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This study discusses the elemental compositions and lead isotope ratios of Tang sancai glazes
unearthed from the Huangpu kiln, Huangye kiln and two Tang sancai tomb sites. The various
glazes feature distinct lead isotope ratios and trace element characteristics, which can be
interpreted as evidence for the use of different lead ore deposits and siliceous raw materials
in the glazes. This is a strong indication that lead isotopes combined with trace element anal-
ysis could be used as a viable approach for identifying the provenance of Tang sancai of un-
known origin by linking them to kiln sites, This provenance technique could be significant in
the interpretation of ancient ceramic trade and communication patterns. In this study, the prov-
enance of several Tang sancai glazes of uncertain origin were determined using this method:
some Tang sancai wares unearthed in Xi’an City were produced in the kiln near Luoyang City
and then traded to Xi’an City, providing an idea of ancient Tang sancai ceramic trade routes.
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INTRODUCTION

Tang sancai, a type of multicoloured lead-glazed decorated ceramic ware, was produced during
the Tang dynasty (AD 618-907). Sancai refers to its three dominant glaze colours, green, yellow
and ‘white’ (actually colourless glaze on a white body), but the colours were not limited. Tang
sancai ware, which is famous for its bright and exquisite glazed decoration, is often seen as
the most significant type of low-fired glazed ceramic throughout Chinese ceramic history. Such
wares were not only popular in China, where most Tang sancai wares have been excavated from
Tang tomb sites, but also widely traded along the Maritime Silk Route from China, reaching
many foreign lands: it has been found in present-day Japan, Sri Lanka, Iran, Egypt and Iraq
(Rawson et al. 1989). Four kiln sites that once produced Tang sancai ceramics have been discov-
ered: Huangye kiln (Gongyi City Institute of Cultural Relics 2000) in Henan province; Huangpu
and Liquanfang kilns in Shaanxi province (Shaanxi Provincial Institute of Archaeology 1992,
2008); and Neiqiu kiln (Jia and Jia 1987) in Hebei province. The manufacturing techniques
and provenances of Tang sancai are critical for the investigation of trade and technological de-
velopments in Tang sancai production centres. Previous studies have proven that different
sources of clay raw materials were used in Tang sancai body pastes from these four kiln sites
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and they can be distinguished from one another using trace elemental analysis (Lei and Feng
2002; Lei et al. 2005, 2007; Miao and Lu 2001). However, only limited work has been done
on the glazing techniques and provenances of Tang sancai glazes. The determination of major
elemental compositions has shown that Tang sancai glaze belongs to the PbO-SiO,-Al,0;
system coloured with Fe, Cu and Co (Feng ef al. 2005; Zhang and Zhang 1980). Cui and Lei’s
(2009) pilot study showed that trace levels of Ag, Sb, Ba and Sr could be used to determine the
provenance of Tang sancai yellow-coloured glazes produced at different kiln sites. Cui et al.
(2010) then showed that lead isotope ratios of Tang sancai glazes could distinguish between
Huangpu and Huangye kiln products.

To develop further an understanding of glazing techniques, the provenances of samples of
unknown origin and the sources of raw materials used to make Tang sancai glazes, samples were
investigated in the present study using a combination of major and trace elemental and lead
isotope analysis. To date, the overwhelming majority of Tang sancai ceramic artefacts have been
excavated as burial objects from Chinese Tang tombs, and most of these tomb sites were located
near the two capitals of the Tang dynasty: Chang’an City (present-day Xi’an) in Shaanxi
province and Luoyang City in Henan province (Jiang 2009, 21). Huangpu kiln in Shaanxi
province and Huangye kiln in Henan province were the two main centres for Tang sancai
production (Wood 2011, 203). In this paper, Tang sancai glazes produced in the Huangye and
Huangpu kilns as well as Tang sancai glazes excavated from two Tang tomb sites in Xi’an City
are investigated. The locations of the relevant sites are shown in Figure 1.

SAMPLES

Ten Tang sancai samples were obtained from the Huangpu kiln excavations in Tongchuan City
in Shaanxi province, 10 were obtained from Huangye kiln in Gongyi City in Henan province and
nine were obtained from two Tang tomb sites: the Chengnankeyunzhan Tang tomb (hereinafter
referred to as the Nankezhan (NKZ) tomb) and the Weilaichubanshe (WL) Tang tomb, both
located in Xi’an, Shaanxi province. The two Tang tomb sites are both dated to the Prospering
period (649-756) of the Tang dynasty.

Figure 1  Locations of Tang sancai kiln sites and tomb sites: Nankezhan (NKZ) tomb and Weilaichubanshe (WL) tomb.
[Colour figure can be viewed at wileyonlinelibrary.com]
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METHODS

Chemical analysis

The bulk elemental compositions of glazes were determined using a Cameca SX100 electron
microprobe with four wavelength-dispersive spectrometers located in the Open University,
UK. Small subsamples (around 5 x 5 mm in area) were cut from each ceramic shard and mounted
in cross-section in epoxy resin blocks. Each sample was analysed at least three times at 20kV
accelerating voltage and 50nA incident beam current with a 50 pm defocused electron beam.
The counting time was 30s on the peak (20s for Na) and 20s on the background (10s for
Na). Analytical results were corrected for matrix effects using a commercial ZAF program.
The Corning C reference glass was analysed as a secondary standard. The precisions of all ele-
ments analysed in this study were ideal with a relative standard deviation (RSD) of <5%.

