, H-b), 4.99-4.97 (bs, 1H, H_N), 4.54-4.49 (m, 1H, H_α), 4.19-4.15 (A part of an ABX system, $J_{A-B} = 11.0$ Hz, $J_{A-X} = 3.1$ Hz, 1H, H-1), 3.93-3.89 (B part of an ABX system, $J_{B-A} = 11.0$ Hz, $J_{B-X} = 5.7$ Hz, 1H, H-1), 3.68 (s, 3H, -OCH₃), 3.34-3.30 (m, 1H, H-2), 3.06-2.94 (m, 2H, H-4), 2.88 (at, J = 4.5 Hz, 1H, H-3), 2.75-2.71 (B part of an ABX system, $J_{B-A} = 4.9$ Hz, $J_{B-X} = 2.7$ Hz, 1H, H-3), 1.40 (s, 9H, Boc). ¹³C-NMR (100 MHz, CDCl₃) δ: 172.36, 157.54, 155.08, 130.30, 128.57, 115.46, 114.68, 79.88, 68.73, 54.50, 52.16, 50.11, 44.67, 37.43, 28.27. ESI-MS *m/z*: [M+Na]⁺ calcd. for C₁₈H₂₅NNaO₆ 374.16, found 374.22. [α]_D²⁰ = + 11.3 (c = 1, CHCl₃).

Synthesis of epoxide 1b. To a stirred solution of 7-hydroxy-2,2-dimethylchroman-4-one (1p) (301 mg, 1.566 mmol) in dry *N*,*N*-dimethylformamide (5 mL), anhydrous K₂CO₃ was added. After 10 min, **9b** (493 µL, 6.26 mmol) was added. The reaction mixture was stirred at 50°C for 48 h, then it was filtered on Celite 521 and purified by flash chromatography on silica gel (dichloromethane:acetone 50:1, Rf = 0.3) to give 1b (331 mg, 85%) as a white solid. ¹H-NMR (400 MHz, CDCl₃) δ : 7.79 (d, J_{B-C} = 8.8 Hz, 1H, H_B), 6.55 (dd, J_{C-B} = 8.8 Hz, J_{C-A} = 2.4 Hz, 1H, H_c), 6.38 (d, J_{A-C} = 2.4 Hz, 1H, H_A), 4.27-4.23 (A part of an ABX system, J_{A-B} = 11.1 Hz, J_{A-X} = 3.0 Hz, 1H, H-1), 3.96-3.92 (B part of an ABX system, J_{B-A} = 11.1 Hz, J_{A-X} = 3.0 Hz, 1H, H-1), 3.96-3.92 (B part of an ABX system, J_{B-A} = 11.1 Hz, J_{A-X} = 4.2 Hz, 1H, H-2), 3.37-3.33 (m, 1H, H-2), 2.94-2.90 (A part of an ABX system, J_{B-A} = 4.9 Hz, J_{B-X} = 2.6 Hz, 1H, H-3), 2.66 (s, 2H, Hx), 1.44 (s, 6H, CH₃). ¹³C-NMR (100 MHz, CDCl₃) δ : 191.00, 164.97, 161.90, 128.39, 109.46, 102.05, 68.96, 49.78, 48.63, 44.61, 26.71. ESI-MS *m/z*: [M+Na]⁺ calcd. for C₁₄H₁₆NaO₄ 271.09, found 271.21. [α] $_D^{20}$ = - 26.8 (c = 1.1, CHCl₃).

Synthesis of MC14. To a stirred solution of **15** (81 μ L, 0.567 mmol) in 2-propanol (1 mL), **1b** (47 mg, 0.189 mmol) was added; the reaction mixture was stirred at r.t. for 40 h, then it was concentrated under vacuum. The crude was filtered on silica gel (ethyl acetate:methanol 5:1, Rf = 0.2) to give **MC14** (52 mg, 73%) as a white solid. ¹H-NMR (400 MHz, CDCl₃) δ : 7.78 (d, J_{B-C} = 8.8 Hz, 1H, H_B), 7.29-7.16 (m, 5H, Ph), 6.52 (dd, J_{C-B} = 8.8 Hz, J_{C-A} = 2.4 Hz, 1H, H_C), 6.36 (d, J_{A-C} = 2.4 Hz, 1H, H_A), 4.20-4.10 (m, 1H, H-2), 4.03-3.91 (m, 2H, H-1), 2.94-2.90 (A part of an ABX system, J_{A-B} = 12.3 Hz, J_{A-X} = 3.6 Hz, 1H, H-3)), 2.82 (add, J = 12.3 Hz, J = 8.6 Hz, 2H), 2.76 (q, J₄₋₅ = 7.0 Hz, 2H, H-4), 2.70-2.67 (m, 2H,

H-5), 2.65 (s, 2H, H_x), 1.98-1.83 (m, 2H, H-6), 1.44 (s, 6H, CH₃). ¹³C-NMR (50 MHz, CDCl₃) δ : 128.54, 128.43, 128.39, 126.13, 109.52, 101.85, 70.78, 67.12, 51.25, 48.86, 48.16, 33.12, 30.54, 26.48. ESI (MS) *m/z*: for [M-H]⁻ calcd. for C₂₃H₂₉NO₄ 382.21, found 382.20. [α]_D²⁰ = - 22.8 (c = 1, CHCl₃).

