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Abstract
Data fusion enables the characterisation of an object using multiple datasets collected by various sensors. To improve opti-
cal coordinate measurement using data fusion, researchers have proposed numerous algorithmic solutions and methods. 
The most popular examples are the Gaussian process (GP) and weighted least-squares (WLS) algorithms, which depend 
on user-defined mathematical models describing the geometric characteristics of the measured object. Existing research 
on GP and WLS algorithms indicates that GP algorithms have been widely applied in both academia and industry, despite 
their use being limited to applications on relatively simple geometries. Research on WLS algorithms is less common than 
research on GP algorithms, as the mathematical tools used in the WLS cases are too simple to be applied with complex 
geometries. Machine learning is a new technology that is increasingly being applied to data fusion applications. Research 
on this technology is relatively scarce, but recent work has highlighted the potential of machine learning methods with 
significant results. Unlike GP and WLS algorithms, machine learning algorithms can autonomously learn the geometrical 
features of an object. To understand existing research in-depth and explore a path for future work, a new taxonomy of data 
fusion algorithms is proposed, covering the mathematical background and existing research surrounding each algorithm 
type. To conclude, the advantages and limitations of the existing methods are reviewed, highlighting the issues related to 
data quality and the types of test artefacts.
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1 Introduction

1.1  Metrology and data fusion

The measurement of the external shape and surface tex-
ture of an engineered component is a ubiquitous activity in 
numerous fields from engineering to cultural heritage [1–3]. 
Optical coordinate metrology is the science and application 
of the measurement of the physical geometry of an object 
using instruments equipped with optical sensors [2]. Opti-
cal coordinate measurement technologies have been increas-
ingly applied in the industry [4, 5]. A recent research theme 
in metrology is the development of data fusion pipelines for 
combining data acquired from multiple optical coordinate 
measuring systems.

As a broad range of processes and applications, data 
fusion, here defined as the combination of two or more 
datasets collected by multiple sensors, is used in various 
multidisciplinary subjects and research areas [6] [7], such 
as manufacturing [8], urban management [9], smart health-
care [10], and defence [11]. These research areas, combining 
data fusion with machine learning technologies, have driven 
researchers to explore more advanced algorithms and archi-
tectures [12]. Data fusion has gained increasing popularity 
because it allows improvement of measurement accuracy, 
expansion of measurement coverage (i.e. the dimensions that 
the measurement system is able to observe), or provision of 
more information than acquired using a single sensor system 
[13].

In this paper, we review research on data fusion algo-
rithms proposed over the last 5 years, with a particular 
focus on the fusion of two or more datasets featuring three-
dimensional (3D) coordinate information (i.e. point clouds) 
of engineered parts measured by optical instruments. Here, 
data fusion strictly refers to the registration of two or more 
3D point clouds, and therefore, research on data fusion as a 
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broader term, including its possible applications, is out of 
the scope of this review. Because of its popularity, numer-
ous reviews have discussed the latest research in metrology 
for data fusion. For example, Pomerleau et al. [14] reviewed 
several iterative closest point (ICP) algorithm variations, 
used to register multiple point clouds of an object measured 
by an optical coordinate measuring system mounted on a 
robot; Wang et al. [15] provided a comprehensive introduc-
tion to the mathematical principles behind numerous data 
fusion techniques applied in surface metrology; Kong et al. 
[16] presented data fusion algorithms in manufacturing pro-
cesses. The aforementioned reviews focus on data fusion 
algorithms proposed before 2017 and do not specifically 
introduce data fusion pipelines applied in the context of 
point cloud registration. Additionally, existing reviews do 
not include an in-depth discussion about how the mathemat-
ics of each type of algorithm influences its advantages and 
limitations in different measurement scenarios.

In this work, we investigated the latest proposed algo-
rithms by observing their underlying mathematics, as we 
wanted to propose a method for selecting the most appropri-
ate algorithm for an optical coordinate measurement task 
[17]. In the reviewing process, we categorised algorithms 
based on the same mathematical foundation into some cat-
egories, where algorithms in that category have similar 
advantages and limitations in measurement applications. 
With such a taxonomy, researchers can choose the most suit-
able algorithm for a given data fusion task. As we focus on 
the overall mathematics of a data fusion pipeline, individual 
techniques embedded in an algorithmic pipeline (such as 
Kalman Filters [18] and its variants, such as recursive filter-
ing [19], particle filtering [20], inertial measurement unit 
[21] etc.) are not included in this discussion.

This review is structured as follows. In Section 1.2, we 
provide a general introduction to data fusion within the con-
text of optical coordinate measurement of engineered parts. 
In Section 2, the methodology of collecting the information 
in this review is presented. In Section 3.1, the taxonomy of 
existing data fusion algorithms is introduced and explained. 
In this taxonomy, we classify the existing algorithms into 
three types: Gaussian process (GP), weighted-least-square 
(WLS), and machine learning algorithms. In Sections 3.2, 
3.3, and 3.4, the mathematics behind each type of data 
fusion algorithms is presented and discussed. In Section 4, 
the latest research, including experimental and simulation 
results, for each algorithm type is presented. In Section 5.1, 
the benefits and limitations of each type of algorithm are 
discussed, in reference to the information presented in 
Section 4. In Section 5.2, we will particularly discuss the 
methodology of existing research (fashion in artefact selec-
tion and design). The information presented in this review 
is concluded in Section 6, and in Section 7, we propose an 
outlook for future research.

1.2  Data fusion: definitions

Data fusion was formally defined for the first time in 1987 
by the Joint Directors of Laboratories (JDL) in the USA 
[22]. The initial definition in Data Fusion Lexicon, which 
was produced by the JDL, is as follows:

“A process dealing with the association, correlation, 
and combination of data and information from single 
and multiple sources to achieve refined position and 
identity estimates, and complete and timely assess-
ments of situations and threats, and their signifi-
cance. The process is characterized by continuous 
refinements of its estimates and assessments, and 
the evaluation of the need for additional sources, 
or modification of the process itself, to achieve 
improved results.”