The rare earth element (REE) concentrations of glazes were determined using a laser ablation-
inductively coupled plasma-mass spectrometry (LA-ICP-MS) instrument located in the Analyti-
cal Geochemical Laboratories of the British Geological Survey, Nottingham, UK. The NewWave
UP193FX excimer (193 nm) laser system with a built-in microscope imaging system was used to
ablate the sample. The chamber was flushed by a stream of He gas (0.80 L min "), mixed with an
argon carrier gas (0.85 L min~ "), to an Agilent 7500 series ICP-MS. The laser ablation crater was
set at 70 um in diameter and approximately 30 pm deep; the laser was fired for 45 s on the sample
at 10 Hz and a typical fluence of 2.8 J cm 2. Data were recorded in time-resolved analysis (TRA)
mode. Each glaze sample was measured on three sampling positions in order to calculate the
average for data evaluation.

Calibration of the system was performed using the standard reference glass NIST SRM610;
NIST SRM612 was used for quality control. Calculations were performed using the Iolite (vers.
2.5) software. The known Si contents of glaze samples determined by electron probe microanal-
ysis-wavelength dispersive spectrometry (EPMA-WDS) were used as an internal standard. Cal-
ibration and quality control were carried out by analyzing glass standard samples with each
glaze sample block. The calculated RSDs of the replicate analyses of NIST SRM612 showed that
accuracy and precision of the measurements were good and within expected values (2-5 RSD%
for a majority of elements).

Lead isotope analysis

Sample preparation For Pb isotope analysis of the glazes, the first step was to remove the glaze
layer cleanly from the ceramic body. A diamond-edged dental saw was used; this leaves some
body paste still attached to the glaze. In the next step, a tungsten carbide dental burr (DFS,
Riedenber, Germany) was used to grind away the remaining ceramic body paste so as to leave
a clean sample of glaze. Approximately 10mg of each glaze sample were placed in an
acid-leached Teflon beaker and dissolved in 1-2 ml of Teflon distilled (TD) HNO;5 and 29 M
HF. This was then converted to bromide form and passed through a Dowex AG1 anion resin
column to collect the Pb.

Isotope analysis Lead isotope analysis of these samples was conducted using a Nu Instuments
Nu Plasma, MC-ICP-MS. Before analysis, each sample was spiked with a thallium (TI) solution,
which was added to allow for the correction of instrument-induced mass bias. Samples were then
introduced into the instrument via an ESI 50 plmin~' PFA micro-concentric nebulizer attached to
a de-solvating unit (Nu Instruments DSN 100). Faraday collectors were configured to allow for
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the simultaneous detection of the following ion beams: 204pp, 206pp, 207pp and 2°8Pb. In addition,
203T] and 2°T1 (for mass bias correction) and *°’Hg to allow for correction of the ***Hg
interferant on 2**Pb were set up for detection. Each individual acquisition consisted of 75 ratios,
collected at 5-s integrations, following a 60-s defocused baseline.

The precision and accuracy of the method were assessed through repeat analysis of an NBS
981 Pb reference solution (also spiked with TI). The averages obtained for each of the mass
bias-corrected NBS 981 ratios were normalized to the known values for this reference (Pb
double-spike data were taken from Thirlwall 2002: 2°°Pb/?**P =16.9417, 2°’Pb/***Pb = 15.4996,
208pp294ph = 36.724, 2°7Pb/’°°Pb=0.91488 and 2°®Pb/?°°Pb=2.1677). Internal uncertainties
(the reproducibility of the measured ratio) were propagated relative to the external uncertainty
(i.e., the excess variance associated with the reproducibility of the NBS 981 reference material
analysed during the session).

RESULTS AND DISCUSSION

Major chemical compositions of Tang sancai glazes

The major and minor chemical compositions of Tang sancai glaze and body samples unearthed
from the Huangye and Huangpu kilns and two Tang tomb sites in Xi’an City are shown in
Table 1.

Colorants of Tang sancai glazes

The colours of Tang sancai glaze samples in this study were limited to green, brown and ‘white’.
As can be seen in Table 1, the green glaze samples had the highest copper oxide (CuO) content,
ranging from 1.22 to 3.70 wt.%, showing that CuO is the colouring agent. In addition, several
green glazes of Huangpu kiln Tang sancai (HPK-1, HPK-2, HPK-5, HPK-10) had a relatively
high tin oxide (SnO,) content > 0.2%, showing that they were probably made by adding a small
amount of a copper-tin compound to the glaze, and the most likely source for it would have been
bronze. Most of the brown glazes had a relatively high iron oxide (FeO) content ranging from
1.09 to 5.35 wt.%. These brown glazes could also be divided into paler and darker brown varia-
tions. The paler brown ones had a relatively low CuO content (0.06-0.78 wt.%), whereas the
darker brown ones (HYK-9, NKZ-1, NKZ-2) had relatively high CuO contents: 1.06, 1.09 and
1.19 wt.% respectively. This shows that FeO was used as a colouring agent in the pale brown
glazes, while the darker brown colour was probably caused by a combination of CuO and
FeO. The colourless (‘white’) transparent part of the glaze contained the lowest levels of FeO
and CuO. Archaeological reports on Huangye and Huangpu kilns site excavations demonstrated
that white kaolin was the main clay used for Tang sancai wares, mixed with smaller amounts of
loessic clay (Shaanxi Provincial Institute of Archaeology 1992, 15; Sun 2002, 3, 10). The
apparently ‘white’ colour of the sancai glaze is the colour of the high aluminium oxide
(Al,O3) (about 30%) white kaolin clay body visible beneath the glaze. The clay was further
characterized by low FeO levels of < 2.5% and significant levels of titanium dioxide (TiO,) of
about 1% (Rawson et al. 1989). In some cases, there were intermediate areas of glaze with
overlaps of different glaze colours: Tang sancai wares were often decorated by two or three glaze
colours and these tended to run and mix together during the process of firing.