Synthesis of MC15. To a stirred solution of **12** (68 μL, 0.493 mmol) in 2-propanol (1 mL), **1b** (48 mg, 0.197 mmol) was added; the reaction mixture was stirred at r.t. for 40 h, then it was concentrated under vacuum. The crude was filtered on silica gel (ethyl acetate:methanol 5:1, Rf = 0.3) to give **MC15** (72 mg, 92%) as a white solid. ¹H-NMR (400 MHz, CDCl₃) δ: 7.78 (d, J_{B-C} = 8.8 Hz, 1H, H_B), 6.78-6.62 (m, 3H, Ph), 6.51 (dd, J_{C-B} = 8.8 Hz, J_{C-A} = 2.3 Hz, 1H, H_C), 6.36 (d, J_{A-C} = 2.2 Hz, 1H, H_A), 5.93 (s, 2H, CH₂), 4.17-4.05 (m, 1H, H-2), 3.99 (t, J₁₋₂ = 7.4 Hz, 2H), 2.98-2.89 (m, 1H, H-3), 2.85-2.76 (m, 5H, H-3 (x1)), H-4 and H-5), 2.66 (s, 2H, Hx), 1.44 (s, 6H, CH₃). ¹³C-NMR (50 MHz, CDCl₃) δ: 128.38, 121.66, 109.40, 109.05, 108.39, 101.84, 100.89, 70.40, 67.26, 51.10, 51.00, 48.38, 35.21, 27.28. ESI-MS *m/z*: for [M-H]⁻ calcd. for C₂₃H₂₆NO₆ 412.18, found 412.11. [α]_D²⁰ = - 13.1 (c = 0.9, CHCl₃).

Synthesis of MC16. To a stirred solution of **11** (93 mg, 0.563 mmol) in 2-propanol (1 mL), **1b** (56 mg, 0.225 mmol) was added; the reaction mixture was stirred at r.t. for 80 h, then it was concentrated under vacuum. The crude was filtered on silica gel (ethyl acetate:methanol 5:1, Rf = 0.2) to give **MC16** (54 mg, 58%) as a white solid. ¹H-NMR (400 MHz, DMSO-d6) δ : 7.62 (d, J_{B-C} = 8.7 Hz, 1H, H_B), 6.84-6.77 (m, 4H, Ph), 6.57 (dd, J_{C-B} = 8.8 Hz, J_{C-A} = 2.3 Hz, 1H, H_c), 6.47 (d, J_{A-C} = 2.2 Hz, 1H, H_A), 5.05 (d, J = 4.9 Hz, 1H), 4.32-4.28 (A part of an ABX system, J_{A-B} = 11.4 Hz, J_{A-X} = 2.2 Hz, 1H, H-6), 4.21-4.17 (m, 1H, H-1), 4.04-4.00 (A part of an ABX system, J_{A-B} = 7.3 Hz, 1H, H-6), 3.91-3.86 (m, 1H, H-2), 3.86-3.83 (m, 1H, H-5), 2.83-2.75 (m, 2H, H-3), 2.68 (s, 2H, H_X), 2.67-2.65 (m, 1H, H-4), 2.62-2.57 (m, 1H, H-4), 1.35 (s, 6H, CH₃). ¹³C-NMR (50 MHz, DMSO-d6) δ : 190.76, 165.67, 161.84, 143.55, 128.01, 121.71, 121.49, 117.49, 117.28, 114.04, 109.93, 102.17, 80.06, 73.13, 71.56, 68.37, 66.52, 49.85, 48.17, 26.58. ESI-MS *m/z*: for [M-H]⁻ calcd. for C₂₃H₂₆NO₆ 412.18, found 412.31. [α]p²⁰ = - 23.5 (c = 1.1, CHCl₃).

Synthesis of MC17. To a stirred solution of **10** (104 mg, 0.493 mmol) in 2-propanol (1 mL), **1b** (49 mg, 0.197 mmol) was added; the reaction mixture was stirred at r.t. for 40 h, then it was concentrated under vacuum. The crude was filtered on silica gel (ethyl acetate, Rf = 0.3) to give **MC17** (77 mg, 85%) as a white solid. ¹H-NMR (400 MHz, CDCl₃) δ: 7.78 (d, J_Bc = 8.8 Hz, 1H, H_B), 7.32-7.12 (m, 10H, Ph), 6.51 (dd, J_{C-B} = 8.8 Hz, J_{C-A} = 2.1 Hz, 1H, H_C), 6.34 (d, J_{A-C} = 2.0 Hz, 1H, H_A), 4.08-3.98 (m, 2H, H-2 and H-6), 3.92 (d, J₁₋₂ = 4.9 Hz, 2H, H-1), 2.87-2.83 (A part of an ABX system, J_{A-B} = 12.2 Hz, J_{A-x} = 3.3 Hz, 1H, H-3), 2.76-2.72 (B part of an ABX system, J_{B-A} = 12.8 Hz, J_{B-X} = 9.0 Hz, 1H, H-3), 2.70-2.68 (m, 2H, H-4), 2.65 (s, 2H, H_X), 2.34-2.29 (m, 2H, H-5), 1.43 (s, 6H, CH₃). ¹³C-NMR (50 MHz, CDCl₃) δ: 190.97, 165.14, 161.93, 144.33, 128.60, 128.34, 127.76, 126.40, 114.52, 109.47, 102.02, 79.63, 70.49, 67.53, 51.49, 48.99, 48.66, 48.18, 35.25, 26.73. ESI (MS) *m/z*: for [M-H]⁻ calcd. for C₂₉H₃₂NO₄ 458.24, found 458.21. [α]_D²⁰ = - 35.0 (c = 1, CHCl₃).

Synthesis of MC18. To a stirred solution of **13** (123 mg, 0.523 mmol) in a mixture 2-propanol:MeOH 1:1 (2 mL), DIPEA (92 μ L, 0.523 mmol); the reaction mixture was stirred at r.t. for 20 min. To a solution of **1b** (52 mg, 0.210 mmol) in 2-propanol (1 mL), the solution of

