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ABSTRACT

While domain characterization has become an integral part of vi-
sualization design studies, methodological prescriptions are rare.
An underrepresented aspect in existing approaches is domain exper-
tise. Knowledge elicitation methods from cognitive science might
help but have not yet received much attention for domain charac-
terization. We propose the Critical Decision Method (CDM) to
the visualization domain to provide descriptive steps that open up a
knowledge-based perspective on domain characterization. The CDM
uses retrospective interviews to reveal expert judgment involved in
a challenging situation. We apply it to study three domain prob-
lems, reflect on our practical experience, and discuss its relevance
to domain characterization in visualization research. We found the
CDM’s realism and subjective nature to be well suited for eliciting
cognitive aspects of high-level task performance. Our insights might
guide other researchers in conducting domain characterization with
a focus on domain knowledge and cognition. With our work, we
hope to contribute to the portfolio of meaningful methods used to
inform visualization design and to stimulate discussions regarding
prescriptive steps for domain characterization.

Index Terms: Human-centered computing—Visualization—
Visualization application domains; Human-centered computing—
Visualization—Visualization design and evaluation methods

1 INTRODUCTION

To design visualizations for solving real-world problems, we typ-
ically conduct design studies [44]. In a design study, we engage
closely with domain experts and their data analysis problems. The
very first step of a design study is the domain characterization. Do-
main characterization aims at a broad examination of the needs,
tasks, and goals of domain experts as well as the conditions and
constraints that will frame the visualization use [44]. Domain char-
acterization is conducted before the design stage, and its outcome
is critical for all subsequent layers of the visualization design pro-
cess [33]. If we want to design useful problem-driven visualizations,
we need to know how to conduct domain characterization effectively.

However, structured guidance on how to conduct domain char-
acterization is scarce. Munzner observed that ”hardly any papers
devoted solely to analysis at this level [domain characterization] have
been published in venues explicitly devoted to visualization” [33].
Marai states that ”although visualization design models exist [...],
these models do not present a clear methodological prescription for
the domain characterization step” [23]. She proposed an actionable
framework for domain characterization, which centers around activi-
ties and tasks. Yet, we still lack explicit guidance on how to extract
the expertise and experience involved with problem-solving.
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To convey the intended message with a visualization, we need
to trace how an expert applies domain knowledge to interpret the
depicted information [8]. This understanding is difficult to obtain.
Domain expertise and experience rely heavily on personal tacit
knowledge [38, 49], which involves contextual implications, analo-
gies, or judgments of typicality. Unlike explicit knowledge that has
been verbalized, written down, or stored in a database, tacit knowl-
edge is hidden in users’ minds. It cannot be derived from observable
behavior and users find it hard to articulate how they do something
that is based on expertise [38]. Thus, tacit knowledge can only be
acquired from humans through their cognitive processes [12]. While
knowledge elicitation approaches [32] from cognitive science might
help in this context, more effort is needed to study their relevance
for domain characterization in visualization design studies.

In this paper, we build on knowledge elicitation approaches to
contribute to the transition from existing high-level frameworks
towards prescriptive steps for domain characterization (Figure 1).
Toward this goal, we make the following contributions:

• We propose a knowledge elicitation method called Critical
Decision Method (CDM) from cognitive science [15] to the
visualization domain.

• We reflect on our experience with applying CDM for charac-
terizing domain problems in three different applications.

• We discuss and advocate its relevance for domain characteriza-
tion in the context of problem-driven visualization research.

2 RELATED WORK: DOMAIN CHARACTERIZATION IN VISU-
ALIZATION RESEARCH

A design study is a project where visualization researchers analyze
a real-world problem in a target domain, design a validated visual-
ization solution for it, and reflect on lessons learned to refine guide-
lines [44]. For this, researchers need to cooperate closely with data
expert users who have deep knowledge in the target domain [48].

In the initial domain characterization stage, also referred to as
context of use [16], task elicitation [34], or domain problem char-
acterization [33], visualization researchers aim to understand the
data, tasks, problems, and experiences of the domain experts. The
outcome of domain characterization is often implicitly defined and
includes data-user-task definitions [30], dominant concepts as a
result of coding [46], or design implications [20]. Translated to
domain-agnostic abstractions, they guide the visual encoding deci-
sions in the subsequent steps of the design study [33].

