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Abstract

Given the financial and economic damage that can be caused by the collapse of an asset
price bubble, it is of critical importance to rapidly detect the onset of a crash once a
bubble has been identified. We develop a real-time monitoring procedure for detecting
a crash episode in a time series. We adopt an autoregressive framework, with bubble
and crash regimes modelled by explosive and stationary dynamics, respectively. The first
stage of our approach is to monitor for a bubble; conditional on which, we monitor for a
crash in real time as new data emerges. Our crash detection procedure employs a statistic
based on the different signs of the means of the first differences associated with explosive
and stationary regimes, and critical values are obtained using a training period of data.
We show that the procedure has desirable asymptotic properties in terms of its ability
to rapidly detect a crash while never indicating a crash earlier than one occurs. Monte
Carlo simulations further demonstrate that our procedure can offer a well-controlled false
positive rate during a bubble regime. Application to the US housing market demonstrates
the efficacy of our procedure in rapidly detecting the house price crash of 2006.

I. Introduction

Asset price bubbles and crashes are a prevalent feature in economic and financial markets,
with notable examples including the Dot-com bubble in technology stock prices in the late
1990s, the sub-prime mortgage bubble in the US housing market in the mid-2000s, and,
more recently, the presence of bubbles in cryptocurrencies. The collapse of the sub-prime
mortgage bubble, in particular, illustrated how devastating the emergence and collapse of
asset price bubbles can be, not just for the asset market in which the bubble occurs, but
for the global economy as a whole. The quicker that policy makers are alerted to the onset
of a crash, the quicker they can respond to mitigate the effects of that crash. Developing
early detection tools that can provide warning signals of such an event are therefore of
critical importance. In this paper we propose a real-time monitoring procedure for the
crash of an asset price bubble in order to provide this fast detection.
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2 Bulletin

Much of the econometric literature concerning the identification of bubbles and
crashes has focused on historical detection, where a bubble episode has emerged and
then terminated within a sample of observed data. The focus of this literature has been
primarily on rational bubbles, where the price of an asset diverges from the underlying
fundamental value of that asset, yet investors continue to purchase the asset due to an
expectation that prices will grow beyond the price paid. In a rational bubble framework,
an asset price bubble is present if explosive behaviour is observed in the price series
of an asset but not in the corresponding fundamental values. Modelling asset price
bubbles as explosive autoregressive processes, Phillips, Wu, and Yu (2011) propose the
use of sub-sample right-tailed augmented Dickey–Fuller unit root tests, implemented
recursively, to distinguish between a process which is unit root across a full sample period
or instead exhibits a single episode of temporary explosiveness at some point in that
period. Phillips, Shi, and Yu (2015) subsequently extend this recursive unit root testing
approach to consider the detection of multiple bubble episodes. Further developments
in the econometric detection of explosive bubbles have considered, inter alia, CUSUM-
based procedures (Homm and Breitung, 2012), bootstrap implementations of recursive
unit root test procedures (Harvey et al., 2016; Phillips and Shi, 2020) and the use of
Generalised Least Squares-based recursive unit root testing (Whitehouse, 2019). These
techniques have been employed in the empirical literature to detect past bubble episodes
in a wide range of asset markets such as stocks (Caspi and Graham, 2018; Hu and
Oxley, 2018; Basse et al., 2021), housing (Anundsen et al., 2016; Pavlidis, Paya, and
Peel, 2018; Anundsen, 2019), commodities (Etienne, Irwin, and Garcia, 2014; Etienne,
Irwin, and Garcia, 2015; Figuerola-Ferretti and McCrorie, 2016), and cryptocurrencies
(Corbet, Lucey, and Yarovaya, 2018; Gronwald, 2021).

Determining the presence and timing of historical asset bubbles provides useful
information for empirical researchers, allowing for a more rigorous analysis of the
timeline and determinants of bubble behaviour. However, from a policy perspective, the
detection of ongoing bubbles in a real-time monitoring exercise is of clear interest. Astill
et al. (2017) examine the possibility of detecting an end-of-sample bubble. That is, a
bubble which has emerged close to the end of an observed sample period of data and
is still ongoing at the end of the sample. Their procedure requires the application of a
test statistic to a finite number of end-of-sample observations, where critical values are
obtained through sub-sampling of the test statistic throughout the remainder of the sample.
The test statistic used is motivated by a Taylor series expansion of the first differences
of an explosive process. The advantage of this methodology is that as the critical values
are obtained from the data itself, the test procedure is robust to serial correlation and
conditional heteroskedasticity in the data.

The Astill et al. (2017) approach provides a method for conducting a one-shot test
for an end-of-sample bubble. If no bubble is detected through such a procedure, it may
then be of interest to repeatedly test for the presence of a bubble as new data observations
are released. We refer to this repeated testing every time a new data point is observed as
real-time monitoring. Inherent in real-time monitoring is the multiple testing problem, in
which repeated application of the same test statistic as each new observation is realised
can lead to an empirical size for the procedure far beyond the theoretical size of a one-off
application of the test statistic. Astill et al. (2018) (AHLST) therefore propose a real-time

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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Real-time monitoring of bubbles and crashes 3

monitoring procedure, based on the test statistic of Astill et al. (2017), but implemented
in such a way that the false positive rate (FPR) for bubble detection (i.e. the probability
of false detection at each point of monitoring) can be determined at any point in the
monitoring horizon. Specifically, test statistics are computed over rolling sub-samples of
fixed length within a training period, with the maximum test statistic within this training
period forming the critical value to which monitoring statistics, computed using the most
recent data available, are compared. Such an approach also allows the practitioner to set a
maximum monitoring horizon to ensure that the FPR never exceeds some specified level.
Monte Carlo simulation results demonstrate that the AHLST 2017 real-time monitoring
procedure delivers FPRs close to their theoretical level in finite samples, and offers rapid
detection of explosive bubbles.

An equally important issue to real-time detection of the emergence of a bubble is
real-time monitoring for the subsequent termination of that bubble in the form of a crash.
In the context of detecting historical crash episodes, Harvey, Leybourne, and Sollis (2017)
and Phillips and Shi (2018) model the crash regime as a stationary autoregressive process
that immediately follows the explosive autoregressive bubble phase. In this paper, we
propose a real-time monitoring procedure for stationary crashes, with our procedure
conditional on having first detected the presence of a bubble. Our procedure relies on
the sequential application of a new test statistic for the detection of a crash, motivated
by the differing signs of the means of the first differences of explosive and stationary
processes. The test statistic is constructed in such a way that a user-chosen parameter
offers practitioners the choice to potentially introduce a degree of detection delay in order
to reduce the FPR of crash detection. We follow AHLST 2017 in computing sub-sample
test statistics over a training period, although it is now the minimum of these training
sample statistics which forms our critical value to which monitoring statistics for crash
detection are compared. We rely on AHLST 2017 for bubble detection, such that we begin
monitoring for a crash conditional on first detecting an explosive bubble. We show that
our crash monitoring procedure has desirable asymptotic properties in terms of its ability
to rapidly detect a crash regime while never indicating a crash earlier than one occurs.
Monte Carlo simulations demonstrate that our recommended crash monitoring procedure
can offer a well-controlled FPR in finite samples, while also allowing rapid detection
of a crash.

Once a crash has been detected by our procedure, it may be the case that, rather
than ending the monitoring exercise, a practitioner wishes to continue monitoring for
the possible emergence of subsequent bubble episodes. We therefore also propose an
extension of our monitoring procedure to the multiple bubble case, where, after detection
of a crash regime, bubble monitoring then resumes. Simulation results show that our
procedure is effective also in this multiple regime context, delivering good FPR control
and rapid detection of multiple explosive bubble and stationary collapse regimes.

The usefulness of our proposed crash monitoring procedure is demonstrated through
an empirical application of the procedure to the US house price to rent ratio. In a pseudo
real-time monitoring exercise, we begin our monitoring in 1998:Q1, with detection of an
explosive bubble occurring in 2000:Q1 and subsequent detection of a stationary crash
occurring in 2006:Q2, thus providing timely detection of changes in the dynamics of the
US housing market.

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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4 Bulletin

In the next section we present a bubble and crash model and introduce the hypotheses
of interest. Section III describes the AHLST 2017 real-time monitoring procedure for
bubbles. In section IV we outline our crash monitoring procedure and establish asymptotic
results for its behaviour under the alternative hypothesis of interest. Monte Carlo simulation
results are presented in section V. Section VI discusses the extension of our proposed
procedure to multiple bubble and crash episodes. In section VII we provide an application
of our real-time monitoring procedure to the US housing market. Section VIII concludes.
Proofs are contained in Appendices. We adopt the following notation: ‘�.�’ denotes the
integer part, ‘I(.)’ denotes the indicator function, and we use the order notation O+

p (.) to
imply that the term concerned is positive.

