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Biolog phenotype microarrays (PMs) enable simultaneous, high throughput analysis of cell

cultures in di®erent environments. The output is high-density time-course data showing redox

curves (approximating growth) for each experimental condition. The software provided with

the Omnilog incubator/reader summarizes each time-course as a single datum, so most of the
information is not used. However, the time courses can be extremely varied and often contain

detailed qualitative (shape of curve) and quantitative (values of parameters) information. We

present a novel, Bayesian approach to estimating parameters from Phenotype Microarray data,

¯tting growth models using Markov Chain Monte Carlo (MCMC) methods to enable high
throughput estimation of important information, including length of lag phase, maximal

\growth" rate and maximum output. We ¯nd that the Baranyi model for microbial growth is

useful for ¯tting Biolog data. Moreover, we introduce a new growth model that allows for

diauxic growth with a lag phase, which is particularly useful where Phenotype Microarrays have
been applied to cells grown in complex mixtures of substrates, for example in industrial or
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biotechnological applications, such as worts in brewing. Our approach provides more useful
information from Biolog data than existing, competing methods, and allows for valuable

comparisons between data series and across di®erent models.

Keywords: Biolog; growthmodel; diauxic; lag phase; Bayesian statistics; phenotypemicroarrays.

1. Background

Biolog Phenotype Microarrays (PMs) are unique patented commercial products for

assessment of cellular respiration of prokaryotic and eukaryotic cells in a wide range

of conditions, including metabolism using di®erent carbon, nitrogen, phosphorous

and sulphur sources, as well as osmotic, pH, antimicrobial and metal ion stresses. The

PMs work by the reduction of a colorless tetrazolium dye in the growth media to a

purple formazan by electrons from the NADH produced during cellular respiration.1

For microbial PMs, 1920 di®erent phenotypes per organism (including controls) can

be assessed simultaneously by using the full set of 20 di®erent 96 well plates. As the

assays are performed for 24 h or longer, the output is high density time-course data

for each well (growth condition), showing a measurement of the quantity of dye

reduced. A typical experiment can contain as many as 450,000 data points, making

the output especially suitable for mathematical and statistical modelling. The PM

platform is °exible, allowing users to construct their own assays using plates, growth

media and tetrazolium dyes. Thus, they have proven extremely °exible in terms of

the experiments that can be carried out with them.2 Among other uses, Biolog

Omnilog PM technology can be used in research aimed at understanding and con-

trolling the performance of biotechnological processes, through analysis of microbial

metabolism in conditions relevant to industrial fermentations.3,4

However, while PM technology can generate vast amounts of information about

microbial growth in the form of time-series data, its usefulness is limited by a lack of

robust, easy to use and °exible data analysis tools for such data. Often, the data

(which in its raw form comprises up to several hundred data points) is being reduced

to either a binary \growth/no-growth" distinction or, at best, a single datum, such as

maximum signal reading, average signal height reading or area under curve

(AUC).5,6 Clearly, a lot of information is lost this way.

Biolog's own software allows rudimentary data analysis mainly focused at directly

comparing two di®erent strains grown onPMplate types. As detailed in Bochner et al.5

��� cf. Box 1 therein ��� this consists of plotting curves from two strains (generally a

mutant and a control strain) against each other and highlighting di®erences above a

certain threshold. This results in e®ectively a ternary distinction between either of the

strains showing higher respiration or there being no signi¯cant di®erence between

them. Alternatively the software can give a numerical output of the di®erence in

respiration rates between the two strains compared, as used for instance in Ref. 7.

Whether average readout, AUC or endpoint is used, the use of a single value to

represent a time-series comprising up to several hundred data points entails losing

valuable information about the shape of the underlying curve. For instance, the
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curves in Fig. 1 all have very similar average readout and AUC. Yet clearly they are

qualitatively rather di®erent, with di®erent lengths of lag phases, maximal growth

rates and carrying capacities. This is the problem at the heart of Biolog data analysis

that we seek to address.

Some previous research has been carried out in this area, but has been limited in

its scope. For instance, Ref. 8 focuses on visualizing the raw Biolog data without any

parameter estimation. A more recent approach published in Ref. 30 provides both

visualization as well as parameter estimation using the gro¯t R package. This

package uses nonlinear least squares regression to ¯t Gompertz and Richards models

to growth curves, but also provides a model-free spline ¯t.10 The logistic growth

model has also been found to be e®ective in ¯tting Biolog data and has been used to

facilitate normalization and data comparison.11

In this paper, we describe a method to extract further information from these

curves. We employ a Bayesian approach using Markov Chain Monte Carlo (MCMC)

techniques to sample from the posterior distributions of the parameters of several

di®erent growth models ¯tted to given Biolog data. Such an approach not only o®ers

robust estimates of both best-¯t model parameters but also model-independent

characteristics such as lag time, maximal growth rate, and maximal carrying ca-

pacity. We have tested these methods using data from customized PM plates,

developed to assess the potential of PM technology in the di®erentiation of 100

proprietary brewing yeast strains in di®erent worts. The focus of the paper is on the

modeling and methodology and these data are brought as relevant examples.