Such guidelines depend on the quality of the domain characteriza-
tion activities performed by visualization researchers. They typically
read about the domain [9, 22, 27, 41], gain experience with domain
tools and data themselves [2, 25, 43], or perform a variation of ”talk-
ing with and observing domain experts” [44]. Engaging with domain
experts includes interviews and real-world observations [3, 21], con-
textual inquiries [22,41,42], focus groups [41,42], or workshops [13].
To understand more concretely what those activities entail, we re-
viewed around 30 papers on problem-driven visualization research
(including the design studies reviewed by Sedlmair et al. [44]).

Most domain characterization reports focus on the outcome of
the activities, i.e., data and task abstractions, rather than how they
arrived there. Descriptions of the process remain fairly high-level.



They range from ”interviews with application experts” [37] over
having ”interviewed experienced assay developers” [39] to having
observed ”real model developers” [3], ”the domain expert on a real-
world use case” [9], or ”daily work practices” [40]. Some reports
are even limited to having collaborated with domain experts over
a certain time period [4, 26, 28]. Reports sometimes include the
type of interviews (e.g., guided [43], semi-structured [21, 41], or
unstructured [47]) as well as the researchers’ topics of interest (e.g.,
workflows [1, 9], data and analysis methods [27], or tools [25, 43]).
Few works explain the interview contents, goals, and subsequent data
analysis steps in detail [11, 21, 22, 42]. Few also provide rich reports
of the observation procedures they followed and the qualitative
insights they gained [41–43]. Still, it often remains unclear whether
these descriptions reflect the individual choices of the researchers
in that specific context or an established methodological protocol,
which could be re-used beyond the specific design study.

This limited methodological justification, or under-reporting, of
the domain characterization stage can be attributed to the lack of
accessible methods on how to study an application domain in the con-
text of visualization design studies. Current practices are grounded
on the diversity of methodology used to study people, cultures, and
habits in ethnography [33]. However, these methodologies have not
been developed against the background of data analysis. Despite
recent advances in ethnographic methodologies, task taxonomies [5],
and analytic question sets [20], we identify a lack of prescriptive
steps for visualization researchers to follow in a design study in
order to elicit domain knowledge and derive task abstractions. With
this work, we attempt to fill that gap by moving from high-level
advice towards prescriptive steps for domain characterization.

3 THE CDM FOR DOMAIN CHARACTERIZATION

What makes a domain expert is the experience and expertise she
brings to a particular field of application. This domain knowledge
largely consists of concepts, contextual information, typicalities,
personal beliefs, learnings, and insights that have been internalized
over years of working practice: it is tacit knowledge [38]. In this
section, we propose a method to elicit and exploit such kind of
knowledge from cognitive science to the visualization domain.

3.1 Motivation and Background
Different fields of research have evolved around studying internal-
ized knowledge. Knowledge externalization [49] aims to convert
it to explicit representations, e.g., protocols, that can be reused or
shared. Common applications are collaborative sense-making [51]
or knowledge-assisted guidance [31]. Articulation is achieved
through direct creation of narratives and diagrams, like causal flow
charts [50], or indirect inference from user interaction with tools [12].
Psychologists summarize techniques to capture the unobservable
knowledge, mental processes, and goals underlying task perfor-
mance under the term Cognitive Task Analysis (CTA) [32]. Visu-
alization researchers have applied CTA for studying larger groups
of domain experts, but not in the context of a design study. Dimara
et al. used the critical incident technique to survey the software
needs of decision-makers in organizations [11]. Parsons et al. asked
participants to retell a past design process to survey the situated
knowledge applied by data visualization practitioners [36].

However, it remains unclear how these methods can be applied
to domain characterization, because they have been developed for a
different context. Knowledge externalization targets tacit knowledge
that results from working with data rather than domain knowledge.
Cognitive Task Analysis methods center around domain knowledge
but have not been applied in data analysis settings. To make them
actionable for domain characterization, CTA methods need to be
translated to the domain of visualization research. Beyond a first
step in the human factors domain [14], the suitability of CTA tech-
niques for domain characterization has not yet been investigated. For

Figure 1: Our CDM procedure for domain characterization. To com-
plete a design study, the data analysis results need to be translated
into domain-agnostic abstractions to inform the visualization design.

this purpose, we explore the methodological issues of applying the
Critical Decision Method (CDM) [18] as a representative of CTA.

The Critical Decision Method is a technique to elicit tacit knowl-
edge underlying expert task performance in complex situations [19].
The method grew out of efforts to capture the ”knowledge and experi-
ence involved in real-world [...] problem-solving” [15]. It has proven
useful to investigate dynamic non-routine situations in diverse do-
mains, such as fire fighting or emergency service. Its effectiveness
has been demonstrated for a variety of goals, e.g., to develop support
systems, design training material, or establish communication strate-
gies [18]. Although these undertakings did not specifically involve
visualization, their variability suggests the CDM’s applicability also
for domain characterization in visualization research. By providing
a step-by-step data collection procedure as well as examples for
output representations, the CDM carries the potential to address the
lack of formal scripts how to conduct domain characterization and
how to represent domain characterization results.