The CuO used was sourced either from processed copper ores, such as chalcopyrite and
chalcocite, or from bronze. The FeO used might either have come from iron ores, such as



Glazing techniques and provenances of Tang sancai glazes

(sanunuo)))
L9°86 Pq Se0 70 STl €Sl 1€°0 0 LSO 81°0 LS'6 SI'lvy 88'Cy us2ID
6786 Pq v1'0 €0 90°C 8L°0 0€0 00 6v'0 LT°0 €8 N4 9Lty umolg ¢3dH
9¢°86 Pq 8C°0 870 88°0 o'l 0€0 'l 050 61°0 IL°L 88'LE Yo'LY usa1n
1T°66 Pq 800 LEO 09°1 LY0 €€'0 10°1 €50 10 65'8 Sv'6e ¥9°9% umoirg [-X1dH
aoutaod 1xuvvys A1) uvnyd3uoy ‘ujry ndsuvnpy
98°L6 ¥0°0 Pq 91°0 €90 ev'e €€°0 Sv'o 9¢°0 (4] 889 ov'LE 06°LY uoa1H
S6°L6 700 Pq 800 ge's 900 SI'0 90 €0 1o £e'e '8¢ L6y umorg 8I3AH
06'L6 Pq Pq 710 1222 o LT0 791 00 S0 vL'S L8°9¢ €L'8Y umolg
X1 MO[[A
0L'L6 Pq Pq 170 ore 0Ll S0 A 9¢'0 81°0 Sy ¥8°9¢ LLOS pue usa1p €IAH
§9'86 Pq Pq €0 (4! 6¢°C LSO 9¢C €90 o '8 8L’y 8807 uaaIH
0°66 Pq oro LEO 6S'C 00 160 [4N! 18°0 yT0 86 SIey €00y umorgq I1-3AH
XIW MO[[oK
LY'86 Pq Pq €ro ¥C0 100 €ro 0c0 geo0 €00 8y’ e 8S°19 pue AMYM
0986 Pq €00 1€°0 601 690 120 §6°0 960 81°0 6°'S LO'TE LS'LS umorg 0I-XAH
01'66 €00 Pq 81°0 (23! 90°1 0€0 L6'1 0s0 620 SL'L 09°1¢ 09°¢s umoliq yreq 6>AH
£1'86 Pq Pq €00 8C°0 €ro 600 LSO LT0 Y10 LTS 1T9¢ 1489 AMUM
§T'86 Pq Pq 0c0 L8°0 90°¢ 9C'0 9¢’1 wo 90 So'L ¥T0e [N 4Y LEERY)
86 Pq Pq 910 (44 8¥°0 wo ¥0'C 8¢°0 1T°0 0c9 9¢°0¢ Se'¢s umoig 83AH
XIW UMOIq
86°86 Pq Pq €ro €9°C 171 ¥T0 [4N! 70 10 Y6’ olee 0S'vS pue usaIf)
75°86 Pq Pq ¥0°0 e 690 610 660 9¢'0 10 gce 6v'ee L6°GS umorg LAH
LE'66 00 Pq 0c0 0€0 Lo 910 4N SI'T €0 LL'8 LS'8E 00°8¥ AMUM
16'86 00 Pq Sro ce0 1c¢ €r'o LET 70 €0 or's 68°9¢ LIS uoa1H S-MAH
GS'L6 Pq Pq €C0 00°¢ 6¢0 90 80°C €50 Se0 VL'L 18°0¢ 96°IS umolrg
16'86 Pq Pq ¥T0 ¥6'1 €LT €€°0 S6'1 8¥°0 8C°0 VL'L 80°CE YI'LS UaaIdH
8¢'86 Pq Pq €00 0 €ro cro cl 1€°0 LT°0 3B 6£v¢E 9¢'9¢ AMUM CMAH
$8'86 Pq Pq 010 8C°0 cro SI'0 8¥°0 8¥°0 81°0 LE9 8'8¢ L8'IS AMUM
S1'66 Pq Pq 170 6£0 S0C v1'0 §9°0 Ly0 o LT9 LL9E 81°¢CS sy I-AH
2outaosd uvuapy ‘A1) 148u0L) ‘ujry aA3uvnyy
mar OUp ‘oug ‘ou 024 on) 05N or) oy O“PN oy ‘ors 04d 4nojos az1H a1dung