II. The model and real-time monitoring framework

We consider the following DGP for a time series yt, t = 1, ..., T , which represents prices
(or prices relative to fundamentals):

yt = μ + ut, (1)

ut =

⎧
⎪⎪⎨

⎪⎪⎩

ut−1 + εt t = 2, ..., �τ1T�
(1 + δ1)ut−1 + εt t = �τ1T� + 1, ..., �τ2T�
(1 − δ2)ut−1 + εt t = �τ2T� + 1, ..., �τ3T�
ut−1 + εt t = �τ3T� + 1, ..., T ,

(2)

with u1 = Op(1), δ1 > 0 and 1 ≥ δ2 > 0. We assume the error term εt is a strictly
stationary, possibly conditionally heteroskedastic, process with zero mean.

In the context of (1) and (2), if τ1 = 1 then yt admits a unit autoregressive root
throughout the sample period. If τ1 < 1, then the yt process changes at time �τ1T� from unit
root to explosive autoregressive dynamics (with explosive offset δ1), providing a model
of bubble behaviour. In this case we assume that u�τ1T� > 0, such that u�τ1T� = O+

p (T1/2),
ensuring that the explosive regime has an upwards (rather than downwards) trajectory, in
line with typical bubble behaviour. If τ2 = 1 the explosive regime is ongoing at the end
of the sample, while if τ2 < 1 the explosive behaviour terminates at time �τ2T�. After
the explosive regime terminates, the process switches into a stationary collapse regime
(with stationary offset δ2), which acts as a model for a post-bubble crash. The stationary
collapse regime runs to time �τ3T�, at which point, provided τ3 < 1, unit root behaviour
resumes. 1

Our focus is on real-time monitoring first for an explosive regime, and then, conditional
on detecting such explosive behaviour, monitoring for a stationary collapse. In the first
stage, we therefore wish to distinguish between the hypotheses:

H (1)
0 : τ1 = 1 (unit root)

H (1)
1 : τ1 < τ2 ≤ 1 (unit root then explosive, with or without stationary collapse)

1An additional possibility at the end of the explosive regime is for the process to return directly to unit root
behaviour without collapse, i.e. τ2 = τ3 < 1. However, given that bubbles almost invariably terminate in collapse,
we focus our main attention on the τ2 < τ3 case, such that a stationary collapse regime follows the termination of
explosive behaviour.

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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Real-time monitoring of bubbles and crashes 5

Conditional on having rejected H (1)
0 in favour of H (1)

1 , in the second stage we then assume
H (1)

1 is true and proceed to distinguish between the following sub-hypotheses of H (1)
1 :

H (2)
0 : τ1 < τ2 = 1 (unit root then explosive without stationary collapse)

H (2)
1 : τ1 < τ2 < 1 (unit root then explosive with stationary collapse)

The real-time monitoring framework we adopt follows AHLST and considers y1, ..., yT∗ ,
T∗ = �λT� ≤ �τ1T� for some λ ∈ (0, 1), as a training period, during which it is assumed
that no explosive behaviour is present, i.e. T∗ ≤ �τ1T�. We will subsequently consider
monitoring from some time period T† onwards, employing the training period data in a
calibration role. The first stage involves monitoring for a change from H (1)

0 to H (1)
1 , so as

to detect the onset of an explosive regime. Once an explosive regime has been detected,
the second stage involves subsequent monitoring for a change from H (2)

0 to H (2)
1 , in order

to detect the termination of explosive behaviour and the start of a stationary collapse
regime.

III. Monitoring for an explosive regime

Several approaches to testing between H (1)
0 and H (1)

1 , i.e. testing for a period of temporary
explosiveness, have been developed in the literature. While the majority of these
approaches focus on historical detection, some recent developments have emerged to
deal with real-time monitoring for explosive episodes. In particular, AHLST develop a
real-time monitoring procedure based on the Astill et al. (2017) test for an end-of-sample
explosive regime, which in turn is based on the instability tests of Andrews (2003)
and Andrews and Kim (2006). In Astill et al. (2017), a test statistic designed to detect
explosive behaviour is computed over a finite-sized window of observations at the end of
the sample period, and compared to a critical value obtained from computing the same
statistic repeatedly over sub-samples of the previous observations. This sub-sampling
approach has the desirable feature that the test is robust to conditional heteroskedasticity
and serial correlation, while robustness to unconditional heteroskedasticity is delivered
through a White-type correction in the test statistic. AHLST adapt this approach to the
real-time monitoring context by comparing test statistics computed from rolling finite-
sized windows in the monitoring period with the maximum of the statistics computed over
sub-samples in the training period.

The test statistic that Astill et al. (2017) employ is motivated by a Taylor series
expansion of the first differences �yt during the explosive regime, and essentially
amounts to testing for the presence of an upward trend in �yt. Letting k denote the chosen
window width over which the statistic is computed, and e the last observation used in the
statistic’s calculation, the statistic is given by

Ae,k =
∑e

t=e−k+1(t − e + k)�yt
√∑e

t=e−k+1 {(t − e + k)�yt}2
.

The real-time monitoring procedure of AHLST then proceeds as follows. Suppose that
we wish to start monitoring for a bubble at the present time period, t = T†. We let

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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6 Bulletin

t = 1, ..., T∗ form an initial training sample, where T∗ = T† − k. The Ae,k statistic is
computed over rolling sub-samples of length k within this training sample, producing a
set of training sample statistics. The maximum training sample statistic, which we denote
by A∗

max = maxe∈[k+1,T∗]Ae,k , forms the critical value for the monitoring procedure.
Beginning at time t = T†, the first monitoring statistic is computed using data from
time periods t = T† − k + 1, ..., T† = T∗ + 1, ..., T∗ + k, then subsequent monitoring
statistics are computed as each new observation occurs, rolling forwards the window of
k observations (e.g. the second monitoring statistic is computed at time t = T† + 1 using
data from t = T† − k + 2, ..., T† + 1). Detection of an explosive regime is triggered at
the first point where a monitoring statistic Ae,k , e = T†, T† + 1, ..., exceeds the critical
value A∗

max . At an arbitrary point in the monitoring period, t = e, we can then write the
monitoring decision rule as:

Detect H (1)
1 at time e if Ae,k > A∗

max . (3)

The time period at which an explosive regime is detected is then denoted t = T�. AHLST
discuss how the FPR of such a procedure can be controlled, and we formalise this in
Theorem 1 below. Hereafter, we refer to this explosive regime monitoring procedure as
AMAX(k).

We now establish the theoretical FPR of the AMAX(k) procedure under H (1)
0 as T → ∞,

where we assume that monitoring has been run to some point T ′, and that T∗ and T ′ are
such that T∗ = �λ1T� and T ′ = �λ2T�, where 0 < λ1 < λ2 ≤ 1. This is done by observing
that the decision rule in (3) is equivalent to determining whether the maximum of the
monitoring statistics Ae,k , e = T†, T† + 1, ..., T ′, exceeds the corresponding maximum
statistic over the training period A∗

max . Evaluating the limiting probabilities of these
exceedances under H (1)

0 gives the result of the following theorem.

Theorem 1. Under H (1)
0 and assuming that {εt} satisfies the mixing conditions of

Ferreira and Scotto (2002, p. 476), then as T → ∞,

lim
T→∞

P

(

max
e∈[T∗+k,T ′]

Ae,k > max
e∈[k+1,T∗]

Ae,k

)

= α,

where

α = lim
T→∞

(
T ′ − T∗ − k + 1

T ′ − 2k + 1

)

= lim
T→∞

(
T ′ − T∗

T ′

)

.

For given values of T∗ and k, we can use the result in Theorem 1 to approximate the
empirical FPR that would be obtained in practice for any monitoring point T ′, i.e.

α ≈ T ′ − T∗ − k + 1

T ′ − 2k + 1
. (4)

We can also rearrange (4) to identify the monitoring time period T ′ at which the FPR of
the procedure will (approximately) reach the level α, allowing us to determine how far
one can monitor into the future whilst maintaining a chosen FPR:

T ′ ≈ T∗ + k − 1 − α(2k − 1)

1 − α
.

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.

 14680084, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/obes.12540 by T

est, W
iley O

nline L
ibrary on [01/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Real-time monitoring of bubbles and crashes 7

IV. Monitoring for a stationary collapse regime

Our main focus in this paper is on the second stage monitoring where, given prior detection
of an explosive regime, the aim is to detect the termination of explosive behaviour and the
onset of a stationary collapse regime. We now motivate a test statistic for distinguishing
between H (2)

0 and H (2)
1 , with the aim of using this statistic to monitor for a collapse using a

similar approach to the AMAX(k) procedure for monitoring explosive behaviour. Consider
first the model (1) and (2) expressed in first differences:

�yt =

⎧
⎪⎪⎨

⎪⎪⎩

εt t = 2, ..., �τ1T�
δ1ut−1 + εt t = �τ1T� + 1, ..., �τ2T�
− δ2ut−1 + εt t = �τ2T� + 1, ..., �τ3T�
εt t = �τ3T� + 1, ..., T

.