We anticipate that these ideas have the potential to transform the capacity of

research groups to obtain useful and meaningful information from Biolog Phenotype

Array data.
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Fig. 1. Respiration data taken from four di®erent phenotypes in the datasets. Plot shows coloration

(Biolog units) versus time. All four curves have very similar AUC, yet it is clear that they are qualitatively
di®erent, with di®erent lengths of lag phase and maximal growth rates.
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2. Methods

2.1. Modeling aspects

A number of di®erent growth models have been proposed in the literature.12 These

have di®erent statistical properties13 and it can be argued that there are limitations

of the interpretations of these models.14 These models are generally derived in the

form of an ordinary di®erential equation or as a system of ODEs, though many of

them also have a closed-form expression. We will focus on two models in particular,

described in the sections below. As the Biolog Omnilog PM machines measure res-

piration rather than growth, it is not a priori clear that any of the traditional growth

models will be able to accurately ¯t the data produced in PM experiments. However,

empirically we found that these models provide useful results.

2.2. The Baranyi model

We chose to focus mainly on the model developed by Baranyi and Roberts. This was

¯rst introduced in Ref. 15, and discussed in more detail for instance in Refs. 16 and

17. The model is based on the Richards model,18 but introduces another inhibition

term to model the lag phase. The inclusion of a lag phase is important, as growth and

metabolism of microorganisms in fresh media typically results in an initial period of

delayed activity. Consequently, much of the data we analyzed includes a distinct lag

phase; this can be seen in the example data shown in Fig. 1. Thus, models that do not

include a lag phase (e.g. logistic growth), or models where there is insu±cient °ex-

ibility over the shape and time of the lag phase (e.g. Gompertz models12) do not

perform well. The form of the model we used is as in Ref. 16:

d

dt
y ¼ r � y � uðyÞ � �ðtÞ; ð1Þ

where �ðtÞ accounts for the inhibition at the beginning of growth. For an isothermal

batch culture environment (e.g. as provided by Omnilog), the authors suggest setting

�ðtÞ ¼ q0
q0 þ expð�� � tÞ : ð2Þ

With uðyÞ as in the Richard's model this gives a closed-form expression as follows:

logðyðtÞÞ ¼ logðy0Þ þ r � AðtÞ � 1

m
log 1þ emrAðtÞ � 1

emðlogðymaxÞ�logðy0ÞÞ

� �
; ð3Þ

where

AðtÞ ¼
Z t

0

�ðsÞds ¼ tþ 1

�
log

e��t þ q0
1þ q0

� �
: ð4Þ

In addition to the four parameters ðy0; ymax; r;mÞ of the Richards model, this

introduces another two parameters, � and q0, that control the length and shape of the

lag phase. This term is motivated biologically: q0 is to be taken as the initial
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physiological state of the cells, while � gives the rate at which they adapt to their new

environment. This gives the full Baranyi model a high degree of freedom in accom-

modating a wide range of growth curve data; as others have noted13 the Baranyi

model performs very well in ¯tting empirical growth curve data.

There are two things we would like to point out. First, the form of �ðtÞ makes it

entirely independent of the rest of the Baranyi model. That is, it is straightforward to

incorporate this lag term into other models, and we have done so for instance with a

simple diauxic model which we discuss below. Second, for any given lag phase length

�, there is an in¯nite number of combinations of q0 and � that satisfy the formula

for � given above. We have found it more convenient to parameterize the Baranyi

model (and other models using �ðtÞ) with � and � rather than q0 and �. We then

derive q0 by

q0 ¼
1

e�� � 1
; ð5Þ

for use in the closed-form expression of the Baranyi model respectively �ðtÞ. In
this form, one parameter controls the duration of the lag phase itself, whereas �

controls its shape. Figure 2(b) shows AðtÞ for a ¯xed � and varying values of �.

Higher values of � make the lag phase more pronounced, whereas lower values make

the e®ect more subtle (in the ¯gure, the topmost curve is the one with the lowest

value for �).

Baranyi suggested a slight simpli¯cation of the original model, setting m ¼ 1 and

� ¼ r19. The resulting model is simpler than the original one and still ¯ts most of the

data we have seen; On the other hand, the original model is more °exible in ¯tting

less typical growth curves. We thus adopted a two-fold strategy and used both the

original and the simpli¯ed versions of the model, as well as two versions that in-

corporate either one of the proposed modi¯cations.

2.3. Diauxic growth

As will be seen below, the example data we analyze (from worts), typical of growth

on complex mixtures of substrates, includes curves that show a clear diauxic e®ect.