The Critical Decision Method uses semi-structured interviews
that are often augmented with observations [18]. Thus, it can be
considered another variant of ”talking with and observing domain
experts” [44]. In contrast to previous domain characterization prac-
tices, however, it offers more prescriptive guidance. The method
aims at a systematic retrospection of a situation that involved the
participant’s expert judgment. The CDM is not meant to replace
prospective visualization design. Rather, its retrospective nature is
well-suited to understand the vocabulary of the target domain [33]
without anticipating future design choices. Traditional approaches
to domain characterization ask about current problems or envisioned
changes or request users to perform artificial tasks. In contrast, walk-
ing through a past real-world situation reveals cognitive aspects of
the current problem-solving strategies, thus helping assess if and
how visualization can involve human expertise to better solve the do-
main problem. The investigated situation, thus, needs to come from
the participant’s real-world experience. Different targets like cues,
knowledge, options, or experience (see Table 1) are then probed to
understand the expert’s reasoning during the situation.

3.2 Data Collection Procedure
The preparation phase (Figure 1, blue) is followed by a five-stage
data collection (green), where the strategy is to gradually focus on
critical cognitive points by sweeping a situation multiple times [18].
1. Incident Selection The goal of the Incident Selection stage is to
select a task involving competences beyond routine knowledge. The
participant should be the primary decision-maker in the situation. To
extract true expertise, the task should pose a unique challenge for the
participant’s competence, i.e., one can expect a difference between
the decisions of an expert and those of a novice. It is a pitfall to
select a case where participants can rely on formalized procedures.



Table 1: Excerpt of sample questions proposed by Klein et al. [18].

Type Content

Cues What were you seeing, hearing, smelling ...?
Knowledge What information did you use in making this decision, and how was it

obtained?
Options What other courses of action were considered by or available to you?
Experience What specific training or experience was necessary or helpful [...]?
Basis How was this option selected [...]? What rule was being followed?
Goals What were your specific goals at this time?

2. Unstructured Incident Recall The goal of the Unstructured
Incident Recall stage is to activate the participants’ memory and
to get a first impression of the scenario. The participant is asked
to describe the situation from beginning to end. For example, this
might range from loading a data set until an interesting correlation
has been found. Interviewers should focus on understanding the
story. Interruption for other than minor clarifications is a pitfall.
3. Timeline Construction The goal of the Timeline Construction
stage is to establish a common understanding among interviewers
and participant. From what they heard, the interviewers reconstruct
the situation in the form of a timeline. It contains the sequence
and duration of events. An event can be an occurrence (like a data
point becoming highlighted or a view being switched) or subjective
thoughts reported by the participant (e.g., ”I would consider this
point an outlier”). The timeline is then retold to the participant to
identify inconsistencies, add clarifications, and fill in missing details.
4. Decision Point Identification The goal of the Decision Point
Identification stage is to identify decision points in the timeline for
a detailed investigation. The interviewers extract those moments
where different ways to understand the situation existed or multiple
courses of action were possible. Some are obvious from verbal
cues (e.g., ”I had to decide whether to include this predictor in the
selection”). Others involve taking one of multiple courses of action
(e.g., looking at one part of the data first) or making a judgment that
affects the action (e.g., ”this shape looks like an anomaly but we can
safely ignore it”). The granularity of decision points can be adapted.
5. Decision Point Probing The goal of the Decision Point Probing
stage is to better understand the meaning of information for the
participant’s assessment of the situation. The interviewers work
through the decision points and ask for elaboration. Different probes
can be applied for this purpose based on the interviewers’ interest.
Table 1 lists example questions about how cues, prior knowledge, or
different options influenced the participant’s course of action.

An interview is expected to last about two hours. This can vary
according to the application (timeline construction might be replaced
by observation or decision point probing might take place during
breaks). Klein et al. recommend to share the interviewing responsi-
bilities among two interviewers and to record the sessions [18].

3.3 Data Analysis and Output
The Critical Decision Method does not prescribe a data analysis
approach (Figure 1, orange) because it depends on the research
questions motivating the undertaking. In general, coding is used
to prepare the ground for converting the interview data to different
representations that describe domain knowledge, reasoning, and task
activity [15]. Klein et al. present representations that worked well
for their applications [18]. We highlight two of these artifacts that we
found to particularly match the purpose of domain characterization.