Later in 1991, the JDL adjusted the definition of data 
fusion, as a general technical term, to the following [23]:

“A process dealing with the association, correlation, 
and combination of data and information from single 
and multiple sources to achieve refined position and 
identity estimates, and complete and timely assess-
ments of situations and threats as well as their sig-
nificance.”

Based on the two definitions given by the JDL, data 
fusion is today defined as a family of technologies that 
integrates and analyzes data collected by multiple sen-
sors, employing a large variety of algorithms developed 
in recent years [24–26]. The most widely acknowledged 
definition of data fusion specifically within the context of 
metrology was given by Weckenmann et al. [27] in 2009, 
stated as follows:

“Multi-sensor data fusion in dimensional metrology 
can be defined as the process of combining data from 
several information sources (sensors) into a common 
representational format in order that the metrologi-
cal evaluation can benefit from all available sensor 
information and data. This means that measurement 
results can be determined, which could not – or only 
with worse accuracy – be determined solely on the 
basis of data from an individual source (sensor) 
only.”

From this definition [16], the advantages of using data 
fusion in metrological contexts are clear. Particularly, the 
fusion of data from a multi-sensor system can be used to 
measure quantities that are not measurable using a single-
sensor system [28]. Additionally, the potential benefits of 
data fusion for metrology include increased measurement 
coverage, increased data density, reinforced robustness to 
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sensors and algorithms, and improved noise filtering and 
data accuracy. Many techniques for data fusion used in 
metrology have been proposed, the most common of which 
are discussed in the following sections.

2  Methodology

Based on the principles presented in Torres-Carrión et al. 
[29], the research questions and the methodology used for 
selecting literature sources are explained in this section.

2.1  Research questions

In this review, we identify the research gaps that have not 
been answered by existing reviews on data fusion in metrol-
ogy. There are numerous existing reviews on data fusion and 
their applications, such as [6, 25, 30, 31] applied in general 
engineering and computer science contexts. In the specific 
field of coordinate metrology, reviews such as [15] explain 
how data fusion has been employed to fuse geometric data 
of engineered parts, particularly in the alignment of mul-
tiple measurements (i.e. registration of 3D point clouds). 
Although these reviews provide a comprehensive and sys-
tematic illustration of data fusion solutions, some observa-
tions can be drawn:

• Existing reviews present data fusion strictly from a com-
puter science viewpoint, analysing the architecture and 
theory of general data fusion systems.

• Most of the applications of data fusion presented in 
existing reviews introduce scenarios in remote sensing, 
autonomous driving, object detection, and software engi-
neering.

• The artefacts and 3D models used to test algorithms have 
not previously been reviewed in detail.

With a greater focus into the implications of data fusion 
for optical coordinate metrology, the following research 
questions are posed here:

1) What are the advantages of using data fusion for optical 
coordinate metrology?

2) Compared to other data fusion tasks (e.g. remote sens-
ing, autonomous driving), what are the distinct features 
of data fusion in optical coordinate metrology?

3) How do existing algorithms differ in terms of the under-
lying mathematics, and how do these differences influ-
ence their performance?

4) As a relatively new technology, can machine learning be 
employed for data fusion tasks in coordinate measure-
ment and can it perform better than existing algorithms?

5) Examining the methodology in testing an algorithm: are 
there any common trends in the geometries of artefacts 
chosen to test them, and what are the common geometric 
characteristics of the artefacts?

2.2  Selection of studies

This literature review was performed using various scien-
tific databases, including Scopus, Google Scholar, Science 
Direct, and Research Gate. The searching keywords included 
the terms “data fusion”, “metrology”, “optical coordinate 
measurement”, “engineered part”, “point cloud registration”, 
“machine learning”, and “deep learning”. Publications dated 
after December 2016 were considered with the highest pri-
ority, but publications prior 2017 were also considered if 
they explained the theoretical foundations of a type of algo-
rithms or introduced a new type of algorithms for the first 
time. Publications outside of the field of optical coordinate 
measurement were also quoted, if they demonstrated the 
characteristics of an algorithm which could be potentially 
beneficial to applications in optical coordinate measurement.

In this review, there are 112 referenced publications, 
among which 17 publications contain research on differ-
ent data fusion algorithms particularly aimed at coordinate 
measurement, 71 publications are referred to for definitions 
of concepts and explanations of techniques, and 24 publi-
cations are referred to as data fusion algorithms applied to 
scenarios other than coordinate measurement.

2.3  Contents of the review

In this paper, we review the most common data fusion algo-
rithms applied in the context of optical coordinate metrol-
ogy, specifically how data fusion methods are employed in 
the processing of measurements acquired by optical coordi-
nate measuring systems.

As mentioned in Section 1.1, in this review, we have clas-
sified data fusion algorithms into three categories, based on 
their mathematical basis. A new taxonomy is proposed in 
Section 3.1; then, the theoretical background of each cat-
egory is discussed in Sections 3.2, 3.3, and 3.4, respectively. 
In Section 4, we present recent research on the application of 
each type of algorithms; for each category, one or two recent 
data fusion algorithms are discussed in detail, including their 
working pipelines, the processes of the experiments, the 
geometries of test artefacts, and the experimental results. 
Section 5 includes a discussion aimed at providing an under-
standing of the characteristics, advantages, and limitations 
of each type of data fusion algorithm. Additionally, the arte-
facts and models used in existing research for testing new 
algorithms are discussed. The geometrical characteristics 
of an artefact or model selected or designed for testing of a 
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specific algorithm may affect the performance of the algo-
rithm, especially when the part is symmetric, smooth, or 
regular.