(9% 1m) sajdwps 1oups 3uny fo suoyisoduiod poruayd 1olbpy

JRSICLAN



J. Y. Shen et al.

(sonuyuo)y)

001 80 LO'T L9'1 9L°0 96°0 €0C EV'LT 9T°¢9 Apog v2dH
001 16°0 €e'l 8’1 €Tl §SC 1224 1T0e S0C9 Apog € dH
001 LT 9L'0 LT 260 9I'c 80 e 1109 Apog ¢3dH
001 801 6C'1 L60 el 68°0 861 (9414 £V v9 Apog [-2ldH
Apoq onuw.120 ujry nd3uvngy
e ‘o1 024 O3\ orD o O°PN fov ‘o 4poq ormun.12) a1dung
Iv'L6 Pq Pq 90 6£°0 600 €0 050 080 81°0 8T8 6v' 1y 80°Sy AMYM
S9'L6 Pq Pq 170 9s°¢ 610 8C°0 170 €L0 00 60'8 86°C¢ 00°8¥ umolg 7IM
9T'L6 Pq Pq 0c0 €70 'l Yo wo €e0 (N0 or’¢ L8'LT 8C'19 s3Iy €IM
0586 Pq Pq 1T0 €Ce 90°0 €ro LT0 6v°0 60°0 8¢V LL'6T L8°09 umolrg M
8€°L6 Pq Pq €0 erl 1el €90 161 LSO 0ro 6S°S §€9¢ 88'6S U213 IRy 1M
2outao4d 1xuvvy§ 1) uv,1y ‘quio} (dysuvgnydvjiopM) TM
CL'66 Pq SO0 810 voe 1o Y10 YTl LT0 90°0 0Ly ¥'Se YEr9 umorg V23N
XTW MO[[QA
$9°66 Pq Pq 90 ¥8'C S6'0 61°0 YTl Lo 81°0 ¢ [ SY'8¢ pue usaIf) 7N
0686 Pq 800 ¥T0 8L'E 611 o 68°0 €50 910 6L°S 00Ce wvs umolq yredq
68°86 Pq Pq (430 (454 69°¢ LT0 1.0 €90 610 6¢9 16'Ce 9T'IS uaaIH TZIAN
LTL6 Pq Pq 81°0 cre 60'1 90 L60 9¢°0 120 019 6£v¢E 6£°0S umoiq jredq
86°86 Pq Pq §co £5°0 oL¢ 8¢€°0 060 650 610 1L 8L'SE S8'81 U99IH I-Z3IN
2outao4d 1xuvvy§ A1) uv 1y ‘quio} (uvyzayuvN) 7N
XIW UMOIq
80°L6 Pq 6%°0 0€0 8¢l €6C 8C°0 ST 18°0 910 LT9 wrLe 6l°LY pue usa1y 01->dH
68°L6 00 90°0 LT0 Is¢ 170 9¢'0 S90] LSO 800 Se9 €8°6¢ 81°0¢ umolg 62IdH
6v°L6 Pq Pq €ro €0 €0'¢ 81°0 9¢0 LT0 60°0 Y0°S co'6¢ 00°6% uoa1H 8-dH
99°L6 Pq Pq o 9L°0 10C LEO 81 860 Sro 8Ty L6°0Y 'Ly U391H L-dH
91'86 Pq Pq 620 080 o4 9¢°0 (430 8¢°0 0ro 99 0’y 6L9% sy 9-3dH
96'66 Pq 00 LEO €&y Y0 Yo 0€0 €0 S00 819 SI've (423 umolrg
5°66 Pq 8C°0 170 60 LS'T €0 890 8¢°0 60°0 ¢8'9 cree L8'CS U915 S-AdH
1€°66 00 LO0 o 8L'E 170 €r'o 810 10 €00 wv LE6T LT'19 umolg ¥dH
186 Pq Pq 6v°0 (184 S1o 70 ce0 ¢80 91'0 9¢°01 89'1¥ SY'6e umorg €-1dH
mar OUp ‘oug ‘ou 024 ony 05N or) oy ODN oy ‘ot 04d 4nojos az01H a1dung
(panuijuo)) [ dquL



Glazing techniques and provenances of Tang sancai glazes

‘95007 O} PIZI[EULIOU U 9ARY SAIPOq 1wouns Sue], Jo suonisodwod [esnuayd Jofew Y],

“S)TWI] UOTI0RJOP Yl MOJdg 'P'q

001 960 I'1 981 0T [4N4 10T [N 08°6S Apog 61AH
001 880 0’1 0Tl £€9°0 68’1 S9°0 YT 0¢ LY'€9 Apog 8-MAH
001 140! 9T'1 601 290 €81 L8°0 L8'6C 9 Apog LAH
00T 10°1 1L°0 €81 S0 10°C €50 65°0¢ L8T9 Apog S-JAH
001 801 0g'l 801 90 181 £€8°0 €T0¢ SONSY) Apog CTAAH
001 68°0 &'l 9L'1 80 €61 (4! 1L0€ Y119 Apog [-XIAH
Apoq o1up.120 ujry adA3uvny

00T 60 0T'1 w1 6C'1 801 el 6S°1¢ LT'19 Apog 9-dH
001 L6°0 6L0 801 611 LT'T 611 68'6C 9L°€9 Apog ¢-3dH
o ‘ou 024 O3 oD oy O°PN fov ‘o1s Apoq o1un.i2) a1dung

(ponuguo)) | 9lqel,



8 J. Y. Shen et al.

haematite and goethite, or iron-rich ‘red earths’. The materials used to colour such glazes were
transformed into very fine powders by crushing, powdering, grinding and sifting. A small amount
of the finely powdered colorant was then mixed with prepared lead compound or a mixture of
silica and lead compound to make the final glaze suspension (Watson 2014, 29).