Next consider the observations in the immediate neighbourhood of the explosive regime
endpoint �τ2T�. Specifically, for a finite number m of observations on �yt up to �τ2T�,
and for a finite number n of observations on �yt immediately after �τ2T�, we can use the
autoregressive recursion to write

�yt =

⎧
⎪⎪⎨

⎪⎪⎩

δ1(1 + δ1)
t−(�τ2T�−m)−1u�τ2T�−m

+ ∑t−(�τ2T�−m)−1
i=0 δ1(1 + δ1)

i−1εt−i + εt
t = �τ2T� − m + 1, ..., �τ2T�

−δ2(1 − δ2)
t−�τ2T�−1u�τ2T�

−∑t−�τ2T�−1
i=1 δ2(1 − δ2)

i−1εt−i + εt
t = �τ2T� + 1, ..., �τ2T� + n

. (5)

For t = �τ2T� − m + 1, ..., �τ2T�, for finite m, δ1(1 + δ1)
t−(�τ2T�−m)−1u�τ2T�−m is of

the same order as u�τ2T�−m, which is also of the same order as u�τ2T�; then,
from lemma 1(i) of Harvey et al. (2017), it follows that u�τ2T� = Op(S

1/2
T ), where

ST = �τ1T�(1 + δ1)
2(�τ2T�−�τ1T�), and hence

δ1(1 + δ1)
t−(�τ2T�−m)−1u�τ2T�−m = Op(S

1/2
T ). (6)

Next,
∑t−(�τ2T�−m)−1

i=0 δ1(1 + δ1)
i−1εt−i + εt = Op(1) since we have a finite sum of Op(1)

variates, and so the term in (6) dominates. Similarly, for t = �τ2T� + 1, ..., �τ2T� + n and
finite n, lemma 1(i) of Harvey et al. (2017) gives

δ2(1 − δ2)
t−�τ2T�−1u�τ2T� = Op(S

1/2
T ), (7)

and
∑t−�τ2T�−1

i=1 δ2(1 − δ2)
i−1εt−i + εt = Op(1), so that (7) dominates over this second

time period. In each regime, therefore, the first terms in (5) dominate the stochastic
behaviour of �yt. Finally, for δ1 and δ2 close to zero, taking the first term of a Taylor
expansion with respect to δ1 and δ2, respectively, yields the following approximations:

δ1(1 + δ1)
t−(�τ2T�−m)−1u�τ2T�−m ≈ δ1u�τ2T�−m t = �τ2T� − m + 1, ..., �τ2T�

δ2(1 − δ2)
t−�τ2T�−1u�τ2T� ≈ δ2u�τ2T� t = �τ2T� + 1, ..., �τ2T� + n

. (8)

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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8 Bulletin

This allows �yt in the neighbourhood of �τ2T� to be expressed as

�yt =
{
β1 + ηt t = �τ2T� − m + 1, ..., �τ2T�
β2 + ηt t = �τ2T� + 1, ..., �τ2T� + n

, (9)

where β1 = δ1u�τ2T�−m, β2 = −δ2u�τ2T� and ηt generically denotes an error containing
the approximation errors in (8) and the lower order Op(1) terms in (5).

Given the presence of an explosive regime (δ1 > 0), the onset of a stationary collapse
(δ2 > 0) implies a change in the mean of �yt from a positive value β1 to a negative value
β2 at time �τ2T� + 1. If we consider simple OLS estimators of β1 and β2 over the two
respective sub-samples given in (9), i.e.:

β̂1 = m−1
�τ2T�∑

t=�τ2T�−m+1

�yt,

β̂2 = n−1
�τ2T�+n∑

t=�τ2T�+1

�yt,

then we can motivate a statistic for detecting a change from explosive to stationary
collapse behaviour at time �τ2T� + 1 as one based on the sign of the product β̂1β̂2.

In the monitoring context, where the putative collapse change point is unknown, we
can consider the following statistic indexed by the last observation used in the statistic’s
calculation, again denoted e:

Ne,m,n =
(

m−1
e−n∑

t=e−n−m+1

�yt

)(

n−1
e∑

t=e−n+1

�yt

)

,

i.e. β̂1β̂2 with e − n replacing �τ2T�. This statistic is therefore suitable for monitoring for
a collapse that begins at time t = e − n + 1.

We next consider introducing a variance standardization to imbue Ne,m,nwith a degree of
robustness to possible changes in the unconditional variance of the errors εt; such changes
are formally excluded from our assumptions but may of course occur in practice. We
propose standardizing the components of Ne,m,n by error variance estimates obtained over
the respective sub-samples t = e − n − m + 1, ..., e − n and t = e − n + 1, ..., e. For the
sub-sample t = e − n − m + 1, ..., e − n, given the first-order autoregressive structure of
the model given in (1) and (2), we consider the error variance estimator m−1 ∑e−n

t=e−n−m+1 ε̂2
t

where the ε̂t are OLS residuals obtained from a regression of �yt on a constant and yt−1,
over the sub-sample t = e − n − m + 1, ..., e − n. For the sub-sample t = e − n + 1, ..., e,
we will below advocate use of very small values of n in the monitoring procedure, hence a
regression-based error variance estimator is impractical. Instead, we propose the simpler
H (1)

0 -based error variance estimator n−1 ∑e
t=e−n+1 (�yt)

2. Standardizing Ne,m,n by these
two error variance estimators results in the following statistic:

(
m−1 ∑e−n

t=e−n−m+1 �yt
) (

n−1 ∑e
t=e−n+1 �yt

)

√

m−1
∑e−n

t=e−n−m+1 ε̂2
t

√
n−1

∑e
t=e−n+1 (�yt)2

.

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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Real-time monitoring of bubbles and crashes 9

Note that the m−1 and n−1 constants are not needed in the monitoring procedure
that follows, since such constant scalings apply for all e and become redundant when
comparing training and monitoring period statistics. Consequently, our proposed statistic
for monitoring for a stationary collapse that begins at time t = e − n + 1 is given by:

Se,m,n =
∑e−n

t=e−n−m+1 �yt
∑e

t=e−n+1 �yt
√∑e−n

t=e−n−m+1 ε̂2
t
∑e

t=e−n+1 (�yt)2
. (10)

The real-time monitoring for collapse procedure we propose proceeds as follows,
mirroring the AHLST procedure described above. First, the Se,m,n statistic is computed
over the training sample t = 1, ..., T∗ for all possible rolling sub-samples of length m + n,
and the critical value to be used in monitoring is set to the minimum of these training
sample statistics, denoted S∗

min . As we are only concerned with monitoring for a collapse
following detection of a prior explosive regime, we now consider the situation where
monitoring using the AMAX(k)procedure has signalled the presence of an explosive regime
at some time period t = T�. Conditional on this finding, we then switch to monitoring
for a stationary collapse regime by computing the Se,m,n statistic on a rolling basis for
e = T� + 1, T� + 2, .... Detection of a collapse regime is triggered at the first point where
a monitoring statistic Se,m,n falls below the critical value S∗

min . At an arbitrary point in the
collapse monitoring period, t = e, we can then write the monitoring decision rule as:

Detect H (2)
1 at time e if Se,m,n < S∗

min . (11)

We refer to this stationary collapse monitoring procedure as SMIN(m, n).
The FPR of the SMIN(m, n) procedure is more difficult to establish compared to the

AMAX(k) procedure for explosive regime detection, since monitoring using SMIN(m, n) is
only performed following detection of an explosive regime by AMAX(k). When SMIN(m, n)

is conducted and H (1)
0 is true, it follows that the explosive regime detection signalled

by AMAX(k) was false, and hence the FPR of SMIN(m, n) is bounded by the FPR of
AMAX(k) at the point t = T� (where explosive behaviour was erroneously detected).
When SMIN(m, n) is conducted and H (1)

1 is true, which is the main case of interest, the
AMAX(k) explosive regime detection at time t = T� was correct, and the FPR of the
subsequently implemented SMIN(m, n) procedure is bounded by the true positive rate of
AMAX(k) at time t = T�. Under H (2)

0 , when monitoring for a collapse at a point e that is
O(T) observations into the explosive regime, i.e. e − �τ1T� = O(T), then the explosive
properties of the process are dominant and a result similar to Theorem 2(a) below can be
obtained to show that limT→∞ Pr (Se,m,n < S∗

min ) = 0, i.e. the limit probability of spurious
collapse detection by Se,m,n is zero at this point. However, given that an explosive regime
can be detected by the AMAX(k) procedure after only a finite number of monitoring periods,
we cannot assume that monitoring for a collapse will only be done from a point that can
be considered O(T) observations into the explosive regime. As such, establishing a result
for Pr (Se,m,n < S∗

min ) in this case, and consequently a result for the FPR associated with
SMIN(m, n), is not tractable, since it will inevitably depend on DGP parameters such as
the magnitude of the explosive autoregressive parameter and the duration of the explosive

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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10 Bulletin

regime. Consequently, it is not possible to quantify analytically the FPR of the SMIN(m, n)

procedure under H (2)
0 for an arbitrary monitoring point e. Instead we examine the FPR of

SMIN(m, n) by simulation in the next section for a range of DGP settings.
In the following theorem, we establish the large sample properties of the SMIN(m, n)

procedure under the stationary collapse hypothesis H (2)
1 , for different points e in the region

of the explosive regime endpoint �τ2T�.

