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Abstract
In this work we examine the small mass limit of black holes (BHs), with and
without spin, in theories where a scalar field is non-minimally coupled to a
Gauss–Bonnet (GB) term. First, we provide an analytical example for a theory
where a static closed-form solution with a small mass limit is known, and
later use analytical and numerical techniques to explore this limit in standard
scalar-GB theories with dilatonic, linear and quadratic-exponential couplings.
In most cases studied here, we find an inner singularity that overlaps with the
event horizon of the static BH as the small mass limit is reached. Moreover,
since solutions in this limit possess a non-vanishing Hawking temperature, a
naked singularity is expected to be reached through evaporation, raising ques-
tions concerning the consistency of these theories altogether. On the other
hand, we provide for the first time in this context an example of a coupling
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where the small mass limit is never reached, thus preferred from the point of
view of cosmic censorship. Finally, we consider BHs with spin and numerically
investigate how this changes the picture, using these to place the tightest upper
bounds to date on the coupling constant for the dilatonic and linear theories,
with

√
α < 1 km.

Keywords: scalarization, Hawking evaporation, scalar-Gauss–Bonnet,
small mass limit, scalar hair, black hole, modified gravity

(Some figures may appear in colour only in the online journal)

1. Introduction

Prominent examples of alternative theories of gravity to general relativity (GR) are Einstein-
scalar-Gauss–Bonnet (EsGB) theories, where a new fundamental scalar is non-minimally
coupled to the Gauss–Bonnet (GB) term

G = R2 − 4 RµνR
µν +RµναβR

µναβ . (1)

Such models belong to the Horndeski class of theories [1, 2], and in the simplest case their
action takes the form

S=
1

16π

ˆ
d4x

√
−g
(
R− (∇ϕ)

2
+

α

4
ξ (ϕ)G

)
, (2)

where ϕ is a real scalar field, ξ (ϕ) is the (non-minimal) coupling function, and α the GB
coupling constant with dimensions of length squared.

EsGB theories are of wide interest and have been the subject of many works in recent
years (see e.g. [3–28]). From a fundamental physics perspective they arise, for example, as
the low-energy limit of some string theories [29–32] where the scalar, the dilaton, couples
exponentially to the GB term, ξ (ϕ)∼ eγϕ [18–20, 28, 33]. From a more phenomenological
point of view, they are one of a variety of theories [3–16, 18–20, 33–36] that evade the no
hair conjecture [37–44] (see [45] for a review), raising the exciting possibility they can be
constrained by black hole (BH) physics in the strong-curvature regime. Moreover, in some
EsGB theories a dynamical mechanism called spontaneous scalarization [6–8, 12, 14, 15, 33–
36, 46, 47] can occur, such that deviations from GR occur only in the strong-curvature regime.
Constraints can be theoretical, such as self-consistency, or observational in nature. Indeed,
only recently has GR begun to be tested observationally in the strong-field regime [48], with
the dawn of gravitational wave (GW) astronomy [49–51].

In a striking difference to GR, some EsGB BHs (e.g. with linear and dilatonic couplings)
are known to possess a minimum mass solution whose Hawking temperature is finite and
non-vanishing, naturally raising the question of what is the fate of BHs in EsGB theories (see
e.g. [4, 18, 28, 52–56]). This conundrum is often overlooked, but was recently explored in
references [57, 58], where non-linear numerical simulations of evaporating EsGB dilatonic
BHs were performed, supporting the idea that the end-point of Hawking evaporation is likely
a naked singularity, violating weak cosmic censorship. This is a rather concerning scenario,
raising questions about the consistency of EsGB models.