We modeled this using a simple diauxic growth model based on Monod-type sub-

strate inhibition terms. As a starting point, we used the following model, in ODE

form:

dy

dt
¼ r1s1yþ

k

kþ s1
r2s2y; ð6Þ

ds1
dt

¼ �r1s1y;
ds2
dt

¼ � k

kþ s1
r2s2y: ð7Þ

While s1 is large, this essentially gives logistic growth on substrate 1. As substrate

1 is being used up, the inhibition term k
kþs1

increases and logistic growth on substrate

2 starts. Smaller values of the inhibition constant k give a more pronounced diauxic

A Bayesian approach to analyzing phenotype microarray data
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e®ect due to the stronger in°uence of s1 on the inhibition term. k
kþs1

is a hyperbolic

inhibition term that is supposed to model the inhibitory e®ects happening within the

cells as s1 is being exhausted.

We amended this model to include a Baranyi-like lag phase term. In its non-

integral form �ðtÞ this transfers to our ODE model in a straightforward fashion,

giving the following for our diauxic growth model:

dy

dt
¼ �ðtÞ r1s1yþ

k

kþ s1
r2s2y

� �
; ð8Þ

100

150

200

250

(a)

15

2.5

5

7.5

10

(b)

Fig. 2. Numerical derivation of a lag phase length from a Baranyi curve. (a) The calculated lag is 27.87

whereas the model lag parameter is 30. (Other model parameters: y0 ¼ 100; ymax ¼ 300; r ¼ 0:1;
� ¼ 0:2;m ¼ 1) and (b) AðtÞ for � ¼ 10 and � ¼ 0:2; 0:5; 1; 2. Dotted red line shows y ¼ t� �.
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ds1
dt

¼ ��ðtÞ r1s1yð Þ; ds2
dt

¼ ��ðtÞ k

kþ s1
r2s2y

� �
: ð9Þ

Arguably, this model is a rather simpli¯ed view of the biological processes hap-

pening but has empirically proven to be useful. A number of other models for diauxic

growth have been proposed.20,21 Our model is simpler (for example Kompala et al.'s

1986 model has ¯ve parameters per substrate, ours has eight in total), but still

su±ciently °exible to be able to describe virtually all of the diauxic growth curves we

have seen.

2.4. Gompertz model

For comparison purposes, we also ¯tted a Gompertz model12 to the data. The

Gompertz model does not include a lag phase, so it is useful to determine when the

Baranyi model is helpful in identifying lag phase lengths.

2.5. Parameter estimation

We adopted a Bayesian approach22 to infer model parameters from the time-series

data recorded by Biolog machines. In particular we used a variant of the Metropolis-

Hastings algorithm23 to sample from the posterior distribution of these parameters.

This algorithm starts with an initial state vector �ð0Þ. At each iteration, a candidate

state vector � 0 is generated by drawing from a proposal distribution qð:j� iÞ. With

probability �ð�i; � 0Þ that move is accepted, where

�ð�i; � 0Þ ¼ min 1;
pð� 0Þqð� ij� 0Þ
pð� iÞqð� 0j� iÞ

� �
: ð10Þ

If accepted, we set � iþ1 ¼ � 0, otherwise set � iþ1 ¼ � i. The � i form a Markov chain,

and the stationary distribution of this chain is the desired posterior distribution pð�Þ
irrespective of the proposal distribution qð:j:Þ in Refs. 24 or 25.

A number of modi¯cations and amendments to the original Metropolis-Hastings

algorithm have been proposed to better explore the target distribution or to improve

the algorithm's rate of convergence. In particular, signi¯cant attention has been

drawn to the construction of adaptive algorithms, i.e. algorithms which do not re-

quire the speci¯cation of the tuning variance of the proposal distribution qð:j:Þ. One

of the most commonly used algorithms is the Adaptive Metropolis (AM) algorithm26

that has been discussed in detail in the literature27–30.

The use of an adaptive algorithm is important for the analysis of high throughput

PM data because of the large number of data sets being analyzed. Each PM

plate contains 96 wells, and with an experiment of 100 plates this leads to 9600

separate curves. It is not possible to manually tune the parameters for each curve so

an automated, adaptive approach is necessary. We implemented an AM algorithm

A Bayesian approach to analyzing phenotype microarray data
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with global scaling as described in algorithm 4 in Andrieu and Thoms 2008 as

follows2:

(1) For an initial segment of the chain (i < i0, for some sensible choice of i0) perform

a \Random-Walk Metropolis with global scaling" with proposal covariance

matrix �i�0, with �0 an initial \best guess" of the true covariance matrix.

(2) For the remainder of the chain, do as above but use �i�i as the covariance matrix

for the proposal distribution, where �i is the sample covariance matrix of the

previous history of the chain, and �i is a varying scaling factor. We update �i

iteratively.

We used i0 ¼ 2500 (chosen empirically). For i < i0 we updated �i and �i only when

we accept a move, as suggested in Haario et al. 2001.26 We reset �i to its original

value of 2:42= dimð�Þ in iteration i0, where � is the parameter vector.2 We also added

�I to �i in each step to keep it from becoming singular for some small �26. If ever it

still became singular due to rounding errors, we added �I to it until it was not

singular anymore. We did not use any form of thinning, always discarded the initial

50,000 iterations as burn-in, and in production runs used 500,000 iterations in total.