2-(4-(methylsulfonyl)phenyl)ethan-1-amine was added; the reaction mixture was stirred at r.t. for 72 h, then it was concentrated under vacuum. The crude was filtered on silica gel (ethyl acetate:methanol 8:1, Rf = 0.2) to give **MC18** (66 mg, 75%) as a white solid. ¹H-NMR (400 MHz, DMSO-d6) δ : 7.82 (d, J_{E-D} = 8.4 Hz, 2H, H_E), 7.63 (d, J_{B-C} = 8.8 Hz, 1H, H_B), 7.50 (d, J_{D-E} = 8.4 Hz, 2H, H_D), 6.57 (dd, J_{C-B} = 8.8 Hz, J_{C-A} = 2.4 Hz, 1H, H_C), 4.08-3.90 (m, 3H, H-1 and H-2), 3.16 (s, 3H, S-CH₃), 2.99-2.89 (m, 4H, H-4 and H-5), 2.88-2.84 (A part of an ABX system, J_{A-B} = 12.0 Hz, J_{A-X} = 3.2 Hz, 1H, H-3), 2.77-2.73 (B part of an ABX system, J_{B-A} = 11.8 Hz, J_{B-A} = 6.8 Hz, 1H, H-3), 2.69 (s, 2H, H_X), 1.36 (s, 6H, CH₃). ¹³C-NMR (100 MHz, DMSO-d⁶) δ : 190.77, 165.56, 161.90, 146.08, 139.35, 130.10, 128.10, 127.49, 109.95, 102.36, 80.14, 71.28, 67.17, 51.45, 49.81, 49.61, 48.30, 44.15, 26.65. ESI (MS) *m/z*: for [M-H]⁻ calcd. for C₂₃H₂₈NO₆S 447.17, found 447.12. [α]_D²⁰ = - 19.4 (c = 0.8, CHCl₃).

Synthesis of MC19. To a stirred solution of **14** (76 mg, 0.314 mmol) in 2-propanol (1 mL), DIPEA (61 μL, 0.345 mmol) was added; the solution was stirred at r.t. for 30 min, then **1b** (39 mg, 0.157 mmol) was added. The reaction mixture was stirred at r.t. for 96 h, then it was concentrated under vacuum and filtered on silica gel (ethyl acetate:methanol 5:1, Rf = 0.3) to give **MC19** (14 mg, 20%) as a white solid. ¹H-NMR (400 MHz, CD₃OD) δ: 7.89-7.77 (m, 4H, Pht), 7.72 (d, J_{B-C} = 8.8 Hz, 1H, H_B), 6.60 (dd, J_{C-B} = 8.8 Hz, J_{C-A} = 2.4 Hz, 1H, H_C), 6.47 (d, J_{A-C} = 2.4 Hz, 1H, H_A), 4.15-4.06 (m, 1H, H-2), 4.06-3.97 (m, 2H, H-1), 3.76 (t, J₆₋₅ = 6.7 Hz, 2H, H-6), 2.96-2.92 (A part of an ABX system, J_{A-B} = 12.4 Hz, J_{A-X} = 4.0 Hz, 1H, H-3), 2.86-2.82 (B part of an ABX system, J_{B-A} = 10.6 Hz, J_{B-X} = 6.5 Hz, 1H, H-3), 2.82-2.79 (m, 2H, H-4), 2.68 (s, 2H, Hx), 2.01-1.88 (m, 2H, H-5), 1.42 (s, 6H, CH₃). ¹³C-NMR (100 MHz, DMSO-d6) δ: 190.75, 168.41, 168.46, 165.68, 161.90, 134.83, 132.20, 129.78, 128.05, 123.46, 109.96, 102.33, 80.10, 71.55, 67.76, 52.06, 48.30, 46.98, 36.16, 28.15, 26.65. ESI (MS) *m/z*: for [M-H]⁻ calcd. for C₂₅H₂₈N₂O₆ 451.19, found 451.08. [α]p²⁰ = - 06.4 (c = 1, CHCl₃).

Synthesis of 21. To a dispersion of 2-(4-nitrophenyl)ethan-1-amine (20) (1.51 g, 7.45 mmol) in dry dichloromethane (37 mL), triethylamine (1.14 mL, 8.19 mmol) was added. After 10 min, di-tert-butyl dicarbonate (1.78 g, 8.19 mmol) was added; the reaction mixture was stirring at r.t. for 2h, then it was diluted in dichloromethane (200 mL) and washed with H₂O (2 x 20 mL) and Brine (1 x 20 mL). The organic phase was anhydrificated with Na₂SO₄, filtered and concentrated under vacuum. The crude was filtered on silica gel (ethyl acetate:petroleum ether 1:5 \rightarrow ethyl acetate, Rf = 0.2) to give **21** (1.96 g, 87%) as a white solid. ¹H-NMR (400 MHz, CDCl₃) δ : 8.16 (d, JA-B = 8.7 Hz, 2H, HA), 7.35 (d, JB-A = 8.6 Hz, 2H, HB), 3.43-3.38 (m, 2H, HD), 2.93-2.90 (m, 2H, HC), 1.42 (s, 2H, CH₃ Boc). ¹³C-NMR (100 MHz, CDCl₃) δ : 146.91, 146.70, 129.66, 123.74, 41.30, 36.21, 28.33. The NMR data agree with literature.[1]

Synthesis of 22. To a stirred dispersion of **21** (1.072g, 3.54 mmol) in H₂O (6.27 mL) and ethanol (4.13 mL), acetic acid (122 μ L, 2.13 mmol) and iron powder (793 mg, 14.20 mmol) were added. The reaction mixture was stirred at 40°C for 2h, then acetic acid (101 μ L, 1.77 mmol) were added and the reaction mixture was filtered on Celite 545. The crude was filtered on silica gel (ethyl acetate:methanol 10:1, Rf = 0.1) to give **22** (930 mg, 91%) as a yellow solid. ¹H-NMR (400 MHz, CDCl₃) δ : 6.97 (d, J_{A-B} = 8.2 Hz, 2H, H_A), 6.63 (d, J_{B-A} = 8.4 Hz, 2H, H_B), 4.52 (bs, 1H, H_N), 3.33-3.29 (m, 2H, H_D), 2.69-2.65 (m, 2H, H_C), 1.42 (s, 9H, CH₃)

Boc). ¹³C-NMR (100 MHz, CDCl₃) δ: 155.88, 144.72, 129.59, 115.34, 41.96, 35.20, 28.40. The NMR data agree with the literature.[2]