Glazing technique of Tang sancai lead glaze

All the Tang sancai glaze samples contained high lead levels of between 39.45 and 64.34 wt.%
and an average alkaline content (Na,O +K,0) of only 0.67 wt.%, as shown in Table 1. No
significant differences in the major chemical compositions of glaze samples between the two ce-
ramic production sites could be observed. There were several primary methods by which the
transparent high lead glazes could be produced. The first involved a lead compound such as black
litharge (PbO), galena (PbS), red lead (Pb;O,) or white lead (2PbCO3-Pb (OH),) being applied
by itself to the surface of the pottery body as a suspension in water. In the second method, a
mixture of lead oxide (PbO) with silica in the form of quartz sand, ground quartz, chert pebbles
or clay was applied. A third method was characterized by pre-fritting the lead compound and
silica together and then grinding the frit to power, which was then applied. Within any of these
methods, a small amount of clay might be added to the glaze suspension (Tite et al. 1998).

Examining interactions between the ceramic glaze and body by chemical analysis of glaze
and body can provide evidence for the glazing techniques used (Tite ef al. 1998; Walton and Tite
2010). If the lead compound is applied directly onto the surface of the ceramic body, the lead
diffuses into the body during firing and reacts with the body to form a glaze. In this way, the sil-
ica and alumina content of the glaze composition is actually drawn from the body. This suggests
that if the PbO contents and any intentionally added colorant such as CuO are subtracted from the
glaze composition, which is then renormalized to 100%, the adjusted glaze composition should
match that of the body. If a mixture of PbO and silica is applied, the lead and silica react together
with the body during the glazing process. In this process, some components of the body such as
aluminium, calcium, iron and the alkalis diffuse into the glaze. This should result in the silica
contents of the renormalized glaze being higher than that of the body, while the alumina and
other oxide contents should be lower. If the lead compound is mixed with the body clay to make
the glaze suspension, then the adjusted glaze composition would again tend to match that of the
body (Walton and Tite 2010).

In order to consider in more detail the likely glazing techniques, the major chemical composi-
tions of the bodies of six Tang sancai fragments from the Huangpu and Huangye kilns were
analysed using a JEOL JXA-8200 electron microprobe, the results are also given in Table 1.
The plots of recalculated silica and alumina contents in the glazes versus their corresponding
bodies are shown in Figure 2. All the recalculated silica contents of the Tang sancai glazes from
both the Huangpu and Huangye kilns were higher than those of their ceramic bodies, while the
recalculated alumina contents of glazes were lower than those of their bodies. This indicates that
a mixture of lead compound with silica was used to make the Tang sancai glazes at both the
Huangye and Huangpu kilns.

Furthermore, as seen in Table 1, the glazes produced in the Huangpu and Huangye kilns both
had a significant amount of alumina, averaging 6.84 and 6.18 wt.% respectively. While a small
volume of alumina probably diffused into the glaze from the ceramic body, the high alumina
contents found in these Tang sancai glazes implies that it is highly likely to have been added
to the glaze recipe deliberately in the form of clay. A similar glaze recipe was thus likely to have
been used at both kilns: a lead—silica (quartz sand or quartz)-clay mixture. The similarity
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Figure 2 Plots of glaze compositions recalculated by removing PbO and CuO contents versus the corresponding body
compositions of Tang sancai from the Huangpu and Huangye kilns. [Colour figure can be viewed at wileyonlinelibrary.
com]

between glazing techniques used to produce Tang sancai glazes at the two kilns suggests that
some communication occurred between them; another possibility is that the potters in each re-
gion developed the application of lead—silica—clay mixture independently based on an earlier
lead-glazing technique.

Comparison and provenance of Tang sancai glazes by trace elemental compositions

The trace element compositions of Tang sancai glazes discussed here are shown in Table 2.
Based on Goldschmidt’s rule in geochemistry (Goldschmidt 1937), all the elements in the peri-
odic table can be divided into four categories: lithophile elements, which concentrate in silicate
phases; chalcophile/sulfophile elements, which concentrate in sulfides; siderophile elements,
which concentrate in metallic iron; and atmophile elements, which naturally occur as gaseous el-
ements such as nitrogen and the inert gases. Elements that belong to the same category enrich
each other during the process of crust formation, smelting, ore-forming and other geochemical
processes; thus, they have similar geochemical characteristics. Based on this, all the trace ele-
ments in the Tang sancai glazes measured in this study were divided into the following three
categories:

 Lithophile elements: Li, B, Ti, V, Cr, Rb, Sr, Y, Zr, Nb, Cs, Ba, Hf, Th, U and REE elements.
* Chalcophile elements (sulfophile): Zn, As, Sn and Sb.