3  Theoretical background

3.1  A new taxonomy of data fusion algorithms

Since the late 1980s, researchers have proposed many tax-
onomies classifying techniques for data fusion. One of the 
earliest and the most frequently quoted classifications is Luo 
and Kay’s “data-feature-decision” three-layer classification 
[32], in which the authors classified data fusion algorithms 
into three types according to the level of analysis: data level, 
feature level, and decision level. This taxonomy was later 
elaborated into five fusion classes in Dasarathy’s five-layer 
architecture [33]: in this taxonomy, the type of algorithm is 
classified according to which of the three levels, proposed 
in [32] the input and output data belong. A similar taxon-
omy is a Durrant-Whyte architecture [34], which consists 
of a data pre-processing level, data-refinement levels, and 
human–computer interactions. These taxonomies do not 
emphasise the differences in the mathematical basis for each 
algorithm; instead, the focus is placed on the structure of 
the data inputted into the fusion system or the connections 
between datasets or data fusion steps.

In this paper, we propose a new methodology for clas-
sifying data fusion algorithms, based on the mathematical 
principles that underpin existing data fusion algorithms. 
The mathematical basis of each algorithm classification is 
as follows:

• GP algorithms: need a GP “governing equation” to 
describe the calculation process and the geometric fea-
tures of a surface. GPs are a mathematical tool used to 

express a stochastic process with Gaussian distribution 
equations. As such, a mathematical equation or a set of 
equations must be defined before applying the algorithm.

• WLS algorithms: designed to reduce the noise when 
applying data fusion by assigning weights to the meas-
urement result, in the form of a matrix. The working 
principles of WLS algorithms are similar to those for 
GP algorithms and similarly require a governing equation 
to start the data fusion process.

• Machine learning algorithms: able to learn patterns in the 
input datasets, instead of being defined by mathematical 
rules in advance.

GP and WLS algorithms require pre-defined mathemat-
ical expressions before being implemented, while machine 
learning algorithms detect patterns in data autonomously. 
Therefore, the major difference between the first two types 
of algorithms and machine learning algorithms is that the 
computing processes used in the first two are user-depend-
ent, while machine learning algorithms do not require 
manual input to initiate the data analysis process [35]. Due 
to this distinction, in this review, we propose classifying 
GP and WLS algorithms as “user-dependent algorithms”, 
while machine learning algorithms, together with other 
artificial intelligence techniques, can be referred to as 
“user-independent algorithms”. Here, we use the definition 
of machine learning defined by Eastwood et al. (“Machine 
learning can be thought of as a system which is not spe-
cifically programmed to solve a problem; it is instead told 
what problem to solve, given a set of training data, and 
then learns how best to solve the given problem on its 
own.”) [35] to decide whether an algorithm should be clas-
sified as a machine learning algorithm. According to this 
definition, we consider any statistical learning algorithms 
relying on pre-programmed GP and WLS models as GP 

Fig. 1  Taxonomy of data fusion 
algorithms
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and WLS algorithms, instead of machine learning. The 
proposed taxonomy is shown in Fig. 1.

3.2  Gaussian process algorithms

GP algorithms have been widely explored in the context of 
three-dimensional (3D) point clouds, i.e. sets of x, y, z posi-
tions in a 3D coordinate space [36]. GPs are a mathematical 
tool used to describe normally distributed stochastic pro-
cesses that evolve in time according to probabilistic laws 
[37]. Each GP is a collection of random variables, any finite 
subset of which obeys a joint Gaussian distribution [38]. A 
GP is defined with the expression:

where N represents a normal distribution function, and vec-
tor X indicates the locations of the data points collected by 
the sensor, expressed as

where �(X) is the mean function. K(X,X) is the covariance 
matrix, defined as

where k(xi, xj) is the covariance kernel function [38].

3.3  Weighted least‑squares algorithms

Algorithms using weighted least-squares (WLS) methods 
were introduced by Forbes [39], specifically in the context 
of coordinate metrology. Forbes’s work aimed at reducing 
the noise in data by applying weights to each dataset. WLS 
fusion is based on a linear measuring system [39], given by

where x is an n-vector comprised of the model parameters 
to be measured; H is an m × n (m > n) matrix of the meas-
ured points; z is an m-vector representing the measurement 
result, and � is a noise vector independent from the collected 
data, given by � ∼ (0, �2I) [39]. Assume there is a sample 
set with K samples given by {zk}k∈K with noise level � , the 
model parameter vector x can be solved by minimising the 
weighted squares cost function.

(1)GP(X) ∼ N(�(X),K(X,X))

(2)X =
[
x1, x2,… , xn

]
,

(3)K(X,X) =

⎡
⎢⎢⎢⎢⎢⎣

k(x1, x1) k(x1, x2) k(x1, x3) ⋯ k(x1, xn)

k(x2, x1) k(x2, x2) k(x2, x3) ⋯ k(x2, xn)

k(x3, x1) k(x3, x2) k(x3, x3) ⋯ k(x3, xn)

⋮ ⋮ ⋮ ⋱ ⋮

k(xn, x1) k(xn, x2) k(x1, x3) ⋯ k(xn, xn)

⎤⎥⎥⎥⎥⎥⎦

(4)z = Hx + �

(5)
�

k∈K
wk‖ zk − Hkx ‖2

where wk is designed scalar weights [40]. The fusion process 
is based on solving the model parameter vector x by forcing 
the partial differential equation of this weighted squares cost 
function to be zero. Existing research has so far focused on 
proposing different methods forcing this result. Additionally, 
researchers have been exploring new methods of designing 
weights wk (see Section 4.2).

3.4  Machine learning algorithms

Machine learning has been an active research area in aca-
demia since the late 1950s, but has more recently become an 
industrial focus [35, 41, 42] because available computational 
resources have significantly increased in the past 2 decades 
[43]. As such AI, and particularly machine learning, has 
become an efficient tool for data-intensive research [44], 
especially in the context of optical coordinate measurement.

Eastwood et al. [35] define machine learning as follows:

“Machine learning can be thought of as a system which 
is not specifically programmed to solve a problem; it is 
instead told what problem to solve, given a set of train-
ing data, and then learns how best to solve the given 
problem on its own.”