Theorem 2. Under H (2)
1 and assuming that {εt} satisfies the mixing conditions of

Ferreira and Scotto (2002, p. 476), then as T → ∞:

(a) If e = �τ2T� − j with j = 0, ..., c and c finite,

lim
T→∞

Pr (Se,m,n < S∗
min ) = 0.

(b) If e = �τ2T� + j with j = 1, ..., n − 1,

lim
T→∞

Pr (Se,m,n < S∗
min ) =

⎧
⎨

⎩

0 (1 − δ2)
j > (1 + δ1)

j−n

∈ {0, 1} (1 − δ2)
j = (1 + δ1)

j−n

1 (1 − δ2)
j < (1 + δ1)

j−n
.

(c) If e = �τ2T� + n,
lim

T→∞
Pr (Se,m,n < S∗

min ) = 1.

Part (a) of Theorem 2 shows that, asymptotically, Se,m,n will never fall below S∗
min

within a finite region prior to the first observation in the stationary collapse regime
(�τ2T� + 1). Consequently, the SMIN(m, n) monitoring procedure will not indicate a
collapse in this region earlier than it occurs. At the other extreme, part (c) demonstrates
that, asymptotically under H (2)

1 , SMIN(m, n) will always signal a collapse by time period
�τ2T� + n, thereby ensuring detection of the collapse regime with a delay of no more
than n − 1 periods. When n = 1, therefore, SMIN(m, n) guarantees collapse detection
at exactly the first point of this regime. When n > 1, part (b) of Theorem 2 becomes
relevant, and the result shows that SMIN(m, n) may indicate a collapse with a delay
of less than n − 1 periods, depending on the magnitudes of δ1 and δ2. For example,
when n = 2, a collapse will be indicated with no delay (i.e. at time period �τ2T� + j
with j = 1) when (1 − δ2) < (1 + δ1)

−1, but a one period delay will be induced when
(1 − δ2) > (1 + δ1)

−1, while either outcome is possible when (1 − δ2) = (1 + δ1)
−1.2

When n = 3, a collapse will be indicated with no delay (j = 1) if (1 − δ2) < (1 + δ1)
−2

and a one period delay (j = 2) if (1 − δ2)
2 < (1 + δ1)

−1.3

In practice choices must be made for m and n. Setting n = 1 affords the opportunity
of detecting a collapse most quickly, since (11) can signal the presence of a stationary
collapse regime when the monitoring date is the very first observation of the collapse
regime, while setting n > 1 would represent a more risk-averse strategy, reducing the
chance of an outlying downward movement in yt during an ongoing explosive regime

2A sufficient condition for (1 − δ2) < (1 + δ1)
−1 is that δ2 > δ1, i.e. that the stationary collapse offset is larger

in magnitude than the explosive offset.
3A sufficient condition for (1 − δ2) < (1 + δ1)

−2 is that δ2 > 2δ1.

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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Real-time monitoring of bubbles and crashes 11

spuriously triggering detection of a collapse. Such considerations are explored in the finite
sample simulations of the next section.

Note that the real-time monitoring methodology employed ensures that the SMIN(m, n)

procedure is robust to conditional heteroskedasticity and serial correlation in εt, in line
with the robustness properties of AMAX(k). The procedure will also be asymptotically
robust to a finite number of volatility shifts that occur over the training or monitoring
sample periods, since only a finite number of sub-sample statistics will have a variance
standardization contaminated by variance changes, hence the effect on the procedure
becomes asymptotically negligible.

V. Simulation results

To examine the finite sample performance of the SMIN(m, n)crash monitoring procedures,
we consider a Monte Carlo simulation exercise with data generated by (1)-(2) which
allows for a single explosive and collapse regime, with μ = 0 (without loss of generality)
and εt ∼ IIDN(0, 1). We set u1 = 100 to ensure that, under H (1)

1 , we generate only positive
explosive regimes. We evaluate the performance of SMIN(m, n) statistics computed for
m = {5, 10, 15} and n = {1, 2, 3}, in each case using AMAX(k) test statistics for prior
bubble detection, with k = {5, 10, 15}. We set the beginning of the monitoring period
to T† = 200 such that the training sample end date is T∗ = 200 − k throughout. Monte
Carlo simulations are conducted using 10,000 replications in Gauss 20.

First, we consider the empirical FPR of the SMIN(m, n) monitoring procedures when
no stationary collapse regime is present. Figure 1 displays the cumulative rejection
frequencies of the AMAX(k) and SMIN(m, n) procedures under no collapse scenarios.
The cumulative rejection frequency of AMAX(k) at T ′ is defined as the proportion of
replications where we detect H (1)

1 at any point in the monitoring period up to and
including T ′. The cumulative rejection frequency of SMIN(m, n) at T ′ is defined as the
proportion of replications where we detect H (2)

1 at any point in the monitoring period
up to and including T ′.4 The cumulative rejection frequencies of AMAX(k) under H (1)

0
and of SMIN(m, n) under H (1)

0 or H (2)
0 represent the empirical FPRs for the procedures.

Figure 1a–c considers the case of H (1)
0 where there is neither an explosive bubble nor

stationary collapse such that τ1 = 1, while Figure 1d–l examines H (2)
0 where an explosive

regime occurs and continues until the end of the monitoring period without stationary
collapse. Beginning with the H (1)

0 case, it is apparent from Figure 1a–c that the empirical
FPR of AMAX(k) tracks its theoretical FPR very closely, confirming the results of AHLST,
while the empirical FPRs of the SMIN(m, n) procedures are always somewhat lower than
this theoretical FPR for all combinations of m and n considered here. As discussed in
section IV, under H (1)

0 the FPR of the SMIN(m, n) procedures should be bounded by the
theoretical FPR for AMAX(k) and our simulation results demonstrate that this holds in finite
samples.

4Another interpretation of the cumulative rejection frequency of SMIN(m, n) is the joint probability of AMAX(k)

and SMIN(m, n) rejecting by a certain point in the monitoring period. Note though that the SMIN(m, n) procedure
itself is conditional, in the sense that a rejection of H (1)

0 using AMAX(k) is required before the SMIN(m, n) procedure
is ever applied.

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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12 Bulletin

(c)(b)(a)

(d) (e) (f)

(g) (i)(h)

(k) (l)(j)

FIGURE 1. Rejection frequencies of AMAX(k) and SMIN(m, n) under H (1)
0 and H (2)

0 . (a) m = k = 5; (b)
m = k = 10; (c) m = k = 15; (d) m = k = 5; (e) m = k = 10; (f) m = k = 15; (g) m = k = 5; (h) m = k =
10; (i) m = k = 15; (j) m = k = 5; (k) m = k = 10; (l) m = k = 15

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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Real-time monitoring of bubbles and crashes 13

In Figure 1d–f, we now consider the case of an explosive regime which begins at
�τ1T� = 210 and continues until the end of the monitoring period. The magnitude of
the explosive regime is set to δ1 = 0.03. The empirical FPR of AMAX(k) now tracks
the theoretical FPR closely until the beginning of the explosive regime, at which point
empirical rejection frequencies increase substantially due to the detection of this regime.
The empirical FPRs of the SMIN(m, n) procedures, however, lie close to zero throughout
the monitoring period for all settings of m and n considered, suggesting a reassuring
degree of FPR control for this bubble magnitude setting. A similar set of results is
obtained in Figure 1g–i where we now consider a smaller magnitude explosive regime,
setting δ1 = 0.02. In this case, the empirical FPR of the SMIN(m, 1) procedure increases
slightly at the beginning of the explosive regime, before levelling off to a point below
0.06 in the case of m = 5 and below 0.12 in the case of m = {10, 15}. As in the δ1 = 0.03
case, the empirical FPRs of SMIN(m, 2) and SMIN(m, 3) lie close to zero throughout the
monitoring period. Finally, turning our attention to Figure 1j–l, we now set δ1 = 0.01
such that the magnitude of the explosive regime is smaller still. In this case, the empirical
FPR of SMIN(m, 1) is seen to increase beyond the level seen previously, with this being
particularly apparent for m = {10, 15} where high FPR levels are ultimately obtained.
SMIN(m, 2) and SMIN(m, 3), however, display much lower empirical FPRs throughout the
monitoring period. These latter procedures therefore offer a greater degree of FPR control
relative to SMIN(m, 1).