* Siderophile elements: Co and Ni (Ti can also be associated with Fe).

The Tang sancai lead glazes made in the Huangpu and Huangye kilns were made with essen-
tially four components: the two siliceous matrices (quartz sand/ground quartz and clay), the flux
(lead compound) and the colorants (copper ore, bronze, ochre or other iron-bearing minerals).
Therefore, in light of Goldschmidt’s rule, the contents of lithophile trace elements in Tang sancai
glazes were introduced mainly with the two siliceous matrices of the glaze recipe, and the
contents of chalcophile trace elements were mainly introduced by the lead flux and colorants.
The trace elements of the glaze samples thus could be divided into subgroups to allow separate
discussion of the siliceous raw materials and the lead compound flux.

The chalcophile elements, Zn, As, Sn and Sb, are common accompanying elements in lead ore
deposits. In addition, the copper- and iron-bearing colorant components in green- and brown-
coloured glazes might also contribute certain concentrations of Zn, As, Sn and Sb. The primary
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question to be asked is therefore whether the lead compound or the colorant component is the one
making the dominant contribution of Zn, As, Sn and Sb to the glaze. As mentioned previously,
FeO was used as a colorant for the paler brown glaze, while the dark brown colour is more likely
to have been caused by the presence of CuO and FeO together; the green colour was caused by
CuO. The absolute amounts of Zn (Table 2) and the Zn/As ratios (Fig. 3, a) in the glazes show
that almost all green- and dark brown-coloured glazes have higher Zn concentrations than those
of the paler brown glazes. In addition, trace element concentrations in both green and brown
glazes in samples HYK-11, HPK-2, HPK-5 and NKZ-2 show that the green colour has higher
Zn concentrations than detected in brown glaze. These results indicate that, for the green- and
dark brown-coloured glazes, the Zn concentrations were mainly contributed by the copper-
bearing colorant component, which may be copper ore deposits with impurities of zinc, or
bronze. The Huangpu kiln glazes have much higher amounts of Sn (Table 2 and Fig. 3, b) than
that of Huangye kiln glazes and the glazes excavated from the two Tang tomb sites. Most green
glazes of Huangpu kiln have a high Sn amount > 1000 ppm, indicating that the high Sn content
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Figure 3  Plots of trace elements in Tang sancai glaze samples from the Huangye (HYK) and Huangpu (HPK) kilns and
two Tang tombs: Nankezhan (NKZ) tomb and Weilaichubanshe (WL) tomb. HYK green for Huangye kiln green glazes;
HYK brown for Huangye kiln brown glazes; HPK green for Huangpu kiln green glazes; HPK brown for Huangpu kiln
brown glazes; NKZ green for NKZ tomb green glazes; NKZ brown for NKZ tomb brown glazes;, WL green for WL tomb
green glazes; and WL brown for WL tomb brown glazes. [Colour figure can be viewed at wileyonlinelibrary.com]
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could derive from the copper-tin compound used as a colorant. This suggests that the sources of
copper-rich materials used in Huangpu kiln green glazes are different from that used in
Huangye kiln glazes and the glazes excavated from the two Tang tomb sites.

For the other Huangpu kiln glazes, their Sn content would mainly be influenced by the lead
compound. No distinctions in As and Sb concentrations could be identified amongst different
glaze colours; differently coloured areas of the same glaze sample had similar concentrations
of As and Sb. This indicates that As and Sb concentrations were also mainly influenced by the
lead compound. As seen by the Sn/Sb ratios of Tang sancai lead glazes in Figure 3(b), Huangpu
kiln glazes have higher concentrations of Sb and Sn than the Huangye kiln glazes and the glazes
excavated from the two Tang tomb sites, yet no distinction in terms of PbO concentrations in
glazes could be found between glazes from the two kilns or the two Tang tomb sites. The lead
compound used in lead glaze production is extracted and refined from lead sulphide minerals
or PbO minerals. Therefore, when compared with the source of lead compound used in Huangye
kiln lead glazes, those used to make the Huangpu kiln glazes had higher concentrations of Sb and
Sn impurities. In addition, relatively low and similar concentrations of Sb and Sn found in glazes
from the NKZ and WL tombs as well as the Huangye kiln suggest that a lead ore deposit with
similar geological characteristics was used to produce all these lead glazes.

The concentrations of lithophile trace elements in a lead glaze mainly derive from its siliceous
matrices (quartz/sand and clay). It has been proven that some trace elements have a potential to
characterize the siliceous raw materials used for making glasses and ceramic body at different
production sites, such as Zr-Ti-Cr-La (Henderson et al. 2016; Shortland ef al. 2007) and Zr-Ba
(Oikonomou et al. 2016). The elements Zr, Ti, Cr and La are generally related to various minerals
such as zircon (Zr), rutile (Ti), ilmenite (Ti), monazite (La), chromite (Cr) and barite (Ba). Cs can
substitute for K in the mica and K-feldspar. Thus, their concentrations vary in a way that reflects
the local geology of the sand and clay precursors used to make the glaze (Oikonomou et al.
2016). The ratio plots of Cr/La versus 1000 Zt/Ti and a plot of Cs versus Ba in Tang sancai glaze
samples are shown in Figures 3(c, d). In Figure 3(c) the Huangpu kiln glazes can be seen to
group separately from the Huangye kiln glazes based on relatively higher Cr/La ratios. A more
obvious distinction between the lead glazes made in these two kilns can be found in the Cs/Ba
ratios (Fig. 3, d). This indicates that the lead glazes from the Huangpu and Huangye kilns were
made from different siliceous raw material sources (probably local sand and clay) and that the
glazes can thus be discriminated from each other by means of the trace element ratio plots
Cr/La versus 1000 Zr/Ti and Cs versus Ba. The glazes of the Tang sancai fragments excavated
from the two Tang tomb sites group within the same plot area as the Huangye kiln glaze samples
(Figs 3, c, d). This indicates that the siliceous raw materials used to produce these glazes might
originate from the same geological region.