Synthesis of 23. To a stirred solution of **22** (350 mg, 1.18 mmol) in dry dichloromethane (6 mL), triethylamine (164 μ L, 1.18 mmol) was added; after 30 min, pyridine (142 μ L, 1.77 mmol) and acetic anhydride (164 μ L, 1.77 mmol) were added. The reaction mixture was stirred at r.t. for 1 h, then it was diluted with dichloromethane (150 mL) and washed with NH₄Cl (3 x 15 mL); the organic phase was anhydrificated with Na₂SO₄, filtered and concentrated under vacuum to give **23** (328 mg, quantitative yield) as a white solid. ¹H-NMR (400 MHz, CDCl₃) δ : 7.46 (d, J_{A-B} = 8.3 Hz, 2H, H_A), 7.18 (d, J_{B-A} = 8.2 Hz, 2H, H_B), 4.56 (bs, 1H, H_N), 3.39-3.37 (m, 2H, H_D), 2.81-2.78 (m, 2H, H_C), 2.21 (s, 3H, CH₃), 1.48 (s, 9H, CH₃ Boc).[3]

Synthesis of 16. To a stirred solution of **23** (330 mg, 1.18 mmol) in dichloromethane (10 mL), trifluoroacetic acid (902 μ L, 11.8 mmol) was added; the reaction mixture was stirred at r.t. for 2 h, then it was concentrated under vacuum to give **16** (292 mg, quantitative yield) as a yellow oil. ¹H-NMR (400 MHz, CD₃OD) δ : 7.55 (d, J_{A-B} = 8.4 Hz, 2H, H_A), 7.25 (d, J_{B-A} = 8.4 Hz, 2H, H_B), 3.20-3.16 (m, 2H, H_D), 2.96-2.93 (m, 2H, H_C), 2.14 (s, 3H, CH₃). ¹³C-NMR (100 MHz, CD₃OD) δ : 170.46, 137.49, 132.18, 128.74, 120.57, 120.46, 40.50, 32.55, 22.35. The NMR data agree with the literature.[3]

Synthesis of 25. To a stirred solution of **22** (290 mg, 0.97 mmol) in dry dichloromethane (5 mL), triethylamine (674 μ L, 4.85 mmol) was added; after 10 min, 4-methoxybenzenesulfonyl chloride (**24**) (341 mg, 1.65 mmol) was added. The reaction mixture was stirred at r.t. for 95h, then it was diluted with dichloromehane (200 mL) and washed with H2O (3 x 20 mL) and Brine (1 x 20 mL). The organic phase was anhydrificated with Na₂SO₄, filtered and concentrated under vacuum; the crude was purified by flash cromatography on silica gel (dichloromethane:acetone 30:1, Rf = 0.3) to give **25** (349 mg, 88%) as a white solid. ¹H-NMR (400 MHz, CDCl₃) δ : 7.70 (d, J_{A-B} = 8.9 Hz, 2H, H_A), 7.07-6.97 (m, 4H, Ph), 6.88 (d, J_{B-A} = 8.9 Hz, 2H, H_B), 4.54 (bs, 1H, H_N), 3.82 (s, 3H, CH₃), 3.31-3.27 (m, 2H, H_D), 2.73-2.66 (m, 2H, H_C), 1.41 (s, 9H, CH₃ Boc). ¹³C-NMR (100 MHz, CDCl₃) δ : 163.03, 134.94, 130.66, 129.60, 129.37, 122.00, 114.13, 55.55, 28.38. The NMR data agree with the literature.[4]

Synthesis of 17. To a stirred solution of **24** (337 mg, 0.82 mmol) in dichloromethane (6 mL), trifluoroacetic acid (634 μ L, 8.2 mmol) was added. The reaction mixture was stirred at r.t. for 2h 30 min, then it was concentrated under vacuum to give **17** (344 mg, quantitative yield) as a white solid. ¹H-NMR (400 MHz, CD₃OD) δ : 7.88 (s, 1H, H_N), 7.70-7.66 (m, 2H, H_E), 7.14-7.12 (m, 2H, H_A), 7.09-7.06 (m, 2H, H_F), 6.97-6.95 (m, 2H, H_B), 3.81 (s, 3H, -OMe), 3.11-3.07 (m, 2H, H_D), 2.87-2.83 (m, 2H, H_C). ¹³C-NMR (100 MHz, solv.) δ : 163.14, 136.84, 132.61, 131.13, 129.05, 128.94, 121.10, 113.72, 54.74, 40.32, 32.42. The NMR data agree with the literature.[4]

Synthesis of 27. To a stirred solution of tert-butyl (6-aminohexyl)carbamate (**26**[5]) (253 mg, 1.17 mmol) in dry dichloromethane (6 mL), triethylamine (244 μ L, 1.75 mmol) and 4-methoxybenzenesulfonyl chloride (**24**) (363 mg, 1.75 mmol) were added; the reaction mixture was stirred at r.t. for 24 h, then it was diluted with dichloromethane (150 mL) and washed with H₂O (3 x 15 mL) and Brine (1 x 15 mL). The organic phase was anhydrificated with Na₂SO₄, filtered and concentrated under vacuum. The crude was purified by flash chromatography on silica gel (ethyl acetate:petroleum ether 1:2 \rightarrow 1:1, Rf = 0.3) to give **27**

(385 mg, 85%) as a white solid. ¹H-NMR (400 MHz, CDCl₃) δ : 7.80 (d, *J*_{A-B} = 8.9 Hz, 2H, H_A), 6.98 (d, *J*_{B-A} = 8.9 Hz, 2H, H_B), 3.88 (s, 3H, -OCH₃), 3.09-3.02 (m, 2H, H-6), 2.93-2.89 (m, 2H, H-1), 1.64-1.62 (m, 2H, H-5), 1.44 (s, 9H, CH₃ Boc), 1.43-1.38 (m, 2H, H-2), 1.28-1.24 (m, 4H, H-3, H-4). ¹³C-NMR (100 MHz, CDCl₃) δ : 162.79, 129.17, 114.19, 55.59, 42.95, 29.89, 29.43, 28.40, 26.06, 26.02.