We used uninformative or uniform priors on suitable regions, and utilized simple

heuristics to give rough estimates of the initial parameter vector for the AM algo-

rithm (see Appendix for details). These heuristics proved to be e®ective in that all

Markov chains converged to a stationary distribution (see Sec. 2.6 on Performance

below) after appropriate burn-in. Alternative approaches could be to use an iterative

least-squares approach to obtain initial parameter values near to the stationary

distribution.11 To calculate the likelihood function, we assumed normally i.i.d.

measurement errors, which we heuristically estimated from the raw data as detailed

in the appendix.

2.6. Model choice

In addition to inferring parameters from them, we used the Deviance Information

Criterion.31,32 This is de¯ned as follows:

DIC ¼ �D þ pV ; ð11Þ
where D is the deviance de¯ned by

Dð�Þ ¼ �2 logðpðxj�ÞÞ ð12Þ
and �D is the mean of this deviance. The model complexity pV is given as

pV ¼ varðDÞ=2. An alternate de¯nition of DIC uses pD ¼ �D �Dð��Þ to account for

model complexity. We have found however that this is highly dependent on the

quality of the estimation of the posterior. In some cases where our posterior sample

was not a good estimate, we saw the pD term dropping to arti¯cially low (often

negative) values leading to a bad, arti¯cially low estimate of DIC. While it is possible

to check that the posterior sample is reasonable before calculating DIC this way, we

M. Gerstgrasser et al.
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expect that in any high-throughput environment there will be individual data that slip

through such checks. Thus, we have found that using pV was in practice more suitable

for our purposes. For comparison purposes we have also calculated BIC for all mod-

els,33 using the highest likelihood observed in the posterior sample for the BIC estimate.

We used the DIC to choose which model to use to derive estimated parameters for

each well. Furthermore, we were looking to get an indication as to whether our

models provide a reasonable ¯t at all. To this end we compared them to a simple

\dummy" model de¯ned by yðtÞ ¼ c for a constant parameter c. This is non-

informative, and similar to a classical H0 model. A comparison via DIC or BIC to the

constant model is meant to show whether the model ¯ts the data at all.

2.7. Parameter comparisons between models

One potential issue with ¯tting a number of di®erent models to data is that para-

meters of one model do not necessarily relate easily to those of another. Therefore, in

addition to the model-speci¯c parameters we used model-independent measurements

of three key growth characteristics, which we derived numerically from the ¯tted

curves. This is to allow for simple quantitative comparisons between wells that show

qualitatively di®erent behavior.

In the following paragraphs, we will take yðt; �Þ to mean the signal level predicted

by our model and the parameter vector � at time t. First, for A, the maximum

coloration change achieved, we simply used yðtlast; �Þ � yð0; �Þ, that is, the absolute

increase in coloration our model predicts over the period of time that was recorded in

the experiment. It may be argued that for all the models we are using we could also

compute a similar A from the y0 and ymax (respectively y0 and s1, s2). However, we

found that if the recorded respiration data stops before a maximum is attained, the

maximum or substrate level parameters are e®ectively inestimable, and so would A

be with such a de¯nition. Note that if a maximum is e®ectively reached within the

experiment record, these two de¯nitions will for practical purposes be equivalent.

For �max we took the steepest slope of yðt; �Þ (again within the experiment period),

as derived numerically from the ¯tted curve. This is not a transformation of the

model's rate parameter(s) alone, but is model-independent and coincides with a more

natural de¯nition of the maximal respiration rate.

For the lag time L an essentially model-independent de¯nition is slightly trickier,

and a number of possible de¯nitions could be used.14 We de¯ne L to be the t-coor-

dinate of the intersection of the tangent at the steepest point of yðt; �Þ with the line

y � yð0; �Þ.13 For y0 � ymax this will approximate the lag parameter in �ðtÞ almost

exactly. Figure 2(a) illustrates our de¯nition of the lag phase length. The tangent of

the steepest point is shown in blue, and the derived lag length L in red. We note that

for y0 � ymax this estimate will di®er substantially from the lag parameter �.

However, so long as the relative di®erence between initial and ¯nal cell concentration

is constant across a dataset, our estimate of L will still be comparable between wells

and, crucially, between di®erent models.

A Bayesian approach to analyzing phenotype microarray data
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2.8. Identifying presence and absence of growth

In order to identify whether a given well exhibits signi¯cant levels of growth at all, we

compared the maximum coloration attained A to a 95% quantile of the same pa-

rameter for a control well present on each plate.

2.9. Data preprocessing

In a small number of cases we observed anomalous behavior where coloration ac-

tually decreases signi¯cantly after attaining a maximum. The causes of this behavior

are as yet unknown (in principle the reduction of the tetrazolium dye should be a one-

way process), but we still want to be able to extract meaningful information from the

data. We used a simple heuristic to remove the aberrant parts of the data. More

precisely, we looked at the maximum y 0
max (attained at tmax) of a smoothed curve as

above (using a 9-point window). We then removed the tail of the data series if in any

interval ½tmax; t�; t > tmax at least 90% of data points (of the unsmoothed curve) were

at least 0.5 standard deviations (using the numerically estimated measurement

error) below ymax. We would then remove the tail of the data series after the least

such t. However, we always left at least the initial 40 data points.