According to this definition, the computer can be used 
to predict trends by learning patterns in data with pre-
programmed logic. The central idea surrounding machine 
learning algorithms is to create an autonomous data process-
ing system, unlike GP or WLS methods, where a manually 
defined mathematical description is required [45]. As such, 
machine learning algorithms are frequently used to solve 
problems that are difficult to model with predefined math-
ematical expressions [45, 46].

There are three categories of machine learning, with 
each category depending on how the original data is pre-
processed: supervised learning, unsupervised learning, 
and semi-supervised learning [47]. These categories are as 
follows:

• Supervised learning: if the input datasets have been 
manually labelled, then supervised learning algorithms 
are used to learn such datasets. Two types of super-
vised learning are most frequently used: support vector 
machines (SVMs) and neural networks (NNs). SVMs are 
used to realise binary classification. NNs, also known as 
artificial neural networks (ANNs), learn certain param-
eters of a dataset by analysing the data with multiple 
layers of neurons (nodes), each of which has various sta-
tistical weights defined by the user [48].

• Unsupervised learning: in the case of unsupervised learn-
ing, the input datasets are unlabelled, meaning that the 
algorithms learn the patterns in the data without direct 
human input. Unsupervised learning algorithms recog-
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nise the hidden patterns in a given dataset by cluster-
ing data points. It should be particularly noted that NNs 
and their variants can also be applied in an unsupervised 
learning case, particularly when used to detect or extract 
patterns in data [48–51]. A typical example of NNs used 
as an unsupervised learning technique is discussed in 
Section 4.3.

• Semi-supervised learning: semi-supervised learning 
algorithms process partially labelled datasets [48]. To our 
knowledge, in the context of optical coordinate measure-
ment, no work has been published using semi-supervised 
learning for fusing datasets with incomplete labels. As 
such, a discussion of semi-supervised learning research 
is not included in this review.

In addition to machine learning, there are other fields 
under the broader area of AI, some of which are shown in 
Fig. 2, but the discussion of these areas is beyond the scope 
of the review.

4  The current state of the art

In the following sections, we present recent research on the 
application of each algorithm type introduced in Section 2. 
The advantages and limitations of each algorithm, together 
with the general problems presented in existing research, 
are examined.

4.1  GP algorithms

Research on GP algorithms shows a broad range of appli-
cations in optical coordinate measurement, separated into 
two branches: those involving fusion of datasets collected 

by multiple sensors (this is the most common branch) and 
those involving enhancement of the measurement processes 
to improve the quality of datasets.

Ji et al. [52] introduced the “adjustment model” to sup-
plement GP methods. The adjustment model is designed to 
fuse inhomogeneous data: a low-accuracy dataset (here, a 
geometric dataset collected by an optical coordinate meas-
urement system) with a high-accuracy dataset (here, a geo-
metric dataset collected by contact coordinate measurement 
system). Before implementing the adjustment model, the 
external geometry of the measured surface is firstly pre-
dicted by applying GP to the low-accuracy dataset, forming 
a model of the surface coordinates. Then, the adjustment 
model is used to describe the difference between the model 
of the surface coordinates and the high-accuracy dataset. In 
this process, the high-accuracy dataset acts as the basis for 
correction.

In their paper, Ji et al. [52] chose two artefacts: an array of 
spherical holes (see Fig. 3) and a machined freeform surface. 
For each of these artefacts, a low-accuracy (LA) dataset and 
a high-accuracy (HA) dataset were collected by a contact 
and an optical coordinate measurement system. The authors 
attempted to fuse the two datasets of each of these two arte-
facts employing their adjustment model. Results showed 
that the GP method with the adjustment model could fuse 
the inhomogeneous measurements of the complex surfaces. 
Additionally, the fusion process only required a small por-
tion of the HA dataset and one LA dataset, which improved 
the efficiency of the measurement and fusion processes.

In addition to the work presented by Ji et al., numerous 
GP algorithms have been proposed over the past 5 years. 
Ma et al. [53] developed a new method called the “fused 
Gaussian process” (FGP) with a two-component covariance 
structure. Their algorithm was designed to fuse large spatial 
datasets (e.g. remote sensing data). Yin et al. [54] introduced 
a similar GP regression algorithm specifically designed 
for multi-sensor systems for the measurement of complex 
surfaces. Experimental tests indicated that the developed 

Fig. 2  Machine learning is a type of AI, together with other subjects 
such as expert systems and natural language processing. There are 
three categories of machine learning: supervised learning, unsuper-
vised learning, and semi-supervised learning Fig. 3  Artefact comprising an array of spherical holes used in [52]
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algorithm was able to perform intelligent sampling (i.e. 
autonomous selection of effective data points for analysis) 
when fusing datasets from various sensors. Chen et al. [55] 
proposed an adaptive sampling method based on GP infer-
ence. This algorithm was able to reduce the sampling density 
of the point cloud collected by a contact coordinate measure-
ment system while having minimal impact on the accuracy 
of the surface reconstruction derived from multiple datasets.

In addition to GP data processing applications, there are 
also GP algorithms developed for enhancing the measure-
ment process itself to improve the quality of the datasets. 
For example, Wang et al. [56] presented an approach for 
determining the contact positions of a coordinate measure-
ment machine contact probe by implementing the GP model, 
which led to minimised surface uncertainty (surface vari-
ance) in experimental results. Yang et al. [57] introduced 
a new adaptive sampling technique based on GP inference, 
which allowed the scanning device to plan the sampling 
positions intelligently along the scan path (i.e. the sampling 
positions are chosen according to local geometric character-
istics [55]). Their technique aimed at reducing the amount 
of data whilst saving time without sacrificing the accuracy 
of the fusion. The results presented in [56, 57] indicated that 
GP algorithms for planning the measurement process could 
improve the quality of the collected datasets which were to 
be fused at a later stage.