Both the lead ore deposits and siliceous raw materials used to make the Tang sancai glaze
samples excavated from the NKZ and WL Tang tombs in Xi’an City have similar geological
characteristics to those used in Huangye kiln glazes. This is a strong indication that the Tang
sancai wares found in the NKZ and WL Tang tombs were made in Huangye kiln near Luoyang
City and that they were traded to Xi’an City.

As indicated by the discussion above, trace element analysis of glazes can potentially be used
to associate Chinese Tang sancai wares of unknown origin with their production centres. How-
ever, note that as the lead glaze is composed of three parts, the siliceous raw material, the lead
compound and colorant, although the contents of lithophile elements in the glaze are mainly de-
rived from the siliceous raw material, a small proportion may derive from the lead compound. In
addition, a small part of the trace element composition of the glaze may have diffused from the
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clay body, although in most cases the same clay source would have been used in the glaze and its
ceramic body. Thus, the multiple components of glaze may weaken the trace element distinctions
between the siliceous raw materials with different geographical and geological sources used in
different production sites. Nevertheless, trace element analysis can still be used as a complemen-
tary method to uncover the provenance and sources of raw materials used in glaze production in
some cases, based on this study.

Comparison and provenance of Tang sancai glazes using lead isotope ratios

The lead isotope ratios of Tang sancai lead glaze samples determined in this study are shown in
the plots of 2°*Pb/?°°Pb versus °’Pb/>°°Pb and 2°°Pb/***Pb versus 2°’Pb/?°°Pb in Figure 4. The
lead isotope ratios in different ore deposits have distinctive characteristics depending on their
geological age and geological region in which each was produced; this natural variation in lead
isotope ratios has the potential to identify the provenance of archaeological materials (Wolf ef al.
2003). It is evident that the Tang sancai glazes produced in the Huangpu and Huangye Kilns can
be grouped separately based on their different lead isotope ratios. This indicates that different ore
sources were exploited by each kiln (Figs 4, a, b). The lead isotope ratios of the Tang sancai

0.890 - (a) W Huangpu kiln 0.890 - (b) B Huangpu kiln
@ Huangye kiln # Huangye kiln
0.885 - - &Y 0885 [y &Y
NKZ Tang tomb NKZ Tang tomb
2 0.880 - | X WL Tang tomb 2 0.880 - (] X WL Tang tomb
o ©o
£ 0875 - S 0.875 -
3 3
] 0.870 - ] 0.870 -
0.865 - % 0.865 - &
0.860 T T ) 0.860 T T T \
2.10 2.15 2.20 2.25 174 176 17.8 180 18.2
208pb/206pb ZOGPb/204Pb
C d i
0.890 - ( ) W Huangpu kiln 0.890 - ( ) W Huangpu kiln
0.885 - ;
0.885 O & Huangye kiln i @ Huangye kiln
| 0.880 - [ ]
o 0.880 n . o OHuangpu kiln by
2 OHuangpu kiln by a | )
2 0.875 : g 0875 Cui et al.(2010)
g Cui et al.(2010) o “H ki b
2 0.870 - X Huangye kiln by ﬁ 0.870 Cu'antgyle 2I0|10y
5 Cui et al.(2010) S ui et al.(2010)
0.865 - %K 0.865 - %K
0.860 - 0.860 -
0.855 T T ) 0.855 T T )
2.10 2.15 2.20 2.25 17.0 17.5 18.0 18.5
208Pb/206pb 206Pb/204pb

Figure 4  Lead isotopic ratios for Tang sancai lead glazes from the Huangpu and Huangye kilns and the Nankezhan
(NKZ) and Weilaichubanshe (WL) tombs in this study, and for Tang sancai lead glazes made in the Huangpu and
Huangye kilns taken from Cui et al. (2010). [Colour figure can be viewed at wileyonlinelibrary.com]
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glazes analysed in this study were in accordance with those analysed by Cui et al. (2010), which
were plotted together with the data analysed in this study, in Figures 4(c, d).

As seen in Figures 4(c, d), the lead isotope ratios of the glaze samples made in Huangye kiln
were distributed in a very narrow range, which suggests that a single lead ore source or different
ore sources with similar geochemical characteristics were used for glaze-making. This suggests
that the Huangye kiln potters may have exploited lead ore deposits from a restricted geological
area. For the Huangpu kiln glaze samples, a possible mixing line of lead isotope ratios can be
seen in Figures 4(c, d). There are two possible reasons for this mixing line: a variation within
the same lead ore source used or that more than one lead source with different Pb isotope ratios
was used for Huangpu kiln glaze-making. However, this is only tentative evidence for the mixing
of lead sources for Huangpu kiln glazes because to date no helpful lead isotopic ratios of lead ore
deposits in Shaanxi and Henan provinces, where the Huangpu kiln and Huangye kilns are located
respectively, have been published. Further research is necessary to provide more rigorous
evidence.