3. Results and Discussion

3.1. Our models ¯t the data

The model was applied to 40 Biolog arrays comprising a total of 3840 time courses.

Of these, 2989 exhibited signi¯cant growth compared to a known control well.

According to DIC 598 of these wells were ¯tted best by the Baranyi model, 2382 by

the diauxic model, 9 by the Gompertz model and none by the constant dummy

model. The remaining 851 wells exhibited no signi¯cant growth, and model ¯t be-

tween the Baranyi, diauxic and Gompertz models was almost arbitrary.

According to BIC the picture is similar, with a slight bias against the diauxic

model (2160 diauxic cases with growth) and toward simpler models (793 Baranyi, 36

Gompertz). Again no wells were ¯tted by the constant dummy model.

Furthermore, in all cases in which the Gompertz model was preferred over Baranyi

or diauxic models, DIC scores of these models were very close to each other (within 1%

of absolute values). The converse was not the case. Best-¯t models usually achieved a

DIC score in the range of 200–400. For cases where the Gompertz model scored best,

the mean di®erence between the Gompertz model and the second-best model was 1.7;

Conversely, where the Gompertz model did not score best, the mean di®erence in BIC

score between the best model and the Gompertz model was 658.

This demonstrates that the Baranyi model, and the diauxic model with Baranyi

lag phase, are e®ective tools for the analysis and interpretation of Biolog PM data.

Example ¯ts where the Baranyi model and the diauxic model with Baranyi lag ¯t

best are shown in Figs. 3(a) and 3(b), respectively. Plotted also is a ¯tted Gompertz

model, demonstrating the relevance of the models we have used. In these cases, the

M. Gerstgrasser et al.
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Baranyi and diauxic models receive much the best BIC scores (Table 1). Figure 3(c)

shows one well with no growth, and a slight decrease in coloration, together with ¯ts

by the Baranyi and constant models.

Further evidence for the value of the Baranyi model and Baranyi lag term in the

diauxic model in ¯tting this type of data can be seen from the relative wide spread of

the estimated mean for the curvature parameter of the lag phase, � in both models, as

well as the curvature parameter m in the Baranyi model (Fig. 4). Thus, we consider

it likely that any model lacking such an extra parameter would fail to accommodate

the range of curve shapes we have encountered.
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Fig. 3. Example data curves with model ¯ts. (a) A typical data curve where the Baranyi model is best. The
Baranyi model ¯ts the data much better than the Gompertz model, that cannot ¯t either the shape o® the

lag phase or the shape of the transition to stationary phase. As a consequence, the Gompertz model would

overestimate both the length of the lag phase and the maximal growth rate. (b) A typical data curve where
diauxic model ¯ts best. Neither the Baranyi nor the Gompertz model can capture the dynamics. (c) A

curve with a preferred Gompertz model according to DIC. A ¯tted Baranyi-curve is also shown. (d) A

curve showing no signi¯cant growth compared to a control well. Due to a slight increase in coloration this

is ¯tted best equally by a diauxic and Baranyi model. Absence of growth is detected by comparing to the
control well. (e) A borderline case that shows slight diauxic behavior and (f) Diauxic curve with high

growth on s2.
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3.2. Identi¯cation of curve features beyond AUC

There are two main features of our approach: the ¯rst, as presented above, is that we

are able to ¯t curves that are qualitatively diverse, namely nondiauxic and diauxic

growth. The second is that we are able to estimate key relevant parameters from

Biolog data, in particular a length of lag phase, maximal growth rate and maximal

output. In many biotechnological applications, the identi¯cation of strains or con-

ditions with minimal lag phase or maximal growth could be particularly important,

as such strains or conditions could speed production and/or cut costs. Figures 5(a)

Table 1. BIC scores for the relevant models in Fig. 3.

Strain DIC Baranyi DIC Diauxic DIC Gompertz DIC No-Growth

(a) P105-A12 388.5 398.0 2497.8 361073

(b) P106-E01 5457.6 431.1 5819.9 376824

(c) P107-G03 123.3 123.1 123.0 272838
(d) P106-H12 114.4 114.2 120.8 258

(e) P106-B11 548.1 401.7 555.5 135383

(f) P108-C10 3715.5 142.9 6502.7 491623
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Fig. 4. Histograms for m, � in the Baranyi and � in the diauxic model, for curves where these were the
respective best-¯t model and where signi¯cant growth was detected. The wide spread of these distributions

is indicative of the importance of these parameters in ¯tting a range of data.
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and 5(b) show the curves with the shortest and longest lag phases, respectively.

These curves have quite di®erent AUCs and maximal outputs so would be di±cult to

identify without a suitable modeling approach. Similarly, Figs. 5(c) and 5(d) show

the curves with the fastest and slowest maximal growth. These too would be di±cult

to identify without a robust modeling approach.