It is clear that the empirical FPRs of the SMIN(m, n) procedures are influenced by
the magnitude of the explosive parameter. The closer the explosive offset is to zero, the
higher the likelihood of negative changes in yt occurring during the explosive regime, and
thus the higher the probability of rejection by SMIN(m, n). The relationship between the
empirical FPR of SMIN(m, n) and δ1 is non-monotone, in the sense that the empirical FPR
will be smaller in the case of δ1 = 0 and in the case of higher values of δ1 �= 0, than for
lower values of δ1 �= 0. With reference to the statistics’ motivation in section IV, during
the bubble regime, β̂1 is typically large and positive, hence even a modest negative β̂2
can generate a large negative statistic and trigger crash detection. The potential for a high
FPR in the presence of a small magnitude bubble is particularly acute for SMIN(m, 1) since
only a one period decrease is needed to make β̂2 negative, an outcome that is potentially
sufficient to trigger spurious detection of a crash. In contrast, the potential for spurious
detection of a crash regime is substantially reduced by using SMIN(m, 2) or SMIN(m, 3),
since, other things equal, β̂2 is less likely to be negative in the presence of only a one
period decrease. The FPRs of these procedures are consequently less sensitive to the
magnitude of the explosive regime.

We now turn to examining the finite sample performance of our monitoring procedures
under the alternative hypothesis, H (2)

1 , where the explosive regime is followed by a
stationary collapse. Figures 2–6 report the cumulative rejection frequencies for the
AMAX(k) and SMIN(m, n) procedures under this hypothesis, as well as histograms of crash
detection dates obtained by SMIN(m, n), to allow us to evaluate both the power and crash
timing properties of our procedures.5

5As noted in section II, it is possible that when an explosive regime terminates it is followed by unit root behaviour
rather than a collapse. While such a scenario is less common in practice, and as such is not the focus of this paper,

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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14 Bulletin

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIGURE 2. Rejection frequencies of AMAX(k) and SMIN(m, n), and histograms of SMIN(m, n) detection dates:
�τ1T� = 210, �τ2T� = 220, �τ3T� = 230, δ1 = 0.03 and δ2 = 0.015. (a) m = k = 5; (b) m = k = 10; (c)
m = k = 15; (d) SMIN(5, 1); (e) SMIN(5, 2); (f) SMIN(5, 3); (g) SMIN(10, 1); (h) SMIN(10, 2); (i) SMIN(10, 3); (j)
SMIN(15, 1); (k) SMIN(15, 2); (l) SMIN(15, 3)

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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Real-time monitoring of bubbles and crashes 15

(a)

(d) (e)

(h)(g)

(j) (k) (l)

(i)

(f)

(b) (c)

FIGURE 3. Rejection frequencies of AMAX(k) and SMIN(m, n), and histograms of SMIN(m, n) detection dates:
�τ1T� = 210, �τ2T� = 220, �τ3T� = 230, δ1 = 0.02 and δ2 = 0.01. (a) m = k = 5; (b) m = k = 10; (c)
m = k = 15; (d) SMIN(5, 1); (e) SMIN(5, 2); (f) SMIN(5, 3); (g) SMIN(10, 1); (h) SMIN(10, 2); (i) SMIN(10, 3); (j)
SMIN(15, 1); (k) SMIN(15, 2); (l) SMIN(15, 3)

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.

 14680084, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/obes.12540 by T

est, W
iley O

nline L
ibrary on [01/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



16 Bulletin

(b) (c)(a)

(e) (f)(d)

(g) (h) (i)

(j) (k) (l)

FIGURE 4. Rejection frequencies of AMAX(k) and SMIN(m, n), and histograms of SMIN(m, n) detection dates:
�τ1T� = 210, �τ2T� = 225, �τ3T� = 230, δ1 = 0.02 and δ2 = 0.01. (a) m = k = 5; (b) m = k = 10; (c)
m = k = 15; (d) SMIN(5, 1); (e) SMIN(5, 2); (f) SMIN(5, 3); (g) SMIN(10, 1); (h) SMIN(10, 2); (i) SMIN(10, 3); (j)
SMIN(15, 1); (k) SMIN(15, 2); (l) SMIN(15, 3)
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Real-time monitoring of bubbles and crashes 17

(a) (b)

(f)

(c)

(d)

(g) (h) (i)

(k)(j) (l)

(e)

FIGURE 5. Rejection frequencies of AMAX(k) and SMIN(m, n), and histograms of SMIN(m, n) detection dates:
�τ1T� = 210, �τ2T� = 225, �τ3T� = 230, δ1 = 0.01 and δ2 = 0.005. (a) m = k = 5; (b) m = k = 10; (c)
m = k = 15; (d) SMIN(5, 1); (e) SMIN(5, 2); (f) SMIN(5, 3); (g) SMIN(10, 1); (h) SMIN(10, 2); (i) SMIN(10, 3); (j)
SMIN(15, 1); (k) SMIN(15, 2); (l) SMIN(15, 3)
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(d)

(g)

(j)

(h) (i)

(e) (f)

(a) (b) (c)

(k) (l)

FIGURE 6. Rejection frequencies of AMAX(k) and SMIN(m, n), and histograms of SMIN(m, n) detection dates:
�τ1T� = 210, �τ2T� = 220, �τ3T� = 230, δ1 = 0.02 and δ2 = 0.03. (a) m = k = 5; (b) m = k = 10; (c)
m = k = 15; (d) SMIN(5, 1); (e) SMIN(5, 2); (f) SMIN(5, 3); (g) SMIN(10, 1); (h) SMIN(10, 2); (i) SMIN(10, 3); (j)
SMIN(15, 1); (k) SMIN(15, 2); (l) SMIN(15, 3)
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Real-time monitoring of bubbles and crashes 19

In Figures 2 and 3 we set �τ1T� = 210, �τ2T� = 220 and �τ3T� = 230 such that both
the explosive and stationary collapse regimes have a duration of 10 observations. We
set the collapse magnitude to be half of the explosive magnitude such that δ2 = δ1/2
and consider ‘high’ magnitude settings of {δ1, δ2} = {0.03, 0.015} in Figure 2 and ‘low’
magnitude settings of {δ1, δ2} = {0.02, 0.01} in Figure 3. Examining first Figure 2, we note
that the SMIN(m, n) procedure achieves rejection frequencies of between approximately
0.53 and 0.65 by the end of the collapse regime in the case of m = 5, whilst the rejection
frequencies are very close to 1 in the case of m = 10 and m = 15, across all n. These
rejection frequencies are close to or the same as AMAX(k), particularly in the case of
m = 10 and m = 15, so that the collapse is detected in almost all cases where a bubble is
found.

While the rejection frequencies for bubble detection by AMAX(k) are increasing over
the duration of the explosive regime, one key feature of SMIN(m, n) is that the majority
of rejections occur at one point in time. In the case of SMIN(m, 1), this is the first
observation of the collapse regime, whereas for SMIN(m, 2) and SMIN(m, 3) a one and two
observation lag is introduced, respectively. To examine this in more detail, Figure 2d–l
displays histograms of the date at which the SMIN(m, n) procedures detected the crash
in each Monte Carlo replication where one was detected during the monitoring period.
For example, comparing Figure 2d–f, it is clear that when a rejection is found by the
SMIN(5, 1) procedure it is on the true crash date, �τ2T� + 1, in almost all replications. This
suggests that, in line with the theoretical results of section IV, our procedure is highly
capable of real-time detection of crashes. For SMIN(5, 2) almost all rejections occur at
�τ2T� + 2, i.e. one observation after the true crash date, and for SMIN(5, 3) almost all
occur at at �τ2T� + 3, two observations after the true crash date. Hence the key asymptotic
result that use of SMIN(m, n) gives rise to crash detection with a delay of at most n − 1
periods is borne out in finite samples. Given that under H (2)

0 , use of n > 1 offers a greater
degree of FPR control relative to using n = 1, a trade-off exists between the speed of
possible crash detection and the probability of spuriously finding a crash in an ongoing
bubble.

Examining now the ‘low’ magnitude settings in Figure 3, our results are qualitatively
similar to those discussed in the ‘high’ magnitude case. The lower magnitude explosive
and stationary collapse regimes lead to a reduction in the cumulative rejection frequencies,
as we would expect, with these reductions more noticeable in the case of m = 5. For
m = 10 and m = 15 the rejection frequencies of SMIN(m, n) range from 0.85 to 0.92 under
these settings, therefore still maintaining excellent power to detect a crash. The histograms
in Figure 3d–l show that the immediate detection of a crash by SMIN(m, 1) and one or two
observation lagged detection by SMIN(m, 2) and SMIN(m, 3) discussed previously holds for
this lower magnitude setting.

In Figures 4 and 5, we consider settings of �τ1T� = 210, �τ2T� = 225 and �τ3T� = 230
such that the explosive regime now lasts 15 observations and the collapse regime only
five observations to examine the impact on our procedures of varying regime lengths.
Again, we consider ‘high’ and ‘low’ magnitude settings for the explosive and stationary

we note that in unreported simulations our SMIN(m, n) procedures can detect the termination of an explosive regime
even when it is not followed by a collapse.