Synthesis of 18. To a stirred solution of **27** (376 mg, 0.97 mmol) in dichloromethane (7 mL), trifluoroacetic acid (744 μ L, 9.72 mmol) was added; the reaction mixture was stirred at r.t. for 2 h, then it was concentrated under vacuum to give **18** (388 mg, quantitative yield) as a yellow solid. ¹H-NMR (400 MHz, CDCl₃) δ : 7.76 (d, *J*_{A-B} = 8.8 Hz, 1H, H_A), 6.97 (d, *J*_{B-A} = 8.8 Hz, 1H, H_B), 3.86 (s, 3H, -OCH₃), 2.93-2.75 (m, 4H, H-1, H-6), 1.65-1.59 (m, 2H, H-5), 1.48-1.34 (m, 6H, H-2, H-3, H-4). ¹³C-NMR (100 MHz, CDCl₃) δ : 162.79, 131.16, 128.99, 114.20, 55.53, 49.69, 49.48, 49.26, 49.05, 48.84, 42.65, 39.46, 28.75, 26.87, 25.55, 25.43. The NMR data agree with the literature.[3]

Synthesis of 29. To a stirred solution of tert-butyl (4-aminobutyl)carbamate (**28**[6]) (260 mg, 1.5 mmol) in dry dichloromethane (7.5 mL), triethylamine (320 μ L, 2.3 mmol) and 4-methoxybenzenesulfonyl chloride (**24**) (468 mg, 2.3 mmol) were added. The reaction mixture was stirred at r.t. for 23 h, then it was diluted with dichloromethane (150 mL) and washed with H₂O (3 x 15 mL) and Brine (1 x 15 mL); the organic phase was anhydrificated with Na₂SO₄, filtered and concentrated under vacuum. The crude was purified by flash chromatography on silica gel (ethyl acetate:petroleum ether 1:2 \rightarrow 1:1, Rf = 0.4) to give **29** (433 mg, 81%) as a white solid. ¹H-NMR (400 MHz, CDCl₃) δ : 7.80 (d, *J*_{A-B} = 8.9 Hz, 1H, H_a), 6.98 (d, *J*_{B-A} = 8.9 Hz, 1H, H_B), 3.88 (s, 3H, -OCH₃), 3.08-3.06 (m, 2H, H-4), 2.96-2.93 (m, 2H, H-1), 1.63-1.61 (m, 2H, H-2), 1.52-1.47 (m, 2H, H-3), 1.43 (s, 9H, CH₃ Boc). ¹³C-NMR (100 MHz, CDCl₃) δ : 162.85, 130.86, 128.97, 114.26, 55.51, 50.20, 49.76, 49.55, 49.34, 49.12, 48.91, 42.10, 39.31, 25.90, 24.32.

Synthesis of 19. To a stirred solution of **29** (424 mg, 1.18 mmol) in dry dichloromethane (9 mL), trifluoroacetic acid (906 μ L, 11.8 mmol) was added. The reaction mixture was stirred at r.t. for 2 h, then it was concentrated under vacuum to give **19** (439 mg, quantitative yield) as a white solid. ¹H-NMR (400 MHz, solv.) δ : 7.75 (d, *J*_{A-B} = 8.9 Hz, 2H, H_A), 6.96 (d, *J*_{B-A} = 8.8 Hz, 1H, H_B), 3.85 (s, 3H, -OCH₃), 2.94-2.85 (m, 4H, H-1, H-4), 1.78-1.68 (m, 2H, H-2), 1.63-1.50 (m, 2H, H-3). NMR data agree with the literature.[7]

Synthesis of SR59230A. To a stirred solution of **30** (806 mg, 5.47 mmol) in dry 2-propanol, **7** (542 mg, 3.04 mmol) was added; the reaction mixture was stirred at r.t. for 85 h, then it was concentrated under vacuum. The crude was filtered on silica gel (ethyl acetate:methanol 15:1, Rf = 0.3) to give **SR59230A** (650 mg, 69%) as a pink solid. ¹H-NMR (400 MHz, CDCl₃) δ : 7.44-7.39 (m, 1H), 7.18-7.13 (m, 4H), 7.10-7.06 (m, 1H), 6.90 (at, *J* = 7.4 Hz, 1H), 6.83 (d, *J* = 8.5 Hz, 1H), 4.11-4.03 (m, 2H), 4.00-3.96 (m, 1H), 3.87-3.85 (m, 1H), 3.12-3.02 (m, 1H), 2.98-2.88 (m, 1H), 2.85-2.70 (m, 2H), 2.61 (q, *J* = 7.5 Hz, 2H), 1.98-1.89 (m, 3H), 1.79-1.74 (m, 1H), 1.16 (t, *J* = 7.5 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ : 156.26, 137.44, 132.58, 129.21, 129.14, 129.05, 128.99, 128.97, 128.88, 126.98, 126.85, 125.88, 120.83, 111.07, 70.24, 68.62, 68.13, 55.82, 55.21, 49.52, 48.98, 29.35, 29.31, 28.58, 28.21, 23.38, 23.34, 18.95, 18.91, 14.20. NMR data agree with the literature.[8] **Synthesis of 30.** To a stirred solution of **11** (48 µL, 0.34 mmol) in 2-propanol (1 mL) and DMSO (0.2 mL), **8** (60 mg, 0.17 mmol) was added. The reaction mixture was stirred at r.t.

for 68h, then it was concentrated under vacuum. The crude was filtered on silica gel (ethyl acetate:methanol 5:1, Rf = 0.1) to give **30** (22 mg, 26%) as a yellow solid. ¹H-NMR (400 MHz, CDCl₃) δ : 7.03 – 7.01 (m, 2H, H_A), 6.89 – 6.81 (m, 6H, H_D, H_B, H_C), 5.00 – 4.97 (m, 1H, H_{NBOC}), 4.55 – 4.50 (m, 1H, H-7), 4.35 – 4.30 (m, 1H, H-2), 4.28-4.24 (A part of an ABX system, $J_{A-B} = 11.3$ Hz, $J_{A-X} = 2.2$ Hz, 1H, H-1), 4.11 – 4.07 (m, 1H,H-5), 4.05-4.01 (B part of an ABX system, $J_{B-A} = 6.8$ Hz, $J_{B-X} = 4.6$ Hz, 1H, H-1), 3.97 – 3.96 (m, 2H, H-6), 3.70 (s, 3H, -OMe), 3.04 – 2.98 (m, 2H, H-7), 2.97 – 2.92 (m, 3H, H-3, H-4), 2.87-2.83 (B part of an ABX system, $J_{B-A} = 12.2$ Hz, $J_{B-X} = 7.9$ Hz, 1H, H4). ¹³C-NMR (50 MHz, CDCl₃) δ : 172.40, 157.60, 155.09, 143.12, 142.88, 142.80, 130.33, 128.44, 121.63, 121.61, 121.49, 117.32, 117.16, 114.56, 79.92, 72.31, 70.22, 68.29, 66.25, 54.49, 52.23, 51.93, 49.78, 37.42, 28.30.