Conversely, curves with very similar AUC can di®er greatly in other parameters.

Table 2 lists the mean derived parameters for the six di®erent strains shown in the

beginning of the paper, clearly showing that AUC alone is not su±cient to allow

comparisons between qualitatively di®erent data. The lag phases range from 12.3 h

(P103-C01) to 38.9 h (P101-C01) and the maximal growth rates range from 11.7 per

hour (P102-B12) to 35.0 per hour (P101-C01). Both of these model-derived para-

meters vary three-fold among the strains shown, demonstrating that our approach is

considerably superior to using AUC.

We have found that a comparison to the 95% quantile of maximum coloration of a

control well works reliably in identifying whether growth occurs.

3.3. The estimated parameters and model-independent

measurements are reliable

The Bayesian approach has allowed us to use the posterior distributions to

estimate standard deviations of the individual model parameters as well as the nu-

merically derived model-independent growth measurements. These are generally low
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Fig. 5. Example data curves with potentially useful derived parameters. Some of the curves in the data set

with (a) shortest lag phase, (b) longest lag phase, (c) lowest maximum growth rate (while still exhibiting

signi¯cant growth) and (d) highest rate.
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(typically < 1% of the parameter values) and are elevated only in cases where some

parameters are not estimable from the data, e.g. estimation of ymax when ¯tting a

Baranyi model to data that is cut o® before stationary phase is reached (standard

deviation as high as 10% of the parameter), but also sometimes s1 and s2 when ¯tting

the diauxic model to data clearly depicting simple growth.

We have found that A (the maximum coloration change) very closely matches the

respective model parameter(s), and that �max has given good comparability of results

between wells even with di®erent best-¯t models. In cases of diauxic growth, par-

ticularly with small s2 and the bulk of growth on s1 (as is the case in the vast majority

of diauxic cases observed) the Baranyi model would sometimes give an arti¯cially low

estimate of �max as it tries to compensate for the (in a sense slower) two-step approach

to peak coloration by ¯tting an altogether slower curve. Figure 3(e) shows one such

case together with ¯ts by the Baranyi and diauxic models.

The lag time L in the vast majority of cases similarly gives good comparability

between wells and models. In one atypical case 3(f), a diauxic growth curve features a

higher growth rate on s2 than on s1. By our de¯nition of L as the time coordinate of

the intersection of the steepest tangent with the °at line y � y0, the lag time in such

cases is determined by the growth on s2 and could be signi¯cantly later than start of

growth on s1. Arguably this is not what we want, as it would not be consistent with a

physiological de¯nition of the lag phase, since the lag time identi¯ed includes the time

grown on s1. On the other hand, in some circumstances this output may be prefer-

ential, e.g. in an industrial research application a slow initial growth on s1 may be of

considerably less interest than the time until peak growth rate. It would be possible in

our framework to derive a specialized de¯nition of L tailored to diauxic models, e.g.

using the steepest tangent before the point where s1 is e®ectively depleted.

While our descriptive measurements L, �max and A give us consistent de¯nitions

and readily comparable results for the vast majority of cases, the various model

parameters we are also inferring allow us a more explanatory analysis of subsets of

(or even individual) cases. For instance, within a set of diauxic curves, our estimates

of s1 and s2 allow us to identify cases in which the bulk of growth is on the second

substrate. Again, in industrial research applications this may be of particular in-

terest. Similar analysis could be carried out e.g. on the curvature parameters of the

Baranyi model, to identify outliers in lag phase behavior.

As a further test of reliability, we have compared parameter estimates from wells

measuring the same conditions: each condition on these particular phenotype arrays

Table 2. The AUC and mean estimated parameters

for the four strains shown in Fig. 1.

Strain AUC L �max A

P101-D06 190.6 32.6 15.3 301.2
P102-E11 190.7 10.1 9.5 163.3

P103-C05 191.5 21.7 18.1 219.5

P104-C12 192.3 16.6 6.6 162.0
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appears in triplicate. For the best ¯t data shown in Fig. 3, this provides three

independent estimates for each of the three derived parameters for six models, a total

of 18 comparisons. The parameter estimates were generally very consistent, with

median percentage error of 5:8%. The worst case is for Fig. 3(d), where there is no

growth, and the parameter estimates vary by approximately 30%; however, because

there is no growth, this is not a problem. Full details of these comparisons are

provided in Appendix D.

3.4. Performance

The MCMC methodology based on an Adaptive Metropolis algorithm performed

well in combination with the models we used. We tested all the Markov chain out-

puts for the model ¯ts that appear in all ¯gures for convergence using the Hei-

delberger and Welch's convergence test as implemented in the CODA package in R

(https://cran.r-project.org/web/packages/coda/index.html). The results from this

test showed that all the chains have passed the test, i.e. have converged to the

stationary distribution. The outputs are not especially interesting (many tables of

nonsigni¯cant p-values) so we have placed one example in Appendix E and have not

included the other outputs.