The Huangpu and Huangye kilns were the most productive and significant production centres
for Tang sancai wares in China. Although the exact lead ore sources used to produce Tang sancai
glazes have not been determined, it is obvious that different lead ore sources were used in the two
kilns, as demonstrated by their distinct lead isotope ratios. This is a strong indication that lead
isotopic ratios of Tang sancai glazes might be a potential tool to determine the provenance of
Tang sancai wares excavated from archaeological tombs and sites.

The lead isotope ratios of Tang sancai glaze samples excavated from the NKZ and WL tombs
are also plotted in Figures 4(a, b). All five glaze samples were distributed within the Huangye
kiln glaze group, indicating that the tomb glazes were probably made using the same lead ore
source as used to make Huangye kiln glazes and probably made in the Huangye kiln. This
indication is well supported by the trace element characteristics of the Tang sancai lead glazes
discussed above.

Trade of Tang sancai wares produced in the Huangye and Huangpu kilns

Until now, most tombs that have produced Tang sancai wares were distributed across two areas:
Chang’an (present-day Xi’an City), which was the capital of the Tang dynasty, and Luoyang
City, which served as the second capital during the Tang period (Jiang 2009, 21). Huangpu kiln,
located near Xi’an, and Huangye kiln, located near Luoyang, were two important Tang sancai
ware production centres that supplied a large amount of sancai wares not only to Xi’an and
Luoyang but also to other places in ancient China and the wider world (Wood 2011, 203). Based
on the trace element analysis and lead isotope ratios of Tang sancai glazes discussed above, all
the Tang sancai samples excavated in the WL and NKZ tombs have a high likelihood of having
been produced by Huangye kiln near Luoyang City rather than in the local Huangpu kiln near
Xi’an. This shows that some Tang sancai wares produced in Huangye kiln were traded to Xi’an.
This deduction can be supported by previous studies (Lei, 2007; Lei ef al., 2007). Based on the
combination of the archaeological studies with trace element analysis of Tang sancai bodies, the
results suggest that although the studied Tang tombs of Li Fu (AD 675), Li Hui (689) and Kang
Wentong (697) were all located close to Xi’an, the body samples of Tang sancai, both from the
tombs and from Huangye kiln, have similar compositions, suggesting they were made in Henan
at the Huangye kiln and were traded to Xi’an. Besides, they also found that for Tang sancai
wares unearthed in the Tang tombs in Xi’an dating back to before 705 when Empress Wu Zetian
gave up the throne, almost all Tang sancai wares were made in Huangye kiln. However, for the
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Tang sancai wares from the Xi’an tombs that can be dated to after 705, examples made in
Huangye and Huangpu kilns have been identified.

Results from excavations have shown that the Huangye kiln started to produce Tang sancai wares
in the early Tang period and this production was sustained throughout the whole Tang period. The
Huangpu kiln only began to produce the wares from the Prospering Tang period (649-756). No
evidence found so far shows that the Tang sancai made in Huangpu kiln near Xi’an was ever traded
to Luoyang City. However, as the above discussion shows, some evidence implies that the Tang
sancai made in Huangye kiln near Luoyang City might have been traded to Xi’an. This suggests that,
during the early Tang period, Huangye kiln was the most important Tang sancai production centre.
After 705, when Empress Wu Zetian gave up the throne, the political and economic centres shifted
from Luoyang to Xi’an, which led to the development of Huangpu kiln near Xi’an. The Huangpu
kiln then evolved gradually into another significant Tang sancai production centre.

CONCLUSIONS

By comparing adjusted glaze compositions with their respective body compositions, the same lead
glazing technique was identified as having been applied to the Tang sancai glazes produced in both
Huangpu and Huangye kilns, being based on a mixture of lead-silica (quartz sand or quartz) and clay.

The Tang sancai lead glazes produced in Huangpu and Huangye kilns could be distinguished
from each other by means of their distinct trace element compositions and lead isotope ratios.
The sources of lead ore deposits used in the glazes from the two kilns were different according
to their lead isotope ratios and concentrations of the chalcophile trace elements, Sn and Sb.
The siliceous raw materials used to make Tang sancai glazes from these two kilns could be
discriminated from each other by the ratio plots Cr/La versus 1000 Zt/Ti and Cs versus Ba.

Lead isotope comparisons combined with trace elemental analysis of glazes could be a helpful
method for determining a provenance for Tang sancai artefacts found in a wide range of
archaeological contexts and linked to the two kiln sites investigated here. Such research will also
highlight kiln products not made in Huangpu and Huangye kilns.

Investigation of the provenance of Tang sancai glazes of uncertain origin found in Xi’an were
shown to have been produced in Huangye kiln near Luoyang City and then traded to Xi’an.
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Table S1. Lead isotope ratios of Tang sancai lead glaze samples