Figure S 10. ¹³C-NMR of MC1 (100 MHz, CDCl₃)

Figure S 11. gDQCOSY-NMR of MC1 (400 MHz, CDCl₃)

Figure S 12. gHSQC-NMR of MC1 (400 MHz, CDCl3)

Figure S 14. ¹³C-NMR of MC2 (100 MHz, CDCl₃)

- 0

20 10 0

-2000

Figure S 15: gDQCOSY-NMR of MC2 (400 MHz, CDCl₃)

Figure S 16: gHSQC-NMR of MC2 (400 MHz, CDCI₃)

Figure S 17. ¹H-NMR of MC3 (400 MHz, CDCl₃ +1% CD₃OD)

Figure S 18. 13C-NMR of MC3 (100 MHz, CDCl3 +1% CD3OD)

Figure S 19: gDQCOSY-NMR of MC3 (400 MHz, CDCl₃ +1% CD₃OD)

Figure S 20: gHSQC-NMR of MC3 (400 MHz, CDCl₃ +1% CD₃OD)

Figure S 22. ¹³C-NMR of MC4 (100 MHz, CDCl₃)

Figure S 23: gDQCOSY-NMR of MC4 (400 MHz, CDCl₃)

Figure S 24: gHSQC-NMR of MC4 (400 MHz, CDCl3)

Figure S 25. ¹H-NMR of MC7 (400 MHz, CDCl₃)

Figure S 26. ¹³C-NMR of MC7 (100 MHz, CDCl₃)

Figure S 27: gDQCOSY-NMR of MC7 (400 MHz, CDCl₃)

Figure S 28: gHSQC-NMR of MC7 (400 MHz, CDCl3)

Figure S 29. ¹H-NMR of MC8 (400 MHz, CDCl₃)

Figure S 30. ¹³C-NMR of MC8 (100 MHz, CDCl₃)

Figure S 31: gDQCOSY-NMR of MC8 (400 MHz, CDCI3)

Figure S 32: gDQCOSY-NMR of MC8 (400 MHz, CDCI3)

Figure S 33. 1H-NMR of MC9 (400 MHz, DMSO-d6)

Figure S 34. ¹³C-NMR of MC9 (100 MHz, DMSO-d⁶)

Figure S 35: gDQCOSY-NMR of MC9 (400 MHz, DMSO-d6)

Figure S 36: gHSQC-NMR of MC9 (400 MHz, DMSO-d⁶)

Figure S 37. 1H-NMR of MC10 (400 MHz, CDCl₃ +5% CD₃OD)

Figure S 38. ¹³C-NMR of MC10 (100 MHz, CDCl₃ +5% CD₃OD)

Figure S 39: gDQCOSY-NMR of MC10 (400 MHz, CDCl₃ +5% CD₃OD)

Figure S 40: gHSQC-NMR of MC10 (400 MHz, CDCl₃ +5% CD₃OD)

Figure S 41. ¹H-NMR of MC11 (400 MHz, CDCI₃)

Figure S 42. ¹³C-NMR of MC11 (100 MHz, CDCl₃)

Figure S 43: gHSQC-NMR of MC11 (400 MHz, CDCl₃)

Figure S 44: 1H-NMR of MC14 (400 MHz, CDCl₃)

Figure S 45. ¹³C-NMR of MC14 (100 MHz, CDCl₃)

Figure S 46. gHSQC-NMR of MC14 (400 MHz, CDCl₃)

Figure S 47: 1H-NMR of MC15 (400 MHz, CDCl₃)

Figure S 49. gHSQC-NMR of MC15 (400 MHz, CDCl3)

Figure S 50. 1H-NMR of MC16 (400 MHz, DMSO-d6)

Figure S 51: ¹³C-NMR of MC16 (100 MHz, DMSO-d⁶)

Figure S 52: gHSQC-NMR of MC16 (400 MHz, DMSO-d⁶)

Figure S 53. ¹H-NMR of MC17 (400 MHz, CDCl₃)

Figure S 54. ¹³C-NMR of MC17 (100 MHz, CDCl₃)

Figure S 55: gHSQC-NMR of MC17 (400 MHz, CDCl₃)

Figure S 56: 1H-NMR of MC18 (400 MHz, DMSO-d6)

Figure S 57. ¹³C-NMR of MC18 (100 MHz, DMSO-d⁶)

Figure S 58. gHSQC-NMR of MC18 (400 MHz, DMSO-d⁶)

Figure S 59. ¹H-NMR of MC19 (400 MHz, CD₃OD)

Figure S 60. ¹³C-NMR of MC19 (100 MHz, CD₃OD)

Figure S 61. gHSQC-NMR of MC19 (400 MHz, DMSO-d⁶)

Figure S 62. gDQCOSY-NMR of MC19 (400 MHz, CD₃OD)

Figure S 63: 1H-NMR of MC20 (400 MHz, DMSO-d6)

Figure S 64: ¹³C-NMR of MC20 (100 MHz, DMSO-d⁶)

Figure S 65. gCOSY-NMR of MC20 (400 MHz, DMSO-d6)

Figure S 66. gHSQC-NMR of MC20 (400 MHz, DMSO-d6)