A situation assessment record (SAR) reflects the expert’s under-
standing of the dynamic evolution of an incident. It specifies the
turning points of the situation together with their underlying cues,
experience, knowledge, goals, and actions. Klein et al. propose
different formats for SARs [18]. Table 2 shows an SAR for water
turbine design: an existing turbine is analyzed to derive potential
directions for improved running behavior. The granularity of entries

Table 2: Situation assessment record (SAR) for water turbine design.

Situation Assessment 1 Plausibility check
Cues Deviation from onsite or testbed measurements

Goals Validate simulation model
Decision Point 1 Calibrate model or directly proceed
Situation Assessment 2 Analysis of current setup (shift)

Cues Pressure distribution on blades (heatmap), key perfor-
mance indicators (e.g., torque and power output)

Experience Problems in previous operation of the turbine (e.g.,
cavitation at leading edge)

Goals Understand strengths and weaknesses of existing tur-
bine, identify potential directions of improvement

Decision Point 2 Address cavitation on current turbine blades
Situation Assessment 3 Optimize blade geometry (shift)

Cues High curvature in pressure line
Knowledge Correlates with high blade angle change
Experience Avoid by shifting camber towards leading edge

Options Change blade angles or meridional length
Goals Achieve constant pressure change

Decision Point 3 Shift leading edge towards inlet
Situation Assessment 4 Further optimization (elaboration)

Cues Pressure and velocity distribution (heatmap, stream-
lines, sweeping plane), key performance indicators,
pressure and blade angle across blade length (line chart)

Basis Trial-and-error exploration of design space, at each step
analyze what went right/wrong and how to improve

Knowledge Flow behavior, relationships between parameters and
side effects, hard constraints (e.g., construction volume)

Experience Dependencies in previous projects, operating permit re-
quires trading 2-3% less efficiency for fish-friendliness,
operating conditions might change during the project

Goals Understand how geometry affects water flow, trade off
efficiency and fish-friendliness

Decision Point 4 Proceed with most-preferred turbine design
Situation Assessment 5 Improvement potential (shift)

Cues Efficiency curves of new design vs. existing turbine
Experience Desired water flow and pressure lead to high efficiency

Goals Predict savings/earnings for customer
Decision Point 5 Implement chosen design

can be adapted to the researchers’ needs. New events or insights
cause the expert to abandon prior goals and prioritize new goals
(shift). For example, identifying the cavitation on the turbine blade
as the major problem changes the engineer’s goal from analyzing
the existing turbine towards optimizing the blade geometry (Table
2, SA 3). Sometimes the goals are maintained but new information
enhances what was originally known (elaboration). For example, the
cavitation happens at the leading edge of the blade (Table 2, SA 4).

A decision requirements table contains details on the judgments
that were involved in performing the observed task. The columns
specify what particular decisions were made, why they were difficult
to make, how they were made, and what supporting information was
used. The rows correspond to the decision points identified in the
situation assessment record. In this way, the decision requirements
complement the experience, goals, etc. in the SAR. For example, the
difficulty to investigate multiple operating points (Table 3, B2) effec-
tively extends the description of SA 2 in the SAR. The prescribed
structure of Table 3 allows for a comparison even across situations.

4 CASE STUDY

This section will present the CDM steps we followed in conduct-
ing three domain characterizations to understand how engineers
approach optimization problems that are based on simulation data.
Some aspects of the CDM study have already been published in a
conference paper [14]; however, the data analysis covered a different
purpose. While the previous work investigated the feasibility of the
CDM from a human factors point of view, this work reflects on the
methodology from a visualization design study perspective.



Table 3: Decision requirements table for water turbine design. The rows correspond to the decision points identified in the SAR (Table 2).

What is the decision? (A) Why is it difficult? (B) How is it made? (C) What is the aid? How does it help? (D)

1
Determine plausibility of sim-
ulation results

Simulation model uncertainties, inaccu-
rate real-world measurements, tolerable
deviation not known a priori

Compare real-world measurements to
simulated values

n.a.