The outcomes of GP algorithms, such as those presented 
in [52–57], indicate that research into this type of algorithm 
has already reached relative maturity, and the feasibility and 
reliability of the algorithms have been explored with appli-
cations in various scenarios.

4.2  WLS algorithms

Many algorithms based on WLS theory have been proposed 
in the past few years, aiming at improving the accuracy and 

efficiency of data fusion. The most common WLS algo-
rithms are those developed by Forbes [39] and Ren et al. 
[58] (see Fig. 4). The former introduced a general Bayesian 
approach in order to balance the noise parameters; however, 
this solution relies on the fitting accuracy of the linear sur-
face model, and its application in multi-sensor fusion is lim-
ited [58]. To overcome this issue, the latter added a surface 
registration method into the general WLS algorithm. The 
results of both simulations and experiments indicated that 
their new method could improve the fidelity of the recon-
structed surface, modelled using their experimental data and 
the algorithm.

Research on coordinate measurement has also high-
lighted the limitations of WLS algorithms in non-linear 
surface model and multi-sensor data fusion. Yu et al. [59] 
commented that, although the WLS method is capable of 
multi-sensor data fusion, showing a noticeable reduction 
of the measurement uncertainty; these algorithms are still 
unable to provide comparable accuracy to GP algorithms 
unless a large number of contact points have been measured, 
which limits the efficiency of the algorithms. Xiang et al. 
[60] pointed out that the performance of WLS algorithms 
is comparable to that of GP algorithms only when process-
ing homogenous datasets, and they are not suitable to fuse 
datasets collected from large-scale surfaces (e.g. surfaces of 
major parts on the body of an aircraft or rocket [61]). Kong 
et al. [62] showed that WLS algorithms depend on linear 
approximations of the geometry, which means they are not 
ideal for measuring objects of highly complex geometry (e.g. 
objects with sharp geometrical changes or smooth surfaces 
with micro-structures embedded).

4.3  Machine learning algorithms

A general review on machine learning in data fusion was 
recently presented by Meng et al. [48]. In their review, the 

Fig. 4  Measurement of a sinu-
soidal structured surface using 
an optical surface topography 
measurement system. The data 
collected by the measurement 
system is used to test the WLS 
algorithm proposed by Ren 
et al. [58]
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authors noted that most of the existing research is focused 
on stochastic or time-series data analyses, covering topics 
such as autonomous vehicles, the internet of things, and geo-
graphic information systems. In metrology, the most popular 
application is the fusion of 3D point clouds.

For a specific object under observation, multiple measure-
ments may be acquired using more than one sensor to form 
a complete point cloud representing the observed object. 
Point clouds obtained using different sensors will have dif-
ferent angles of observation, coordinate systems, scales, etc. 
Abdelazeem et al. [63] noted that there is no apparent infor-
mation in the measurement dataset indicating how the points 
in a point cloud are spatially related.

Registration is an important process before further fusion. 
The term “registration” is defined by Catalucci and Senin 
[54], based on the definition presented in ISO 10360 part 
13, [64] as follows:

“Registration is the process that brings multiple point 
clouds taken from observations of the same scene in 
their correct, relative position within a shared coordi-
nate system.”

The process of fusing multiple point clouds is then 
defined by Abdelazeem et al. [65], based on the definition 
presented in ISO 10360 part 13 [64], as follows:

“Data fusion is the process of combining data from 
multiple sensors in order to obtain better 3D model of 
an object than that obtained from single sensor data.”

An example point cloud that is the result of the fusion of 
multiple scans is shown in Fig. 5.

To apply machine learning to point cloud registration and 
fusion, Wang et al. [66] created a registration and fusion 
pipeline named “deep closest point” (DCP). This method is 
proposed as an alternative to the iterative closest point (ICP) 
algorithm, which is one of the most popular solutions for 

point cloud registration [66–68]. ICP is an iterative process 
that is employed to minimise the distance between two point 
clouds. A point cloud (identified as the reference or target) 
is kept fixed, while the second one (identified as the source 
or moving set) is transformed to best match the reference 
based on the rigid motion [63, 66]. The ICP algorithm can 
fail to reach the global minimum due to its non-convexity, 
i.e. a non-convex function may have multiple local minima 
in a certain range; a local minimum found in a certain range 
does not necessarily correspond to the global minimum [69]. 
The methods presented in [70–72], which are all variants 
of ICP supplemented with various statistical optimisation 
methods, were developed to address this issue. However, in 
some cases, these methods have not been proven effective.

The DCP model aims to provide a solution to the local 
minima problem with ICP and consists of three steps [66]:

1) Embed two individual point clouds into a common space 
and find the corresponding points in two clouds.

2) Create an attention module combined with a pointer 
generation layer to provide an initial matching, i.e. a 
probabilistic map from one point cloud to the other.

3) Extract the accurate alignment by analysing the results 
from step (2) with a differential singular value decom-
position (SVD) layer.

Here, the attention module is a machine-learning mecha-
nism that highlights the key data points to increase the accu-
racy of prediction [73]. A pointer is the core element of a 
deep-learning technique called “pointer networks”, which 
uses attention as pointers to select input data for combina-
torial matching [74]. In this research, pointer generation is 
a step used to expose matched pairs of points in two point 
clouds and create an initial matching [66]. The matrix of this 
matching is used to extract translation and rotation matrices 
for accurate alignment with the SVD technique [66].

Fig. 6  The fusion of two point clouds by DCP and ICP [66]

Fig. 5  Multiple point clouds registered in the same coordinate frame. 
Each individual point cloud is represented with a distinct colour 
(from [63])
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Wang et al. [66] compared the outcomes of DCP and ICP 
algorithms for the registration of multiple point clouds. The 
results of this comparison are shown in Fig. 6. The com-
parison shows that ICP assisted by DCP can converge to 
the global optimum, and DCP can increase the accuracy of 
alignment when registering two point clouds with poor ini-
tial alignment [66]. Additionally, Wang et al. drew the con-
clusion that DCP is a capable algorithm for rigid registration 
tasks and can be used to replace ICP algorithms, considering 
its reduced registration errors.