Figure S 67. ¹H-NMR of MC21 (400 MHz, CDCl₃ +5% CD₃OD)

Figure S 68. ¹³C-NMR of MC21 (100 MHz, CDCl₃ +5% CD₃OD)

Figure S 69. gDQCOSY-NMR of MC21 (400 MHz, CDCl₃ +5% CD₃OD)

Figure S 70. gHSQC-NMR of MC21 (400 MHz, CDCl₃ +5% CD₃OD)

Figure S 71. ¹H-NMR of MC22 (400 MHz, CD₃OD)

Figure S 72. ¹³C-NMR of MC22 (400 MHz, CD₃OD)

Figure S 73. gDQCOSY-NMR of MC22 (400 MHz, CD₃OD)

Figure S 74. gDQCOSY-NMR of MC22 (400 MHz, CD₃OD)

Figure S 75: 1H-NMR of MC23 (400 MHz, CD₃OD)

Figure S 76: ¹³C-NMR of **MC23** (100 MHz, CD₃OD)

Figure S 77. gDQCOSY-NMR of MC23 (400 MHz, CD₃OD)

Figure S 78. gHSQC-NMR of MC23 (400 MHz, CD₃OD)

Figure S 79. 1H-NMR of MC24 (400 MHz, DMSO-d6)

Figure S 80. 13C-NMR of MC24 (100 MHz, DMSO-d6)

Figure S 81. gDQCOSY-NMR of MC24 (400 MHz, DMSO-d6)

Figure S 82. gHSQC-NMR of MC24 (400 MHz, DMSO-d⁶)

Figure S 83. ¹H-NMR of MC25 (400 MHz, CD₃OD)

Figure S 84. ¹³C-NMR of MC25 (100 MHz, CD₃OD)

Figure S 86. gHSQC-NMR of MC25 (400 MHz, CD₃OD)

Figure S 87. ¹H-NMR of MC26 (400 MHz, CD₃OD)

Figure S 88. ¹³C-NMR of **MC26** (100 MHz, CD₃OD)

Figure S 89. gDQCOSY-NMR of MC26 (400 MHz, CD₃OD)

Figure S 90. gHSQC-NMR of MC26 (400 MHz, CD₃OD)

Figure S 91. 1H-NMR of MC27 (400 MHz, CD3OD +5% DMSO-d6)

Figure S 92. ¹³C-NMR of MC27 (100 MHz, CD₃OD +5% DMSO-d⁶)

Figure S 93. gDQCOSY-NMR of MC27 (400 MHz, CD₃OD +5% DMSO-d⁶)

Figure S 94. gHSQC-NMR of MC27 (400 MHz, CD₃OD +5% DMSO-d⁶)

Figure S 95. 1H-NMR of MC28 (400 MHz, CD3OD +5% DMSO-d6)

Figure S 96. ¹³C-NMR of MC28 (100 MHz, CD₃OD +5% DMSO-d⁶)

Figure S 97. gCOSY-NMR of MC28 (400 MHz, CD₃OD +5% DMSO-d⁶)

Figure S 98. gHSQC-NMR of MC28 (400 MHz, CD₃OD +5% DMSO-d⁶)

Figure S 99. ¹H-NMR of MC29 (400 MHz, CD₃OD +5% DMSO-d⁶)

Figure S 100. 13C-NMR of MC29 (100 MHz, CD3OD +5% DMSO-d6)

Figure S 101. gCOSY-NMR of MC29 (400 MHz, CD3OD +5% DMSO-d6)

Figure S 102. gHSQC-NMR of MC29 (400 MHz, CD₃OD +5% DMSO-d⁶)

Figure S 103. 1H-NMR of MC30 (400 MHz, CDCl₃ +1% CD₃OD)

Figure S 104. ¹³C-NMR of MC30 (100 MHz, CDCl₃ +1% CD₃OD)

Figure S 105. gCOSY-NMR of MC30 (400 MHz, CDCl₃ +1% CD₃OD)

Figure S 106. gHSQC-NMR of MC30 (400 MHz, CDCl₃ +1% CD₃OD)

Figure S 107. ¹H-NMR of MC31 (400 MHz, CDCl₃)

Figure S 108. ¹³C-NMR of **MC31** (100 MHz, CDCl₃)

Figure S 109. gCOSY-NMR of MC31 (400 MHz, CDCI3)

Figure S 110. gHSQC-NMR of MC31 (400 MHz, CDCI3)

Figure S 111. ¹H-NMR of MC32 (400 MHz, CDCl₃)

Figure S 112. ¹³C-NMR of **MC32** (100 MHz, CDCl₃)

Figure S 113. gCOSY-NMR of MC32 (400 MHz, CDCl₃)

Figure S 114. gHSQC-NMR of MC32 (400 MHz, CDCI3)

Figure S 115. ¹H-NMR of MC33 (400 MHz, CD₃OD)

Figure S 116. ¹³C-NMR of MC33 (100 MHz, CD₃OD)

Figure S 117. gCOSY-NMR of MC33 (400 MHz, CD₃OD)

Figure S 118. gHSQC-NMR of MC33 (400 MHz, CD₃OD)

Figure S 119. ¹H-NMR of MC34 (400 MHz, CD₃OD)

Figure S 120. ¹³C-NMR of MC34 (100 MHz, CD₃OD)

Figure S 121. gCOSY-NMR of MC34 (400 MHz, CD₃OD)

Figure S 122. gHSQC-NMR of MC34 (400 MHz, CD₃OD)

Figure S 123. ¹H-NMR of 1 (400 MHz, CDCl₃).

Figure S 124. ¹³C-NMR of 1 (100 MHz, CDCl₃).

Figure S 125. ¹H-NMR of 2 (400 MHz, CDCl₃).

Figure S 126. ¹³C-NMR of 2 (100 MHz, CDCl₃).