2
Analyze strengths and weak-
nesses of current turbine

Only one operating point can be inves-
tigated at once

Model and simulate the existing turbine
and investigate its performance

3D visualization of pressure/velocity/etc. distribution
across geometry hints at inconsistencies

3 Optimize blade geometry
Non-linear relationship between geom-
etry and water flow

Identify non-optimal pressure distribu-
tion across blade, change blade geome-
try and observe effect on distribution

2D line charts that convey the pressure distribution and
blade angle across the blade length, high curvature hints
at non-optimal geometry

4
Choose most-preferred tur-
bine design

Performance increase in one operating
point might come with reduced perfor-
mance in another operating point, man-
ual exploration of design space, intu-
ition difficult to formalize

Trial-and-error approach, iterative man-
ual changes of the geometry and direct
observation of performance changes

2D line charts and 3D visualization of output parameters
convey distribution across geometry, color encoding
draws attention to peaks, instant feedback helps to see
the relationship between geometry changes and flow
changes, knowledge of turbine designer hints at correct
direction to improve

5
Assess improvement potential
of chosen option

Affected by entire operating range, hard
to predict savings

Compare chosen option to existing de-
sign, critical cue is efficiency

Superimposed efficiency curves of both designs enable
direct comparison

4.1 Application Background

We studied the current domain practices in three different appli-
cations from the field of engineering design: optimizing a water
turbine, an electric drive, and the operation modes of a power plant.
The expectations regarding engineered systems are constantly rising:
customers ask for high-quality products that are available at little cost
and in a short time frame. As such, all three applications deal with
multi-attribute decision-making, a core goal of visualization [10],
which is challenging because rationality is often complemented with
intuition [17, 36]. We were interested in the experts’ mental pro-
cesses and domain knowledge involved with trading off multiple
criteria during optimization. The gained insights might inform the
design of a visualization that supports the experts in navigating the
design space and applying their expertise for trade-off strategies.

We first provide context for each application. Then, we detail
our realization of the CDM. Explanations applying to all studies are
accumulated. Where relevant, we explicitly differentiate the studies.
Water Turbine Design The turbine converts water flow into electric
energy. An existing turbine is to be optimized regarding its running
behavior given dynamic operating conditions like water throughput.
A typical problem is cavitation on the turbine blades that is caused by
low water pressure and can lead to serious mechanical damage. The
optimization is characterised by repeated geometry changes followed
by an exploration of their effects until the engineer is satisfied. This
process largely relies on the experience of the designer regarding
how the turbine geometry interacts with the water flow.
Power Plant Optimization A thermal power plant burns fuel to
convert the heat energy into electric energy. Changing the fuel type
without further adjustments might lead to fuel remaining unburned.
Operators thus perform an iterative design space exploration to find
an operation mode (e.g., input temperature, valve and damper posi-
tions) that reduces the amount of unburned fuel while maintaining
operational characteristics like nitrogen oxide emissions and exit
temperature. A challenge are coupled physical effects such that elim-
inating one problem might cause an unexpected problem elsewhere.
Electric Drive Design Optimizing electric drives means to specify
their geometry, material, winding patterns, etc. such that their perfor-
mance optimizes given requirements like cost-efficiency, durability,
or construction volume. For this, the operational behaviors of many
different electric drive designs are simulated and genetically opti-
mized. Among the resulting set of solutions, it is the responsibility
of the design engineer to choose the most preferred compromise.
This is challenging, because the number of Pareto-optimal solutions
is often quite large and optimization criteria are typically conflicting.

4.2 Implementation of the CDM Procedure

Following the recommendation by Klein et al. [18], we recorded a
90-minute remote session for each application. A pair of elicitors
shared the interview responsibilities. Participant recruitment, ethics
approval, and questionnaire preparation have already taken place.
1. Incident Selection All three applications required expertise be-
yond the general routine knowledge of a competent individual. The
participants performed multi-criteria optimization on a daily basis
and had ten to fifteen years experience in engineering design. This
qualified them as experts [18]. An obvious but critical prerequisite
was that participants were willing to share material related to the op-
timization during the interview. We completed this stage via e-mail
to spend the interview time on the actual knowledge elicitation.
2. Unstructured Incident Recall As specified in the original
method [18], we requested the participants in all three studies to
verbally provide a brief overview of their application. We did not
interrupt them and focused on understanding the story. The recounts
covered the purpose of the engineered system, the parameters of
a design option, and the approach to arrive at a preferred design.
Going beyond the original CDM method, we also sorted the reported
approaches into a priori, a posteriori, or interactive optimization [29],
depending on when in the optimization process the participants artic-
ulated their preferences. This helped us anticipate the chronology of
the timeline in the next stage. In the water turbine study, the expert
made use of her expertise in each iteration of exploring the effects of
geometry modification. Thus, it belonged to the interactive methods.
3. Timeline Construction + 4. Decision Point Identification
The CDM procedure provides that both stages are performed in
parallel [18]. In all three studies, we reconstructed the process of
deciding for a preferred design option by having the participants
walk us through material related to their applications. This slightly
deviated from the original method, where the timeline construction
is based on the Unstructured Incident Recall. Table 2 shows the
evolution of the water turbine design. It included modeling an
existing turbine (SA 1), analyzing its performance (SA 2), iteratively
modifying the blade geometry and observing its effects (SA 3 + SA
4), and comparing the optimized geometry to the initial one (SA 5).
The decision points are also highlighted. Some were obvious from
verbalization, e.g., ”now we [...] want to start the simulation” or ”I
can now change the operating point”. Others included subjective
assessments of the simulation results, e.g., ”I see that the flow below
the runner is good”. While the CDM recommends to capture both
the sequence and duration of events, we omitted the duration in all
three studies, because the optimizations were not time-critical.