In this work our main purpose is to explore further the small mass limit of BHs for several
couplings in EsGB theories, including those allowing for spontaneous scalarization, where
a detailed analysis of the small mass limit is so far lacking. Our aim is to investigate self-
consistency and observational constraints imposed on GB theories and their coupling depend-
ence. After providing a novel example of a closed-form solution with a small mass limit, we
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will complement previous studies [4, 18, 28, 52–54, 56–58] on EsGBBH solutions with a thor-
ough analytical and numerical exploration of the domain of existence of solutions and their
inner structure, linking the existence of an inner singularity to the repulsive effects originating
from the GB term, and to the structure of the field equations. Using analytical arguments, this
singularity will be shown to overlap with the event horizon in the small mass limit. We will
also provide for the first time, in this context, an example of a coupling function (quadratic-
exponential coupling in equation (22) below, with β above a certain value) where the small
mass limit is never reached, showing that a minimum size solution is not a generic feature
of EsGB theories4. Finally, we construct stationary BH solutions by numerically solving the
field equations in axi-symmetry, with the aim of exploring the small mass limit once spin is
considered, and finish by imposing the tightest constraints on the coupling constant, to date,
on the dilatonic and linear theories.

The rest of the paper is organized as follows. First, in section 2, we introduce a theory which,
unlike equation (2), admits a known analytical example of a static BH with a small mass limit.
This allows us to explore key features with the advantage of an exact solution. In section 3,
we discuss the form of coupling functions in standard GB theories and their corresponding
different phenomenologies. Then in section 4, we explore the small mass limit of static BH
solutions for these theories, and later impose upper bounds on the coupling constant α in
section 5. Finally, in section 6, we consider how spin changes the picture. We conclude in
section 7.

2. Exploring the small mass limit: an analytical example

No analytic closed-form BH solution is known to EsGB models described by the action (2).
In the existing literature, therefore, the study of critical solutions in such theories has been
performed by resorting to numerical techniques. In this section, we will explore an illustrative
example of a related theory with known closed-form BH solutions.

The theory is known as gravity with a generalized conformal scalar field, and was first
derived in [59] by imposing conformal invariance on the equation of motion of the scalar
field. Its action is given by

S=
ˆ

d4x
√
−g

16π

[
R− (∇Φ)

2 − R
6
Φ2 +α

(
log(Φ)G − 4Gµν∇µΦ∇νΦ

Φ2

− 4□Φ(∇Φ)2

Φ3
+

2(∇Φ)4

Φ4

)
+

λ

4
Φ4

]
, (3)

which contains the terms present in the EsGB model of equation (2) with a logarithmic coup-
ling, as well as other non-trivial interactions including a conformal coupling to gravity and a
conformally invariant quartic self-coupling. The above theory is intimately connected with the
scalar-tensor formulations of so called 4D-Einstein-GB gravity [60–64] (see [65] for a review),
and belongs to the Horndeski class with functions specified by [1, 2]

G2 = 2X+
λ

4
Φ4 +

8 αX2

Φ4
(6logX− 23) , G3 =−24 αX

Φ3
(logX− 3) ,

G4 = 1− Φ2

6
+

4αX
Φ2

(logX− 3) , G5 =−4α
Φ

logX,X≡−1
2
(∇Φ)

2
. (4)

4 Doneva and Yazadjiev [6] explores a similar coupling. However, in [6] no comment is made on the implications for
the small mass limit of BHs within the theory. Rather, the authors focus on the domain of existence of scalarized BH
solutions, which they follow all the way to vanishing masses.

3
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Note that for the purpose of presentation, we have flipped the sign of α relative to the presenta-
tion of [59], and that of typical 4D-Einstein-GB studies. Among the many interesting features
of equation (3), one that stands out is that a special combination of the field equations decouples
from the scalar field, imposing a proportionality condition between the Ricci and GB scalars