Figure S 127. ¹H-NMR of 3 (400 MHz, CDCl₃)

Figure S 128. ¹³C-NMR of 3 (100 MHz, CDCl₃)

Figure S 129. ¹H-NMR of 5 (400 MHz, CDCl₃ +5% CD₃OD)

Figure S 130. 13C-NMR of 5 (50 MHz, CDCI3 +5% CD3OD)

Figure S 131. ¹H-NMR of 6 (400 MHz, CDCl₃)

Figure S 132. ¹³C-NMR of 6 (400 MHz, CDCl₃)

Figure S 133. ¹H-NMR of 7 (400 MHz, CDCl₃)

Figure S 134. ¹³C-NMR of 7 (100 MHz, CDCl₃)

Figure S 135. 1H-NMR of 8 (400 MHz, CDCl3)

Figure S 136. 13C-NMR of 8 (100 MHz, CDCl3)

Figure S 137. ¹H-NMR of 1b (400 MHz, CDCl₃).

Figure S 138. ¹³C-NMR of 1b (100 MHz, CDCl₃).

Figure S 139. ¹H-NMR of 21 (400 MHz, CDCl₃)

Figure S 140. 13C-NMR of 21 (100 MHz, CDCl3)

Figure S 141. 1H-NMR of 22 (400 MHz, CDCl₃)

Figure S 142. 13C-NMR of 22 (100 MHz, CDCl3)

Figure S 143. ¹H-NMR of 23 (400 MHz, CDCl₃)

Figure S 144. 1H-NMR of 16 (400 MHz, CD₃OD)

Figure S 145. ¹³C-NMR of 16 (100 MHz, CD₃OD)

Figure S 146. 1H-NMR of 25 (400 MHz, CDCl₃)

Figure S 147. 13C-NMR of 25 (50 MHz, CDCl3)

Figure S 148. ¹H-NMR of 17 (400 MHz, CD₃OD)

Figure S 149. 13C-NMR of 17 (100 MHz, CD3OD)

Figure S 150. ¹H-NMR of 27 (200 MHz, CDCl₃)

Figure S 151. 13C-NMR of 27 (50 MHz, CDCl3)

Figure S 152. ¹H-NMR of 18 (200 MHz, CDCl₃ +5% CD₃OD)

Figure S 153. 13C-NMR of 18 (50 MHz, CDCl3 +5% CD3OD)

Figure S 154. 1H-NMR of 29 (400 MHz, CDCl₃)

Figure S 155. 13C-NMR of 29 (100 MHz, CDCl3)

Figure S 156. ¹H-NMR of 19 (200 MHz, CDCl₃ +5% CD₃OD)

Figure S 157. 13C-NMR of 19 (50 MHz, CDCl₃ +5% CD₃OD)

Figure S 158. 1H-NMR of 30 (400 MHz, CDCl₃)

Figure S 159. 13C-NMR of 30 (100 MHz, CDCl3)

Figure S 160. 1H-NMR of SR59230A (400 MHz, CDCl₃)

Figure S 161. $^{\rm 13}\text{C-NMR}$ of SR59230A (100 MHz, CDCl₃)

References

- [1] R. Vedantham, B. Kandagatla, S. Vyala, P.R.V.V.N. K, Practical synthesis of Mirabegron, J. Chem. Pharm. Res. 7 (2015) 1473–1478. https://www.jocpr.com/articles/practical-synthesis-of-mirabegron.pdf
- [2] J.-M. Hah, P. Martásek, L.J. Roman, R.B. Silverman, Aromatic Reduced Amide Bond Peptidomimetics as Selective Inhibitors of Neuronal Nitric Oxide Synthase, J. Med. Chem. 46 (2003) 1661–1669. https://doi.org/10.1021/jm0202932.
- [3] J. Jing, J. Bankefors, C. Bonneaud, E. Sawen, T. Gerfaud, J. Westin, G. El-Bazbouz, L. Kandelin, A. Rousseau, J. Olsson, A. Karlsson, L. Nord, C. Bouix-Peter, A. Helander Kenne, J.-G. Boiteau, L. Tomas, L. Hennequin, C.S. Harris, Rapid and Selective Cleavage of Amide Groups at Neutral pH: Applications from Hyaluronic Acid to Small Molecules, European J. Org. Chem. 2018 (2018) 2995–3000. https://doi.org/10.1002/ejoc.201800304.
- [4] G. Morini, C. Pozzoli, A. Menozzi, M. Comini, E. Poli, Synthesis of 1,2benzisothiazolyloxypropanolamine derivatives and investigation of their activity at βadrenoceptors, Farm. 60 (2005) 810–817. https://doi.org/10.1016/j.farmac.2005.07.008.
- [5] R. Leung-Toung, T.F. Tam, Y. Zhao, C.D. Simpson, W. Li, D. Desilets, K. Karimian, Synthesis of 3-Substituted Bicyclic Imidazo[1,2- d][1,2,4]thiadiazoles and Tricyclic Benzo[4,5]imidazo[1,2- d][1,2,4]thiadiazoles, J. Org. Chem. 70 (2005) 6230–6241. https://doi.org/10.1021/jo0507486.
- [6] R.A. Gardner, R. Kinkade, C. Wang, Phanstiel, Total Synthesis of Petrobactin and Its Homologues as Potential Growth Stimuli for Marinobacter h ydrocarbonoclasticus, an Oil-Degrading Bacteria, J. Org. Chem. 69 (2004) 3530–3537. https://doi.org/10.1021/jo049803I.
- [7] K.P. Pulukkody, T.J. Norman, D. Parker, L. Royle, C.J. Broan, Synthesis of charged and uncharged complexes of gadolinium and yttrium with cyclic polyazaphosphinic acid ligands for in vivo applications, J. Chem. Soc. Perkin Trans. 2. (1993) 605. https://doi.org/10.1039/p29930000605.
- [8] Z.A. Bredikhina, A. V. Kurenkov, D.B. Krivolapov, A.A. Bredikhin, Synthesis of all of the stereoisomers of β3-adrenoceptor antagonist SR 59230 based on the spontaneous resolution of 3-(2-ethylphenoxy)propane-1,2-diol, Tetrahedron: Asymmetry. 27 (2016) 467–474. https://doi.org/10.1016/j.tetasy.2016.05.001.