5. Decision Point Probing In line with the CDM method, we asked
for additional details on some decision points. In all studies, we
browsed the sample questions [18] for inspiration (see also Table
1). Given our focus on choosing the most preferred design, we
particularly asked about available options and how an option was
selected, e.g., ”Based on what constraints did you exclude these
options?”. We also probed for visual cues, e.g., ”Where do you see
that in the visualization?”, and prior knowledge, e.g., ”How do you
know what parameter to adjust next?”, that helped the experts gain
insights at each optimization step. For the water turbine study, Table
2 contains the utilized question types for each decision point.
Data Analysis and Output Upon completion of all three interview
sessions, we analyzed our protocols and recordings. The CDM
recommends any form of coding to get started [15]. In the Decision
Point Identification and Decision Point Probing stages, we already
tagged the decision points with their underlying cues, experience,
goals, etc. After all sessions had been completed, we coded the
common needs, approaches, and difficulties that emerged from the
responses of the participants. From the protocols, recordings, and
code set, each interviewer further derived two of the proposed CDM
outputs [18] per session: a situation assessment record describing
the situation as a series of decision points (Table 2) and a decision
requirements table specifying the what, how, why, and aid of the
particular decision points (Table 3). We performed the qualitative
coding [45] and artifact generation independently. We then discussed
the results and jointly refined the codes and artifact representations.

4.3 Practical Considerations

This section presents the methodological issues we observed when
applying the CDM for the purpose of domain characterization. We
illustrate method properties we recognized, domain characteristics
that the method helped elicit, and things that worked (less) well.

Qualitative methods are time-consuming and the CDM is no
exception. The 90-minute sessions with the experts were followed
by a time-intensive data analysis by us as interviewers. Given the
contextual richness of the CDM responses, we consider the efforts
justified. Our impression is that domain problems that are expected
to be cognition-sensitive and could only be described by a series of
low-level tasks benefit most from a characterization using the CDM.

We originally performed another CDM session on a signal filter
optimization. It failed, because the optimization relied on a routine
weighting strategy rather than expertise. We did not realize this until
the Unstructured Incident Recall stage. The participant was also
in an early PhD stage and thus did not have enough expertise. We
eventually decided to discard this session from our collection.

In each of the remaining studies, the Unstructured Incident Recall
stage conveyed an initial idea of the domain problem as intended.
The participants could give an overview of their situations on an
appropriate level of abstraction, which kept the entry barrier for the
subsequent stages low without too many details. Where needed, we
adjusted the level of abstraction by asking clarifying questions.

The Timeline Construction walk-through, in contrast, contained
a lot of meaningful details. Remembering a past situation in detail
is difficult and may provoke a mismatch between user recollections
and their actual actions [44]. While we did not evaluate this, our
participants did not seem to have difficulties with remembering the
past incidents. It might have helped their memory that we, aside from
the original CDM method, encouraged them to bring documentation
material. The water turbine study, in particular, involved technical
details, e.g., ”this is a hand-coded mesh generator”, that sometimes
distracted us from the actual reasoning process.

The CDM centers around an incident from the real-world practice
of experts, which helps avoid the domain threat of mischaracteriz-
ing the problem (cf. the top level of the nested model [33]). An
immediate validation of that threat is naturally incorporated in the
Timeline Construction stage of the CDM procedure: retelling the

constructed timeline to the participant. Deviating from the original
procedure, we skipped this step, thus missing the chance to validate
the constructed timeline and decision points during the interview.
In retrospect, we should have followed the original procedure or
included a post-interview validation of our results.