The adaptation to di®erent target distributions in particular worked very well

and our algorithm required no manual ¯ne-tuning to explore di®erent data with high

e±ciency. Figure 6 shows an initial segment of one AM chain we ran. It is clearly

visible that the mixing of the chain improves rapidly after the initial discovery phase.

Running our methodology implemented in C++ for a single plate (comprising 96

wells recorded every 15min over 72 h) took around 50–60min on a quad-core ma-

chine (Intel Xeon E3 1230v2).
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Fig. 6. Initial segment from the trace plot for � for one AM chain. It is easy to see that the initial

acceptance rate is far from optimal, but rapidly improves after the ¯rst 2500 iterations.
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3.5. Comparison to previous approaches

Vaas et al. 2012 discuss one particular case (their Figs. 4(a) and 4(b)) where their

model-¯tting approach fares worse than their alternative spline-based method. It

appears to us that the curve in question is simply diauxic in nature, and we expect

that our approach would be able to ¯t this time course and identify the behavior as

diauxic. The second example they discuss (Fig. 4(c) same curve) could equally likely

be ¯tted by our methodology with an appropriate model. In either case Ref. 9 ap-

proach likely could not be extended easily to encompass such additional models,

using a third-party software package to do the actual parameter estimation.

4. Conclusion

We have presented a Bayesian approach to estimating curve-parameter information

from respiration data gathered in phenotype microarray experiments. We had aimed

to extract meaningful information from complex respiration curves in a statistically

sound way, and have shown that our approach succeeds in doing so.

Our solution has several key advantages. First, the Bayesian framework in which

our approach operates a®ords us a great deal of °exibility in extracting information

from respiration curves. As we are approximating the joint posterior distribution of

all model parameters, we are free to perform further analysis on this and can for

instance derive the distribution of arbitrary functions of our model parameters from

them. Model choice criteria allow us to readily identify qualitatively di®erent be-

havior in the data on top of quantitative measurements. This gives us a \best of two

worlds" solution encompassing both uni¯ed model-independent descriptive mea-

surements as well as more explanatory model-speci¯c ones.

Second, the Baranyi model provides an excellent model to ¯t a wide range of

observed growth curves. The only exception we encountered were curves exhibiting

diauxie. In these cases, our diauxic model provided us with good ¯ts in these cases as

well. In particular, these two models outperform traditional growth models in many

cases. Our modular implementation allows us to adapt our code to new types of

experimental data with minimal e®ort. As PM machinery is being used in a wide

range of di®erent areas, this allows our solution to remain applicable as new types of

data become available.

Third, the model-independent measurements L, �max and A we derive from the

¯tted curves allow an immediate comparison of key values between di®erent time

series, even if qualitatively di®erent models were used to ¯t the data. This allows us

to match simpler (e.g. spline-based) approaches in their ability to perform quanti-

tative comparisons between a wide range of growth behaviors. However in addition,

our approach retains information from the richer model-dependent parameters. This

gives us powerful tools to perform further analysis on speci¯c subsets of data. In

particular, we can use these to compare wells with qualitatively similar behavior in

more detail, for instance utilization of di®erent substrates in diauxic curves.
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Last, our implementation is suited to high-throughput analysis of PM data.

Compared to previous approaches to data analysis on PM experiments, we believe

that our solution o®ers improvements in several areas. Even the relatively small

number of models we have implemented so far allows our solution to successfully ¯t a

wide range of data.

We believe that our extensible approach is uniquely suited to \keep up" with PM

data, as PM machinery is being used for an increasingly wide ¯eld of di®erent types

of experiments. As PM machinery continues to ¯nd novel usage scenarios, the

modular implementation we have chosen will allow our solution to remain °exible in

accommodating data from these scenarios.

Program Code Availability

We have made the program code available on GitHub at URL https://github.com/

dovstekellab/mcmc-pma.git under license GNUGPLv3. We also include instructions

on how to compile and run the code, as well as how to interpret the results ¯les.
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Appendix A. Prior Distributions

We used uninformative or uniform priors as follows:

(1) For models that feature a lag parameter �, we assumed 0 � � � dimðxÞ.
(2) For all parameters where we were not dealing with their logarithm anyways, we

assumed that they are positive.

(3) Where applicable we assumed ymax > y0.

(4) In the full Baranyi model, we required r > �, m > 1, as otherwise these para-

meters were usually inestimable due to high correlation. Similarly in the Baranyi

models where only one of �, m are ¯xed.

(5) For all other parameters, we used improper uniform priors without any bounds.

Appendix B. Estimation of Initial Parameters

The heuristics we used to estimate initial parameter vectors are as follows:

(1) For initial cell concentration, we took the average of the ¯rst 10 data points.

Similarly for the maximum concentration, we took the average of the maximum

of any 10-point interval in the time series.
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(2) For the lag parameter, we ¯t lines to every 20-point interval of data points, and

intersected the maximum-slope line with y ¼ y0, with y0 derived as in the pre-

vious line.