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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20 Bulletin

regimes. As the explosive regime is now longer in duration, our ‘high’ magnitude settings
(reported in Figure 4) are the ‘low’ settings that we used previously to consider a 10
observation explosive regime, namely {δ1, δ2} = {0.02, 0.01}. Figure 5 considers ‘low’
magnitude settings of {δ1, δ2} = {0.01, 0.005}.

Examining Figure 4, the results obtained are very similar to those discussed above, with
moderate cumulative rejection frequencies in the case of m = 5 and very high frequencies
in the cases of m = 10 and m = 15. As before, we see that setting n = 1 yields detection
dates equal to the true crash date in the majority of replications, whereas setting n > 1
leads to a n − 1 detection delay.

Turning our attention now to Figure 5, we note that the cumulative rejection frequencies
for SMIN(5, n) are low, while SMIN(10, n) and SMIN(15, n) offer much more promising
crash detection levels with all settings of n offering reasonable rejection frequencies. We
note, however, that under these settings the cumulative rejection frequencies of SMIN(m, 1)

are quite high during the explosive regime, giving a further indication of a potential lack
of good FPR control when n = 1. This behaviour mirrors that of the empirical FPR
in Figure 1j–l that we discussed previously. Crucially, such behaviour is not observed
for SMIN(m, 2) and SMIN(m, 3), with these procedures maintaining low spurious rejection
frequencies throughout the explosive phase. To examine this behaviour further, consider
the histogram of detected crash dates for SMIN(10, 1) in Figure 5g. While the majority
of detections occur for this procedure at the true crash date, we observe that smaller
numbers of false rejections arise at dates before the crash occurs. If we now consider the
histogram of detected crash dates for SMIN(10, 2) in Figure 5h, the majority of these false
rejections before the true crash date have been eliminated. Of course, the trade-off here is
that detection of the crash occurs at �τ2T� + 2 in the majority of replications such that we
have introduced a one observation delay in detection.

Finally, in Figure 6 we examine the case where the crash magnitude is a little larger than
the explosive magnitude. We set �τ1T� = 210, �τ2T� = 220 and �τ3T� = 230 as before,
and now consider {δ1, δ2} = {0.02, 0.03} such that δ2 > δ1. As discussed in section IV, an
implication of Theorem 2 is that the SMIN(m, 2) procedure will asymptotically indicate a
crash with no delay in this scenario. Figure 6e,h,k shows that the crash is detected at the true
date in a number of cases, but the majority of detection dates remain one period late. This is
perhaps to be expected in finite samples, since for these settings of δ1 and δ2, the relevant
inequality driving the theoretical result, (1 − δ2) < (1 + δ1)

−1, is only just satisfied
(0.97 < 0.98). For SMIN(m, 3), the results of Theorem 2 indicate that crash detection
should occur with a one period delay asymptotically, since (1 − δ2) > (1 + δ1)

−2 but
(1 − δ2)

2 < (1 + δ1)
−1. Figure 6f,i,l demonstrates that SMIN(m, 3) does detect the crash

with a one period delay in a substantial number of cases, with the remainder of detections
obtained with a two-period delay.

The results of this section demonstrate that our SMIN(m, n) monitoring procedure is able
to detect a crash with a high degree of power either at or very close to the date at which the
crash occurs for the vast majority of settings considered here. In general, setting m = 10 or
m = 15 yields higher rejection frequencies than m = 5. Comparing m = 10 and m = 15,
we observe a slight advantage for the SMIN(m, n) procedure where the value of m matches
the length of the explosive regime. This is more evident in the ‘low’ magnitude settings for
the explosive and stationary regimes than the ‘high’ magnitude settings. In practice, we

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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Real-time monitoring of bubbles and crashes 21

will not know the length of any explosive regime at the point that we begin monitoring for
its crash. We suggest, based on the simulation results shown here, that selecting m = 10
will be suitable for many scenarios and we use this setting in what follows. We have also
demonstrated how the flexibility in the procedure’s construction allows a practitioner to
prioritise their monitoring preferences. Immediate detection of a crash is clearly important
for policy makers, allowing them to react to changes in market conditions as they occur.
Our results demonstrate that setting n = 1 allows for the immediate detection of a crash.
However, as observed in Figure 5, when the magnitude of an explosive process is small,
downwards movement in the series during the explosive phase could potentially trigger
false crash detection. In some contexts, any decline in prices will be of interest, but to
others this feature may be less desirable. Our results demonstrate that setting n > 1 reduces
the probability of these pre-emptive crash detections occurring, with the obvious trade-off
that when crashes do occur they may be detected with a delay of up to n − 1 observations.
Of course, depending on the practitioner’s motivations, even more risk-averse approaches
to crash detection than the n = {2, 3} procedures we considered in this section could be
implemented. However our results show that introducing just a one observation delay is
sufficient to eliminate the majority of false detections that arise in situations where the
explosive bubble is small in magnitude. Given this, we suggest that setting n = 2 will be
suitable for many scenarios, but with practitioners retaining the flexibility to adjust this
parameter to suit their preferences and the particular monitoring context.

VI. Monitoring for multiple bubble and crash regimes

The testing approach outlined in sections III and IV concerns monitoring for a single
bubble and crash episode. However, it may be the case that once a crash has been detected,
rather than ending the monitoring exercise, a practitioner wishes to continue monitoring
for subsequent bubble episodes. In this section we consider how the testing approach
outlined in this paper could be extended to deal with monitoring for multiple bubbles and
crashes. Consider the following multiple bubble and crash DGP in which we allow for
j = 1, ..., N explosive bubble and stationary collapse regimes. For t = 1, ..., T :

yt = μ + xt + ut, (12)

ut = (1 + δt)ut−1 + εt + u1I

(
t = ⌊

τj,3T
⌋ + 1

)
(13)

δt =
N∑

j=1

{
δj,1I

(⌊
τj,1T

⌋
< t �

⌊
τj,2T

⌋ )

− δj,2I

(⌊
τj,2T

⌋
< t �

⌊
τj,3T

⌋ )
− I

(
t = ⌊

τj,3T
⌋ + 1

)}

xt =
N∑

j=1

(
u�τj,3T� − u1

)
I

(
t >

⌊
τj,3T

⌋ )
,

with, as before, u1 = Op(1), δj,1 > 0 and δj,2 > 0 for all j. The inclusion of xt in (12) and
the indicator function term in (13) prevents the magnitude of one explosive regime from
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22 Bulletin

entering the dynamics of subsequent explosive regimes; this DGP represents a simple
modification of that adopted in Harvey, Leybourne, and Whitehouse (2020), here allowing
for non-zero u1. Under this specification, yt can undergo N explosive bubble phases with
start and end dates

⌊
τj,1T

⌋ + 1 and
⌊
τj,2T

⌋
, respectively, and N stationary crash regimes

with start and end dates
⌊
τj,2T

⌋ + 1 and
⌊
τj,3T

⌋
, respectively, for j = 1, ..., N .

In order to distinguish between explosive bubble and stationary collapse regimes in
this multiple bubble context, our hypotheses of interest become:

H (1)
0,j : τj,1 = 1 (unit root)

H (1)
1,j : τj,1 < τj,2 ≤ 1 (unit root then explosive, with or without stationary collapse),

and

H (2)
0,j : τj,1 < τj,2 = 1 (unit root then explosive without stationary collapse)

H (2)
1,j : τj,1 < τj,2 < 1 (unit root then explosive with stationary collapse).

Consider the simple case of N = 2 where τj,1 < τj,2 < τj,3 < 1 for j = 1, 2 such that there
exist two explosive bubble regimes, each followed by a stationary collapse. Following the
detection of the first bubble and crash regime through rejection of H (1)

0,1 and subsequently

H (2)
0,1 in favour of H (2)

1,1 , we should then switch back into monitoring for the second

explosive bubble regime by considering H (1)
0,2 .

A question that arises in this situation is whether we want to begin monitoring for the
next explosive bubble immediately upon detection of a crash, given that the stationary
collapse is likely to be still ongoing. To mitigate against possible problems associated with
bubble monitoring resuming during a crash regime, we impose a minimum window width
gap between the detection of a stationary collapse regime and the start of monitoring for a
subsequent explosive bubble. A natural candidate for this minimum window here would
be k.

Our multiple bubble and crash monitoring decision rules can therefore be written as
follows. First, explosive bubble monitoring is undertaken using AMAX(k):

Detect H (1)
1,j at time e if Ae,k > A∗

max .

If an explosive bubble is detected, we denote the detection date as T�
j . Next, stationary

collapse monitoring is undertaken over e ∈ [T�
j + 1, T] using SMIN(m, n):

Detect H (2)
1,j at time e if Se,m,n < S∗

min .

The date of stationary collapse detection is denoted T��
j . Monitoring for a subsequent

explosive bubble is then undertaken over e ∈ [T��
j + k, T] using AMAX(k):

Detect H (1)
1,j+1 at time e if Ae,k > A∗

max .

Monitoring continues in this manner, switching between AMAX(k) and SMIN(m, n) for as
long as desired.