Later research by Gojcic et al. [75] proposed an NN 
model, a popular technique in machine learning (see Sec-
tion 3.4), to fuse two multi-view (i.e. measurement of spa-
tial coordinates through registration and fusion of multiple 
single-view measurements in different locations and orien-
tations of the optical sensor relative to the workpiece, as 
defined in ISO 10360 part 13 [64]) datasets into a single 
point cloud. The algorithm models the registration process 
using an end-to-end NN, whose accuracy is estimated by a 
specifically designed layer within the NN. In [75], Gojcic 
et al. defined the problem of aligning two point clouds as an 
iterative WLS problem, i.e. the 3D transformation matrices 
which adjust the orientations of two point clouds by itera-
tively refining by the NN with WLS method (see Section 3.3 
for WLS). To demonstrate the advantages of their NN algo-
rithm, Gojcic et al. tested it with three common benchmark 
datasets: 3Dmatch [76], Redwood [77], and ScanNet [78]. 
Compared to non-machine learning algorithms, the NN 
model was superior in terms of run time, rotational error, 
and translational error [75].

In addition to the research discussed above, Zhang et al. 
[79] gave a general introduction to machine learning algo-
rithms for data fusion in optical coordinate measurement. 
In this review, Zhang et al. categorised all machine learning 
algorithms within the context of optical coordinate measure-
ment into two types: machine learning as a step added to a 
traditional measurement pipeline and a complete substitute 
of traditional pipelines using machine learning technologies 
[35]. Research into both types has indicated that machine-
learning models have the potential to surpass traditional 
methods in terms of effectiveness [35, 79].

5  Summary and discussion on existing 
research

5.1  Discussion on the state of the art

In this section, we will discuss the state of the art in user-
dependent (i.e. GP and WLS algorithms) and user-independ-
ent (i.e. machine learning) algorithms.

In the studies on GP algorithms introduced in Sec-
tion 4.1, researchers usually tested an algorithm by fusing 

a “high-accuracy” (HA) dataset with a “low-accuracy” 
(LA) dataset. The HA data were collected by micro-scale 
pointwise measuring sensors, such as coordinate measur-
ing machines (CMMs) in the study by Yin et al. [54]. LA 
data were collected using optical inspection sensors such as 
fringe projection systems [52]. The data collection efficiency 
and the point density of an HA dataset are low due to the 
functionality of most pointwise measuring instruments; on 
the contrary, data collection for an LA dataset is rapid and 
its point density is high, but it cannot provide the coordinate 
information as accurate as an HA data [52, 54]. The benefit 
of registering an HA dataset with an LA dataset, therefore, 
is to combine the accuracy of the former and the efficiency 
of the latter.

Existing studies in GP algorithms usually chose one of 
the following two paths to fuse an HA with an LA dataset. 
The first path is to register two datasets by optimising the 
point-to-point distance in both datasets. In the GP algo-
rithm research discussed in this review, the most typical 
method used in this path is presented by Ji et al. [52]. This 
method fuses two datasets by unifying the coordinate sys-
tems through optimisation of the point distances. The other 
path is to propose new sampling methods based on GP for 
data fusion. In this path, the LA dataset is first subsampled, 
then GP is applied to the subsampled dataset to reconstruct 
the surface geometry. Finally, the HA dataset is registered 
with the reconstructed surface. The key to this research path, 
therefore, is the proposition of new data sampling methods. 
The works by Yin et al. [54] and Chen et al. [55] are typical 
examples of this path: they both proposed intelligent adap-
tive sampling methods (i.e. sampling size and positions vary 
according to the local changes in surface geometry [80]) 
based on GP inference. Chen et al. particularly discussed 
scenarios where the measured surface has sharp geometrical 
variations.

Like the existing studies on GP algorithms, typical 
research on WLS algorithms such as [58] also fused an HA 
dataset with an LA dataset. However, as we have mentioned 
in Section 4.2, WLS is not generally useful for fusing com-
plex geometric data because of its reliance on linear model-
ling [52].

Researchers in machine learning tend to test their algo-
rithmic pipelines by fusing two or more datasets represent-
ing the same 3D object. For energy, Wang et al. [66] tested 
their DCP pipeline by fusing multiple pairs of point clouds, 
with each pair of point clouds represented a 3D object with 
approximately the same point densities. The test datasets in 
[75], as another example, were multiple point clouds rep-
resenting a building interior. Unlike the datasets used for 
testing GP and WLS algorithms, these point clouds did not 
contain surface texture information, instead only represent-
ing the general shapes of the object or building interior. As 
such, existing research has not clarified whether machine 
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learning is effective for registering point clouds containing 
tiny and dense surface textures to large, sparse point clouds. 
Moreover, as the benchmark datasets usually had similar 
densities, the performance of machine learning in register-
ing dissimilar point clouds is also unknown. The fusion of 
dissimilar point clouds (e.g. small and dense point clouds to 
large and sparse point clouds) represents an area of future 
research.

5.2  Advantages and limitations of user‑dependent 
and ‑independent algorithms

As the most popular type used in optical coordinate metrol-
ogy, GP algorithms are relatively simple to implement and 
can be used for flexible nonparametric inference (i.e. infer-
ring the unknown quantities in the data while making as few 
assumptions as possible) [81–83]. GP-based methods have 
these advantages because GP is the mathematical basis of 
many statistical learning algorithms [83]. However, most of 
the research on GP methods is limited to tests and applica-
tions performed on objects with simple geometries. Con-
sequently, whether these algorithms are capable of dealing 
with multiscale complex surfaces is not yet clear [36, 54, 
84–86]. Additionally, the implementation of GP algorithms 
simplifies the real modelling process into a set of GP equa-
tions [81]. In industry, however, the measurement and data 
fusion processes are more complex than a set of equations 
can describe and predict (e.g. due to the continuous change 
of environmental conditions) [87, 88].