(3) For the growth rate r, we used a simple search heuristic to guess an initial value

that we have found empirically to be e®ective. We start from a su±ciently large

interval of possible values ½rmin; rmax�, and divided this into 10 equal parts

r0 ¼ rmin; r1; . . . ; r11 ¼ rmax. We then compared the maximum slope of the

modeled data with r ¼ r1; . . . ; r10 with the maximum slope as in the previous

line. For ri giving the smallest di®erence in maximum slope, we recurse by setting

rmin ¼ ri�1; rmax ¼ riþ1. We repeat this 100 times.

(4) For the remaining parameters we used the same search algorithm, except we

compared the sum of squares of di®erences between modeled and observed data

instead of maximum slope.

Speci¯c to each of the models we did the following: We used ½0:01; 1�, ½2; 10�, ½0:3; 1� as
initial intervals for r, m, � in this search algorithm. We ¯rst called this for r, setting

both remaining parameters to 1, then similarly for the remaining ones. For the

diauxic models, we proceed similarly, except we additionally needed to ¯nd s1 and s2,

respectively the division of the total growth between the two. To do so, we found the

maximum slope on a smoothed curve as in our estimation for the lag parameter, and

then the minimum slope between that point and when the smoothed curve ¯rst

comes within 12 standard deviations of the maximum. (In other words, we looked for

the characteristic intermittent slowing-down of growth.) We then subtracted y0 from

the value at this point, and took this as the initial guess for s1. For the remaining

parameters we proceeded similarly as in the Baranyi model, using ½10�8; 10�4�; ½0:0
5; 1�; ½0:0001; 11� as initial intervals for r1, �, k1 in the search algorithm. We always

use 0.0003 for r2, as performing our search heuristic for this parameter did not

improve results.

Appendix C. Estimation of Measurement Error from Data

We took a smoothed curve (taking the average of every nine adjacent measurements;

without taking logarithms) as reference to numerically estimate the variance. We

however always assumed a minimum variance of 5 Biolog units. That is, we de¯ned

�2 ¼ min 5;
1

dimðxÞ
XdimðxÞ�5

j¼4

xj �
1

9
ðxj�4 þ xj�3 þ � � � þ xjþ4Þ

8<
:

9=
;:

Appendix D. Consistency Analysis

Consistency of parameter estimates was tested for the six best-¯t models shown in

Fig. 3. These particular phenotypemicroarrays have triplicate wells for each condition,
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so the derived model parameters shown were compared with those for the two other

triplicate wells. The full output is:

Appendix E. Convergence Tests

Convergence for all of the Markov chains for model ¯ts used in the ¯gures was carried

out using the Heidelberger and Welch's convergence test as implemented in the

CODA package in R (https://cran.r-project.org/web/packages/coda/index.html).

All of the chains passed the test, i.e. demonstrating convergence to a stationary

distribution. The output for each chain is in the form of a table with a p-value for

each parameter. An example from one chain that is typical of all output is:

Each row, labeled V1 to V8, represents one variable. The null hypothesis is that

the chain is from a stationary distribution and so it can be seen that the null

Table D.1. Parameter estimate consistency.

Wells Parameter Value1 Value2 Value3 Mean St. Dev. % Error Note

P105-A10-A11-A12 lag 15.37 14.37 14.58 14.77 0.530 3.58%

rate 17.60 17.21 15.79 16.87 0.951 5.64%

max 325.3 321.2 306.8 317.8 9.69 3.05%

P106-E01-E02-E03 lag 11.79 11.31 11.80 11.63 0.284 2.44%

rate 14.03 11.78 12.00 12.60 1.24 9.83%

max 232.4 210.4 201.4 214.7 16.0 7.44%

P107-G01-G02-G03 lag 20.38 24.57 20.36 21.77 2.43 11.1%

rate 8.06 7.06 5.17 6.76 1.47 21.7%

max 186.4 183.1 183.6 184.3 1.76 0.96%

P106-H10-H11-H12 lag 3.64 5.64 3.04 4.11 1.36 33.1% No growth case

rate 0.634 0.452 0.436 0.507 0.110 21.7% No growth case
max 8.90 5.05 5.53 6.49 2.10 32.3% No growth case

P106-B10-B11-B12 lag 11.83 11.80 11.58 11.74 0.135 1.15%

rate 19.33 19.41 21.46 20.07 1.21 6.02%
max 256.0 253.2 265.6 258.3 6.48 2.51%

P108-C10-C11-C12 lag 31.30 30.10 28.59 30.00 1.36 4.52%

rate 18.74 15.79 15.07 16.53 1.95 11.8%
max 320.6 310.9 315.8 315.8 4.86 1.54%

Table E.1. Example convergence test output from CODA.

Variable Stationarity test Start iteration p-value

V1 passed 1 0.357

V2 passed 1 0.547

V3 passed 1 0.560

V4 passed 1 0.297
V5 passed 1 0.602

V6 passed 1 0.853

V7 passed 1 0.218

V8 passed 1 0.173
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hypothesis has been accepted for all variables in the chain. We obtained similar

results for all of the Markov chains tests (data not shown).
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