How much the CDM can teach researchers about a target domain
might depend on the knowledge gap commonly associated with
application-driven visualization research [48]. It is not necessarily
a drawback: interviewers who know little about a domain tend to
probe more. Still, we underestimated the mental effort for decision
point identification and probing without much prior knowledge about
an incident. We found it difficult to reconstruct the timeline and
choose appropriate probes on the fly during the interview session.
Thus, we largely relied on questions that we prepared beforehand
without knowing the incidents in detail. We also put together the
sequence of decision points in retrospective, i.e., upon completion
of all three sessions. While it might help to familiarize with the
particular incident prior to an interview, it remains an open question
how to succeed in spontaneous timeline construction.

Our independent data analysis results showed a broad consensus
regarding the content, especially with respect to those moments of an
observed situation that we considered decision points. This concurs
with Klein et al., who found that inter-observer variability refers
to the significance of a decision point rather than its presence [18].
For a subsequent task abstraction this suggests that disagreements
between visualization researchers might mainly relate to why a task
is performed [5]. Although both interviewers based their analysis
on the same situation assessment example, we found the resulting
records to significantly deviate in their format, i.e. the mapping
between decision points and situation assessments as well as their
granularity. These deviations propagated to the decision require-
ments table, because we transferred the decision points from the
situation assessment record to the table rows. Explicitly agreeing on
a template beforehand might further reduce the risk of discrepancies.

The systematic CDM procedure revealed what types of domain
knowledge and expertise the users carry, e.g., ”the designer knows
about the parameter options and side effects” or ”operators usually
trade 2% to 3% less efficiency for fish-friendliness”. We further
learned what cues steer their attention, e.g., ”co-occurrence of high
oxygen and high temperature” or ”too much curvature in the pres-
sure lines” (compare Table 2, SA 3, Cues). The CDM also made
explicit how the experts’ goals varied with the situation focus, e.g.,
from understanding the status quo over reducing unburned fuel to
maintaining a reasonable cost-benefit ratio. To conclude, by reveal-
ing the role of user expertise in task performance, the CDM has
the potential to effectively foster the appropriateness of a visualiza-
tion [30], i.e., its benefit for supporting a given task.

5 IMPLICATIONS FOR VISUALIZATION RESEARCH

This section reflects on our experiences with the Critical Decision
Method more generically against the background of visualization
research. We also highlight questions that remain unanswered and
how future research can address these open issues.

5.1 Reflections
Explicitly describing tacit knowledge has been an ongoing challenge.
We experienced that the CDM comes quite close by producing arte-
facts that explicitly describe applied expertise, subjective judgments,
and contextual effects. This is particularly relevant for visualizations,
because they are highly dependent on the goal, task, and context of
their usage. The decision points in the situation assessment record
(Table 2) translate to individual contexts that might require differ-
ent visualization designs. The timeline might inspire narratives for
downstream validation of a visualization. For example, in a field
experiment [6], where realism is manipulated by asking participants
to perform specific tasks, the timeline can frame a particular setting.



We experienced that probes like ”what rules did you follow to
make this decision?”, or ”what were your specific goals at this time?”
helped experts concentrate on what they want to do rather than what
a visualization solution might look like. On the other hand, we
identified probes for perceptual cues, i.e., ”what were you seeing?”
or ”what caught your attention?”, as one possible starting point for
deriving design requirements. They revealed characteristics in the
data to be emphasized by a future visualization design. Answers to
the role of (visual) aids in the decision requirements table (Table 3)
also pointed towards potential entry points for visualization support.
Similarly, responses to experience and knowledge probes could
help design interaction techniques. In combination with perceptual
cues, they might also inform the integration of guidance into a
visualization system [7]. We did not use probes for hypotheticals
(e.g., ”what difference would it make if ...?”) ourselves but we expect
them to help anticipate the consequences of different design choices
and raise particular awareness for potential pitfalls.

In prior projects where we did not apply the CDM, we asked
experts about a visualization’s rather general context of use. In
contrast, the comprehensive, yet systematic, procedure of the CDM
helped us stay focused on decision points that notably revealed
expert knowledge. Its output can pave the way for turning incidents
into abstractions and subsequent design choices. More precisely, the
CDM helped us identify and describe critical decision points that
can be used in subsequent layers of the design process.

Rather than a strict recipe, the CDM can be seen as a framework
where implementations can be chosen according to the research
objective. It is open to being combined with dedicated requirements
engineering techniques from visualization research. Up to now,
domain characterization focuses on tasks [33], but less on domain
knowledge elicitation. Complementing existing approaches with the
CDM allows for a complete picture of the target domain, including
both the task-based and the knowledge-based perspectives.