As user-dependent algorithms, both GP and WLS algo-
rithms rely on user-defined mathematical expressions to 
process the external geometry and surface topography data. 
Essentially, when applying these algorithms, it is assumed 
that the engineered part’s geometry can be described with 
a set of GP or WLS equations. However, the measured part 
can have highly complex geometric features—more complex 
than those that GP and WLS algorithms are able to model. 
This limitation is particularly notable in the implementation 
of WLS algorithms, as presented in Section 4.2 by [59, 60, 
62]. The surface geometries can be far more complex than 
the mathematical equations can model, which is the gen-
eral limitation for user-dependent algorithms, as [87, 88] 
indicate.

As user-independent algorithms, machine learning algo-
rithms define a model that allows learning of the patterns in 
the data autonomously after being trained with the training 
datasets, instead of using pre-defined mathematical expres-
sions. Consequently, machine learning solutions potentially 
provide more flexibility than GP and WLS algorithms, par-
ticularly when measurement tasks cannot be modelled with 
specific equations.

Recent research has shown the potential of machine learn-
ing algorithms. The Elman ANN algorithm has been shown 

to be capable of nonlinear predictions in practical applica-
tions, for instance, in the determination of the position of 
an object in 3D space [89]. Fahmy et al. [90] indicate that 
machine learning-enhanced techniques can overcome data 
imperfection better than GP and WLS algorithms. Tong et al. 
[91] demonstrated that machine learning showed robustness 
against noise compared to GP algorithms. Shu et al. [92] 
demonstrated that a machine-learning model was robust in 
fusing datasets that had ambiguity and noise. A later work 
by Wang et al. [93] demonstrated the efficiency and stability 
of machine-learning algorithms with an object-tracking task. 
Alyannezhadi et al. [94] proposed a clustering algorithm to 
fuse datasets whose characteristics could not be identified 
by mathematical equations.

While the machine learning methods discussed were not 
all applied within the context of metrology, researchers have 
demonstrated that machine learning is capable of complex 
tasks and is robust against noise and data imperfections, 
which are important advantages for applications in metrol-
ogy. One of the directions of future research is to explore 
machine learning models that can fuse dense point clouds. 
As Wang et al. [66] discuss, the latest machine learning 
models are only successful with point clouds of 500–5000 
points; ideal machine learning models should be able to pro-
cess up to 300,000 points.

Regarding the precision of these algorithms and evalu-
ation of their contributions to measurement uncertainty, 
the published research has not included much discussion, 
instead only comparing new machine learning algorithm 
performance with other earlier algorithms, such as ICP and 
fast global registration (FGR) [95]. In optical coordinate 
metrology, comparison with non-machine learning algo-
rithms using the same benchmark datasets is also rarely seen 
in the literature. Because of these issues, it is difficult to 
comment on methods for the evaluation of uncertainty and 
precision of existing machine learning algorithms, particu-
larly when compared with non-machine learning algorithms.

To decrease errors, existing research on new machine 
learning methods commonly proposes iterative refinement or 
“Multiple Run” [66, 75, 96]. These experimental outcomes 
indicate that multiple runs could improve accuracy after 
initial registration. To our knowledge, researchers have not 
proposed more techniques particularly aimed at improving 
the uncertainty and precision of machine learning. As such, 
the examination of methods for evaluating the contribution 
to measurement uncertainty from these algorithms is a ripe 
area for future research.

The advantages and limitations of all types of algorithms 
are summarised in Table 1 using the taxonomy we proposed 
in Section 3.1. In this summary, user-dependent algorithms 
rely on user-defined mathematical models to learn the geo-
metrical patterns in the input data and then fuse the input 
data based on the user-defined models. This feature makes 
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user-dependent algorithms easy to deploy but also difficult to 
fuse data of complex geometries, because the surface geom-
etries can be more complex than those that GP and WLS are 
able to describe, as [87, 88] indicate.

User-independent algorithms, such as machine learning, 
can recognise geometrical patterns without user-defined 
mathematical models. These algorithms use techniques, 
such as NNs, to detect the patterns autonomously. This fea-
ture makes user-independent algorithms effective in fusing 
data of complex geometries that are difficult to analytically 
model. However, as existing research is still relatively rare, 
more experimental studies are in need to prove the effec-
tiveness and reliability of machine learning used in optical 
coordinate measurement, as stated in Section 5.1.

5.3  Discussion on methodology: test objects

As mentioned in Section 2.1, the geometries of the test 
artefact have rarely been discussed in existing reviews. In 
the literature collection process, we have noted that there 
are certain trends in the selections and designs of the test 
artefacts in existing research. In the research presented in 
Sections 4.1, 4.2, and 4.3, the artefacts or virtual surfaces 
that were used to test the algorithms usually had simple 
geometries. These artefacts and virtual surfaces generally 
exhibited the following characteristics: the virtual surfaces 
were defined using periodic mathematical patterns, i.e. the 
definitions of the surface used in each paper are all in form 
of z = sin(Ax) + cos(By),A,B ∈ ℝ . Similarly, artefacts used 
were either periodically patterned or had simple curvature. 
For example, artefacts with highly symmetrical geometries 
were frequently used for testing the newly proposed algo-
rithms (see examples in Fig. 3, Fig. 5, and 7).

As discussed in Section 5.1, the geometries of engineered 
parts are likely to be more complex than the geometries of 
simulated surfaces and custom-designed artefacts in labo-
ratories. Therefore, in addition to simulated surfaces and 
artefacts, common objects and engineered parts used in the 
industry should be employed in industrial and research activ-
ities to test different measurement techniques. For instance, 
coins represent inexpensive examples of metal freeform sur-
faces that can be used for the detection of defects in surface 
topography measurement [99].