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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Real-time monitoring of bubbles and crashes 23

FIGURE 7. Rejection frequencies of AMAX(10) and SMIN(10, 2) for multiple bubble and crash episodes:
τj,1 = 1

We consider the performance of our proposed multiple bubble and crash monitoring
procedure through Monte Carlo simulation of (12), where we again use εt ∼ IIDN(0, 1)

and set μ = 0 and u1 = 100. Given the finite sample performance of our monitoring
procedure in the single bubble context displayed in section V, we provide results for the
AMAX(10) and SMIN(10, 2) procedures here. We set T∗ = 200 − k.

Figure 7 displays the empirical FPRs of the AMAX(10) and SMIN(10, 2) procedures
under H (1)

0,1 , i.e. with τ1,1 = 1. The empirical FPRs of AMAX(10) and SMIN(10, 2) for one
explosive and collapse regime will be identical to those discussed in the single bubble
case, displayed in Figure 1. However, in a multiple bubble context, we now wish to
consider the empirical FPRs displayed for subsequent bubble regimes. That is, we wish
to consider the probability of our procedures falsely detecting more than one bubble and
crash regime. We display the empirical FPRs for detecting one, two and three bubble
and crash regimes. It is clear from Figure 7 that the empirical FPRs of AMAX(10) and
SMIN(10, 2) for two bubbles/crashes remain small throughout the monitoring period, while
the empirical FPRs for three bubbles/crashes are near zero throughout the monitoring
period. Given the conditional nature of our multiple bubble procedure, i.e. that we do not
monitor for a (j + 1)th bubble unless we have detected a collapse of bubble j, this should
not be surprising.

Figure 8 displays the cumulative rejection frequencies of the AMAX(10)

and SMIN(10, 2) procedures for multiple bubble and collapse regimes,
where {�τ1,1T�, �τ1,2T�, �τ1,3T�} = {215,225, 235}, {�τ2,1T�, �τ2,2T�, �τ2,3T�} =
{255,265, 275}, and {�τ3,1T�, �τ3,2T�, �τ3,3T�} = {295,305, 315}. That is, the DGP
contains three explosive bubble and stationary crash regimes, with the bubble and
crash phases for each regime lasting 10 observations. In Figure 8a we set δj,1 = 0.03
and δj,2 = 0.015 for j = 1, .., 3, such that each explosive bubble (and each stationary
crash) is of the same magnitude. It is clear that our proposed procedures have excellent
power to detect multiple bubble and crash regimes under these settings, with cumulative
rejection frequencies close to 1 for each regime. The speed of detection matches that
observed in the single bubble case, with the SMIN(10, 2) detection date being equal to the

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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24 Bulletin

(a)

(b)

FIGURE 8. Rejection frequencies of AMAX(10) and SMIN(10, 2) for multiple bubble and
crash episodes: {�τ1,1T�, �τ1,2T�, �τ1,3T�} = {215,225, 235}, {�τ2,1T�, �τ2,2T�, �τ2,3T�} = {255,265, 275},
{�τ3,1T�, �τ3,2T�, �τ3,3T�} = {295,305, 315}. (a) δj,1 = 0.03 and δj,2 = 0.015; (b) δj,1 = 0.02 and δj,2 = 0.01

second observation of the stationary collapse regime in most replications. In Figure 8b
we consider smaller settings of δj,1 = 0.02 and δj,2 = 0.01 for j = 1, .., 3. Under these
settings, the conditional nature of the testing approach becomes more obvious, as we
observe slightly lower cumulative rejection frequencies for later bubble/crash regimes
relative to earlier regimes. However, our proposed procedures still obtain very good levels
of power for multiple regimes under these settings. We have therefore demonstrated in
this section that the procedures proposed in this paper for real-time monitoring of a crash
extend simply to a multiple bubble monitoring context.

VII. Empirical application

To demonstrate the effectiveness of our crash monitoring procedure, we consider an
empirical application of the AMAX(10) and SMIN(10, n)procedures to the US housing
market. The sub-prime mortgage crisis and subsequent financial distress of the late 2000s
has led to increased scrutiny of the dynamics of house prices. Several recent studies

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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Real-time monitoring of bubbles and crashes 25

have investigated historical bubble behaviour in housing markets (see, inter alia, Pavlidis
et al., 2016; Anundsen et al., 2016; Anundsen ,2019; Fabozzi et al., 2020). In a recent
study, Harvey et al. (2020) propose a method of date-stamping multiple bubble and crash
regimes based on Bayesian Information Criterion model selection and use this technique to
investigate the dynamics of the housing market in 20 OECD countries, finding substantial
evidence of both bubbles and crashes across many countries, including the US. While
there is now a consensus that the US housing market underwent a bubble during the
2000s, at the time the issue was contested. Addressing the Joint Economic Committee
of the US Congress in 2002, Federal Reserve Chairman Alan Greenspan remarked that a
comparison of house prices to the bubble and crash behaviour observed in stock markets
was not appropriate due to the high transaction costs and limited arbitrage opportunities
in housing. He also stated that, instead of a national market, US housing could be seen
as a collection of local markets, such that ‘even if a bubble were to develop in a local
market, it would not necessarily have implications for the nation as a whole’ (Monetary
Policy and the Economic Outlook, 2002). Real-time monitoring techniques such as the
one proposed in this paper could have provided evidence of changes in the dynamics of
the housing market and allowed policy makers to respond quickly to these events.

We consider a pseudo-real-time monitoring exercise of the US housing market. As
discussed in section I, a rational bubble manifests itself as the presence of explosive
behaviour in asset prices with the absence of explosive behaviour in the corresponding
fundamental values. We therefore examine a price to fundamental ratio for housing, using
rent as our proxy of housing fundamentals, as is common in the literature (see Pavlidis
et al., 2016, for example). A quarterly house price to rent ratio is obtained from the
OECD (OECD, 2021) for the period 1975:Q4 - 2021:Q1, yielding T = 182observations.
We begin monitoring for an explosive bubble in 1998:Q1. We select window widths of
length k = 10 and m = 10, such that our preferred AMAX(10) and SMIN(10, n) tests are
used. This provides us with a training sample of T∗ = 80 observations over which our
training statistics are computed from t = 1, ..., T∗.

Figure 9 displays the US house price to rent ratio in the first panel and the computed
SMIN(10, 1), SMIN(10, 2), and SMIN(10, 3) test statistics in the second panel. We examine
the monitoring performance of all three crash procedures here to demonstrate the trade-
offs of choosing n > 1 in terms of speed of detection. We begin by monitoring for an
explosive bubble using AMAX(10), which detects the presence of a bubble in 2000:Q1,
pre-dating Greenspan’s remarks by 2 years. The theoretical FPR of AMAX(10) is 0.11 at
the point of detection. At this point, we switch into crash monitoring using the SMIN(10, 1),
SMIN(10, 2) and SMIN(10, 3) procedures. SMIN(10, 1) detects a crash in 2006:Q2, whilst
both SMIN(10, 2) and SMIN(10, 3) detect a crash in 2006:Q3. The effect of increasing n
in the SMIN(10, n) monitoring procedure mirrors our theoretical and simulation results,
with n > 1 introducing a delay in detection of n − 1observations or fewer. We note that
the detection delay is one observation for both SMIN(10, 2) and SMIN(10, 3) here. Visual
inspection of the full sample of the US house price to rent ratio (which would, of course, not
have been possible were we doing this in real time) shows that the crash date indicated by
SMIN(10, 1) corresponds to the first observation after the explosive bubble where the ratio
begins to decline before it substantially decreases throughout 2007 and 2008, therefore
suggesting that the monitoring procedure has worked very well. In October 2007, over a

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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26 Bulletin

FIGURE 9. US house price to rent ratio and SMIN(m, n) test statistics, 1975–2021

year after the detection of a crash by SMIN(10, 1), Treasury Secretary Henry Paulson stated
that the continuing decline in house prices marked the ‘most significant current risk to [the
US] economy’ (U.S. Department of the Treasury, 2007). Our application demonstrates
that our proposed monitoring procedures can be used to detect bubble and crash behaviour
in macroeconomic or financial data in real time, and this in turn can allow policy makers
to respond quickly to such events.

VIII. Conclusion

In this paper, we have developed a real-time monitoring procedure for detecting a crash
episode in a time series, conditional on having first detected a bubble regime. Our
proposed procedure makes use of a training period, over which no bubble or crash occurs,
to calibrate critical values, and then proceeds to monitor for significant evidence of a
crash in a real-time environment as new data emerges. The new statistic we use for crash
detection is based on an autoregressive modelling framework, with bubble and crash
regimes modelled by explosive and stationary autoregressive dynamics, respectively. The
statistic exploits the different signs of the means of the first differences associated with
explosive and stationary regimes. A user-chosen parameter allows practitioners to trade
off the speed of possible crash detection with the probability of spurious crash detection
during a bubble regime. Asymptotic results establish that our procedure has desirable
properties in terms of its ability to rapidly indicate the onset of a crash. Our Monte Carlo
simulations suggest that, in finite samples, the recommended crash monitoring procedure
has a well-controlled FPR during a bubble phase, while also allowing rapid detection of

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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Real-time monitoring of bubbles and crashes 27

a crash when one occurs. We have also considered how our procedure can be extended
to a multiple bubble and crash environment, and demonstrate through simulation that the
extended procedure performs well in this more general context. An application to the
US housing market demonstrated the efficacy of our procedure in rapidly detecting the
housing price crash which occurred in 2006.