For example, the CDM is one of many ways to implement the
discover stage of the nine-stage framework [44]. It contributes to
preventing pitfalls PF-15 (”ignoring successful aspects”) and PF-17
(”focusing on visualization solutions”). The Unstructured Incident
Recall with passive interviewers provokes PF-16 (”expecting talking
and passive observation alone to work”) at first sight, but additional
think-aloud sweeps of the incident compensate this. As a qualitative
approach, the CDM also seems to provoke PF-5 (”insufficient time
from collaborators”), but it actually makes efficient use of expert
time, leaving the time-consuming part to the researchers.

The CDM builds upon a holistic consideration of probe types like
cues, goals, or knowledge. They convey a comprehensive picture of
cognitive turning points in a domain problem. Although targeted at
decision points in the first place, insights gained through these probe
types also hold the potential to advance existing task descriptions.
Furthermore, in analogy to the multi-level typology of abstract vi-
sualization tasks [5], the what, how, and why classification in the
decision requirements table (Table 3) can inform a visualization-
oriented characterization scheme for decision points. The CDM can
then serve as a systematic data collection method to inform the cre-
ation of a taxonomy of decision tasks. In a similar way, it could help
identify different domain knowledge types and their representations
to inform endeavors in knowledge-assisted visualization.

To conclude, any domain characterization technique will high-
light some aspects of the problem domain and de-emphasize others.
Depending on the research objectives, multiple methods can be
combined to arrive at a concise understanding of a target domain.
In this sense, the CDM is a valuable addition to the portfolio. Its
output in the form of open coding, situation assessment record and
decision requirements table provides a good basis for a) discussions
and reflections among visualization researchers and domain experts
and b) the subsequent definition of abstract tasks, requirements, and
mental models to inform the visualization and interaction design.

5.2 Open Issues and Future Research Paths
This work is a first step towards integrating knowledge elicitation
from cognitive science into visualization research. Further research
is needed to back up our experiences and turn the Critical Decision
Method into an actionable model for visualization researchers. We
raise open issues that can be points of discussion for the workshop.

A first open issue, beyond looking for a connection to abstract
visualization tasks [5] discussed in Section 5.1 and generic reasoning
aspects, is how the CDM can be concretely applied to problem-
driven visualization design. This includes an adaptation of the
terminology (e.g. from incident to analysis), particular probing
of aspects related to analysis (e.g. data quality or correlations)
and visualization (e.g. correlation or visual representations), and
more concrete dedication of each CDM step to the goals of domain
characterization. To arrive at a complete domain characterization
model, the CDM procedure also needs to be linked more tightly to
the subsequent layers of visualization design.

The previous point is also connected to finding the best path to
evaluate the effectiveness of the CDM framework. Among others,
Marai and Möller propose significance and pragmatic adequacy
as evaluation criteria for theoretic contributions to visualization
research [24]. While we hope to have motivated the significance of
the CDM to the visualization field, its usefulness for visualization
practice is yet to be confirmed. Reporting on a complete design
study clarifies whether the knowledge elicited by the CDM actually
helps improve the results of subsequent visualization design layers.
This might also target professional practitioners as opposed to design
studies conducted in visualization research [35]. With a number of
observations collected, we might also be able to identify meaningful
practices that can serve as guidelines on how to design visualizations
that foster the exploitation of human cognition and knowledge for
analytic tasks. Validating practical experiences with the CDM should
also include data analyses with different high-level tasks. This can
even be extended to a set of real-world case studies from different
domains that discuss the CDM procedure step by step and compare
it to alternative approaches. By replicating domain characterizations
from existing design study papers, the previous approaches could
be compared to a CDM domain characterization, highlighting the
differences that stem from using the CDM. We note that this would
mean to compare empirical methodologies rather than techniques,
which is not commonly done in the visualization community.

6 CONCLUSION

Accessible methods on how to conduct domain characterization for
visualization design studies are scarce. We reflected on the Criti-
cal Decision Method (CDM), an interview technique for knowledge
elicitation in cognitive science, as a means to study an application do-
main. We illustrated its systematic procedure, how we implemented
it in three domain characterizations, and what methodological issues
we encountered when applying it in visualization research.

The CDM provides an alternative way of learning about domain
experts and the conditions framing their task performance. Its focus
on real-world incidents aligns well with the required realism in
tasks, data, and users for understanding work practices [20]. The
CDM particularly encourages participants to reflect on their own
cognitive processes. It suggests a novel perspective on domain
characterization by favoring decision points over tasks. We found it
to be a promising way to emphasize cognitive aspects and we hope
to have raised interest in devoting closer attention to knowledge
elicitation in domain characterization. With our work, we aim to
encourage other visualization researchers to use the CDM for their
design studies and share their experience.
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