Common objects used in practical circumstances, such 
as a coin, can challenge an algorithm more than a simulated 
surface or a specifically manufactured artefact. Taking a coin 
as an example, the patterns on it, e.g. motto, legend, and 
mint mark, display many convex and concave geometries, 
which are characterised by a wide dimensional range (see 
Fig. 8). As such, a coin can provide various opportunities to 
challenge the capability of a coordinate measurement tech-
nique, including data fusion algorithms used in this process 
[100]. Additionally, coins with different materials and worn Ta
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surfaces lead to different optical reflectivity conditions, 
which can influence the data collected by optical sensors 
[101]. Therefore, a coin is also an effective object to test 
the robustness and stability of a data fusion algorithm in 
coordinate measurement processes.

In terms of geometric complexity, a simulated surface 
may also display highly complex geometry if its mathemat-
ical expressions have numerous items, as Eastwood et al. 
[102] and Todhunter et al. [103] indicated in their work. If a 
3D model is constructed with such polynomials and inputted 

into an additive manufacturing system, a highly complex 
artefact can be manufactured for testing data fusion algo-
rithms. However, the more complex the surface, the higher 
the computational cost.

Another popular type of object used for metrologi-
cal research is aspherical lenses [104, 105] (see Fig. 9). 
Aspherical lenses have become increasingly common in 
industry because of the progress of manufacturing technol-
ogy; therefore, they are frequently used in medical imaging, 
optical systems, astrophysics, lithography, automotive, and 

Fig. 7  Test examples of 
recently developed algorithms: 
a shows a simulated sur-
face generated by a math-
ematical equation in form of 
z = sin(Ax) + cos(By),A,B ∈ ℝ 
(from [38]), and b is an artefact 
with relatively smooth geom-
etry, with the yellow dots repre-
senting the data points collected 
by the measurement instrument 
(from [40])

Fig. 8  An example of the sur-
face profile of a part of a coin (1 
zł, Poland) adapted from [100], 
showing complex geometric 
features: a the colour map of 
height, in which the authors 
mark geometric features includ-
ing design, legend, and mint 
mark. The dot line marked with 
“Profile” is where the authors of 
[100] used for further research 
in their work on surface prolif-
eration. b 3D model of the same 
area on the coin, rendered with 
data shown in a 

Fig. 9  a A photo of two exam-
ple aspherical lenses and b 
schema of an asphere [104, 110]
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metrology [106]. The broad range of applications in high-
precision optical fields demands better techniques for coor-
dinate measurement in manufacturing, designing, and testing 
aspherical lenses [107, 108]. As such, coordinate measure-
ment of an aspherical lens challenges the accuracy of data 
fusion algorithms used in this process [109].

6  Conclusions

In this review, we have discussed a broad array of data fusion 
algorithms used for optical coordinate measurement pro-
posed since 2017 and have defined a new taxonomy for the 
classification of existing algorithms based on their math-
ematical backgrounds: user-dependent algorithms (GP meth-
ods and WLS methods) and user-independent algorithms 
(machine learning algorithms).

By reviewing research on each class of algorithm, we have 
seen that user-dependent algorithms are relatively easy to 
implement, as these algorithms assume that the geometry of a 
surface can be described by a series of mathematical equations. 
However, these algorithms are not capable of modelling highly 
complex surfaces. Recent research on user-independent algo-
rithms represented by machine learning and its derivatives such 
as deep learning is relatively scarce, but the results have already 
demonstrated its potential and value for further exploration.

In addition to the algorithm review, the problems with 
experimental methods used in existing research are also dis-
cussed. Researchers generally use a virtual surface plus an 
engineered object to test the algorithms. The problem with 
virtual surfaces is that they are usually created using simple 
mathematical expressions, consisting of a sine and a cosine 
term. The problem with engineered artefacts is that there 
is commonly a lack of complex geometric features on their 
surfaces, e.g. sharp changes in height.

7  Future work

As introduced and discussed in Sections 2 and 4, research on 
GP algorithms has reached maturity with many outcomes in 
the past 2 decades in a broad range of application scenarios. 
Research on WLS algorithms is relatively rare, because 
researchers have realised their limitations and disadvantages 
compared with GP algorithms. Compared with user-depend-
ent algorithms, research on machine learning for data fusion 
applications specifically within the context of metrology is 
not frequently seen. As such, potential directions for further 
exploration on machine learning algorithms are:

1) Machine learning algorithms for the fusion of datasets 
measured from parts with highly complex geometries 
should be developed. Additionally, existing algorithms 

should be tested with highly complex artefacts or industrial 
objects, e.g. coins, aspherical lenses, and aspherical mirrors.

2) As Wang et al. [66] discussed, research should focus on 
the applications of machine learning algorithms to the 
fusion of highly dense point clouds (i.e. clouds having 
more than 5000 points) and inhomogeneous datasets, 
i.e. datasets with the difference in point quantity, point 
density, features, and particularly, dimensions.

3) Research should investigate how to apply the advan-
tages of machine learning, which have been shown in 
other application scenarios such as autonomous vehi-
cles and object recognition to optical coordinate meas-
urement in manufacturing. A direction that is worthy 
of investigation is locating a dense point cloud repre-
senting a sub-section of an object within a larger but 
less dense point cloud covering the whole of an object 
(e.g. a small field-of-view surface texture measurement 
within a wider co-ordinate measurement). The latest 
algorithms, such as PointNet [111] and its variances 
(e.g. PointNet + + [112]), are able to recognise a small 
point cloud within a larger point cloud. However, this 
architecture can only determine what the object is and 
cannot provide the precise location of the recognised 
object in a larger point cloud. Moreover, PointNet and 
its variances can recognise an object in a scenario only 
when the objects in the scenario have been manually 
labelled, i.e. they cannot recognise a pattern in a point 
cloud scenario if this pattern does not have any label. 
As such, future research should explore how to let a 
program autonomously recognise an object or pattern 
within a larger point cloud without labelling any object.
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