Appendix A: Proof of Theorem 1

We first note that Ae,k is a measurable function of a finite number of observations
on �yt, and that under H (1)

0 , �yt = εt. It then follows that {Ae,k} is a strictly stationary
sequence and, from lemma 2.1 of White and Domowitz (1984), it is mixing of the same
size as {εt}. Theorem 1 assumes that the mixing conditions of {εt}, and hence {Ae,k},
satisfy the mixing (long range dependence) conditions of Ferreira and Scotto (2002) (see
Definition on p. 476). Hence the conditions underpinning the result in theorem 2.1 of
Ferreira and Scotto (2002) are satisfied for the sequence {Ae,k}. Theorem 2.1 of Ferreira
and Scotto (2002) for the case r = s = 1 (in their notation) then implies that, for two
disjoint subintervals IT ,a and IT ,b of [1, T], with respective lengths aT and bT such that
aT/T → a and bT/T → b,

lim
T→∞

P

(

max
e∈IT ,a

Ae,k ≤ max
e∈IT ,b

Ae,k

)

= b

a + b
,

or

lim
T→∞

P

(

max
e∈IT ,a

Ae,k > max
e∈IT ,b

Ae,k

)

= a

a + b
.

Setting IT ,a = [T∗ + k, T ′] and IT ,b = [k + 1, T∗] we obtain

lim
T→∞

P

(

max
e∈[T∗+k,T ′]

Ae,k > max
e∈[k+1,T∗]

Ae,k

)

= lim
T→∞

(
T ′ − T∗ − k + 1

T ′ − 2k + 1

)

= lim
T→∞

(
T ′ − T∗

T ′

)

= α.

Appendix B: Proof of Theorem 2

First we define DT = �τ1T�(1 + δ1)
2(�τ2T�−�τ1T�). In the proof we will make use of the

following results:

(i) For any process xt, an application of the Cauchy–Schwarz inequality shows that

(
∑b

t=a xt)
2

∑b
t=a x2

t

≤ b − a,
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28 Bulletin

and hence, with finite b − a,

∑b
t=a xt

√
∑b

t=a x2
t

= Op(1). (B1)

(ii) For an AR(1) process xs with generic parameter 1 + δ and innovation εs, for
s, k > 0, we can write

xs+k = (1 + δ)kxs +
s+k−1∑

j=0

(1 + δ)jεs+k−j, (B2)

xs−k = (1 + δ)−kxs −
k−1∑

j=0

(1 + δ)−k+jεs−j. (B3)

We next examine the behaviour of ut in the region of t = �τ2T�. First, for t = �τ2T�
we use (B2) with s + k = �τ2T� and k = �τ2T� − �τ1T� to give

u�τ2T� = (1 + δ1)
�τ2T�−�τ1T�u�τ1T� +

�τ2T�−�τ1T�−1∑

j=0

(1 + δ1)
jε�τ2T�−j,

D−1/2
T u�τ2T� = D−1/2

T (1 + δ1)
�τ2T�−�τ1T�u�τ1T� + Op(T

−1/2)

= O+
p (1),

since u�τ1T� = O+
p (T1/2). Hence, u�τ2T� = O+

p (D1/2
T ). Second, consider t < �τ2T�. Using

(B3) we have

u�τ2T�−k = (1 + δ1)
−ku�τ2T� + Op(1)

= (1 + δ1)
−kO+

p (D1/2
T ).

Finally, for t > �τ2T�, using (B2) we find

u�τ2T�+k = (1 − δ2)
ku�τ2T� + Op(1)

= (1 + δ2)
kO+

p (D1/2
T ).

Now consider the behaviour of Se,m,n in the region of t = �τ2T�, for the three cases of
theorem 2.

(a) Consider the case of j = 0, i.e. e = �τ2T�. Then

e−n∑

t=e−n−m+1

�yt =
�τ2T�−n∑

t=�τ2T�−n−m+1

�yt

= u�τ2T�−n − u�τ2T�−n−m

= ((1 + δ1)
−n − (1 + δ1)

−n−m)u�τ2T� + Op(1),
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Real-time monitoring of bubbles and crashes 29

using (B3). Here (1 + δ1)
−n − (1 + δ1)

−n−m > 0 so

e−n∑

t=e−n−m+1

�yt = O+
p (D1/2

T ).

Similarly,

e∑

t=e−n+1

�yt =
�τ2T�∑

t=�τ2T�−n+1

�yt

= u�τ2T� − u�τ2T�−n

= (1 − (1 + δ1)
−n)u�τ2T� + Op(1).

Here 1 − (1 + δ1)
−n > 0 so

e∑

t=e−n+1

�yt = O+
p (D1/2

T ).

Next, since the data is generated according to �yt = δ1(yt−1 − μ) + εt = −δ1μ +
δ1yt−1 + εt, a linear regression of �yt on a constant and yt−1 represents a correctly
specified estimating model. Standard OLS results then imply that

∑�τ2T�−n
t=�τ2T�−n−m+1 ε̂2

t =
∑�τ2T�−n

t=�τ2T�−n−m+1 ε2
t + Op(1) = Op(1). Hence we find

Se,m,n =
∑e−n

t=e−n−m+1 �yt
√∑e−n

t=e−n−m+1 ε̂2
t

×
∑e

t=e−n+1 �yt
√∑e

t=e−n+1 �y2
t

= O+
p (D1/2

T )
√

Op(1)
× O+

p (1)

= O+
p (D1/2

T ),

using (B1). Therefore we see that Se,m,n is diverging to +∞ at the rate D1/2
T . For

j = 1, 2, ..., c, the �yt involved in Se,m,n have the same order properties as when j = 0.
Hence it also follows that Se,m,n = O+

p (D1/2
T ) for e = �τ2T� − 1, �τ2T� − 2, ..., �τ2T� − c.

The result of Theorem 2(a) then follows since S∗
min is the minimum of a sequence of

Op(1) variates (given that Se,m,n = Op(1) over the unit root training period), and therefore
S∗

min = op(D
1/2
T ).

(b) Consider e = �τ2T� + j with j = 1, ..., n − 1. It remains true that

e−n∑

t=e−n−m+1

�yt = O+
p (D1/2

T ),

e−n∑

t=e−n−m+1

ε̂2
t = Op(1).
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Now,

e∑

t=e−n+1

�yt =
�τ2T�+j∑

t=�τ2T�+j−n+1

�yt

= u�τ2T�+j − u�τ2T�+j−n

= (1 − δ2)
ju�τ2T� − (1 + δ1)

j−nu�τ2T� + Op(1)

= ((1 − δ2)
j − (1 + δ1)

j−n)u�τ2T� + Op(1),

so

e∑

t=e−n+1

�yt =
{
((1 − δ2)

j − (1 + δ1)
j−n)O+

p (D1/2
T ) (1 − δ2)

j �= (1 + δ1)
j−n

Op(1) (1 − δ2)
j = (1 + δ1)

j−n,

and therefore

Se,m,n = O+
p (D1/2

T )
√

Op(1)
×

⎧
⎨

⎩

O+
p (1) (1 − δ2)

j > (1 + δ1)
j−n

Op(1) (1 − δ2)
j = (1 + δ1)

j−n

O−
p (1) (1 − δ2)

j < (1 + δ1)
j−n

=

⎧
⎪⎨

⎪⎩

O+
p (D1/2

T ) (1 − δ2)
j > (1 + δ1)

j−n

Op(D
1/2
T ) (1 − δ2)

j = (1 + δ1)
j−n

O−
p (D1/2

T ) (1 − δ2)
j < (1 + δ1)

j−n

.

Given S∗
min = op(D

1/2
T ), the result of Theorem 2(b) then follows directly.

(c) Consider e = �τ2T� + n. Once again,

e−n∑

t=e−n−m+1

�yt = O+
p (D1/2

T ),

e−n∑

t=e−n−m+1

ε̂2
t = Op(1).

Now,

e∑

t=e−n+1

�yt =
∑

t = �τ2T� + 1�τ2T�+n�yt

= u�τ2T�+n − u�τ2T�
= (1 − δ2)

nu�τ2T� − u�τ2T� + Op(1)

= ((1 − δ2)
n − 1)u�τ2T� + Op(1).
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Here, (1 − δ2)
n − 1 < 0 so

Se,m,n = O+
p (D1/2

T )
√

Op(1)
× O−

p (1)

= O−
p (D1/2

T )

and the result in Theorem 2(c) follows.

Final Manuscript Received: July 2021
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