R=
α

2
G . (5)

This allows for an easy search of closed form solutions. One known closed-form BH solution
to the above theory (with λ−1 = 6α) is given by [59]5

ds2 =−f(r)e−2δ(r)dt2 +
dr2

f(r)
+ r2

(
dθ2 + sin2 θdφ2

)
, (6)

with

f(r) = 1− r2

2α

(
1−

√
1− 8 Mα

r3

)
, δ(r) = 0,

Φ(r) =
2
√
3α
r

sech

(ˆ r dr

r
√
f

)
, (7)

where M is the ADM mass of the BH, and we take α to be positive. The scalar field can be
seen to be regular on and outside the event horizon located at

rH =M+
√
M 2 +α. (8)

Analysing the Ricci scalar of the solution (7) we observe that

R∝ r−3/2
(
r3 − 8 Mα

)−3/2
, (9)

revealing the existence of two physical singularities, one located at r= 0, and a finite radius
singularity located at the point where the quantity inside the square-root in equation (7) for the
function f (r) vanishes

r= rs = 2 (Mα)
1/3

> 0. (10)

To ensure physical behaviour of the solution we require that (i) the singularity located at r=
rs is hidden behind the event horizon (rs < rH); (ii) the metric functions and the scalar field
in equation (7) are real. Under these requirements, it can be shown using equations (7), (8),
and (10) that the following condition must hold

M√
α
>

1

2
√
2
≈ 0.353553 , (11)

or, in terms of rH ,
rH√
α
>
√
2≈ 1.41421 . (12)

In other words there is a minimum mass Mmin =
√
α

2
√
2
(or equivalently, a minimum hori-

zon radius rminH =
√
2α), below which solutions can no longer be described by BHs. For an

object with rH = rminH , rs and rH overlap, as can be observed in figure 1. A possible physical

5 See also [66] for a discussion of other solutions of the theory.
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Figure 1. Location of the finite radius singularity rs/rH as a function of rH/rminH for the
BH solution of equation (7). We observe that rs and rH overlap as rH → rminH .

interpretation for the minimum mass solution is related to the repulsive effect of the GB term
on the solutions. Examining the components of the effective stress-energy tensor we get

ρ≡ Ttt,eff =−pr, pr ≡ Trr,eff =
3
(
1−

√
1− 8 αM/r3

)2
4 α
√
1− 8 αM/r3

, (13)

where ρ and pr are interpreted as the effective energy density and radial pressure, respectively6.
The effective radial pressure is positive everywhere (repulsive), and diverges at r= rs. Indeed,
for theminimummass solution, the repulsive effects of the GB term dominate over the standard
attractive ones, impeding the existence of a regular horizon.

An interesting remark can be made regarding the Hawking temperature of the BH solution
given by

TH =
1
4π

f ′(rH) =
r2H+α

4πrH
(
r2H− 2α

) . (14)

This is that not only is the temperature non-zero as rH → rminH , but in fact diverges! Therefore,
as the small mass limit is approached, evaporation will not halt and the BH will continue to
lose its mass at a rate [67]

dM
dt

=− 1
2π

∑
ℓ,m

ˆ
dω

ωGℓm(ω)

eω/TH ± 1
, (15)

where Gℓm(ω) are the graybody factors for modes with frequency ω, angular dependence
(ℓ,m), and the plus/minus sign is related to the emission of fermions/bosons. This intriguing
feature casts doubts on the endpoint of Hawking evaporation, with the above calculations sug-
gesting that a naked singularity is a strong endpoint candidate.

To summarize, there are a few lessons to be learned from the example. First, it appears that
theories with higher-curvature terms are susceptible to the existence of a finite radius singu-
larity located at rs > 0. The existence of this singularity is, mathematically, intimately tied to

6 Note that the dominant energy condition is saturated and e.g. the weak energy condition is violated.
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terms containing square-roots in the solutions to the field equations, and the requirement that
solutions are real. From a more physical point of view, the singularity is related to repuls-
ive effects originating from the GB term. Secondly, a minimum mass solution might exist in
these kinds of theories, where the location of the finite radius singularity and of the event hori-
zon overlap. In the above example, this critical solution possesses a non-vanishing Hawking
temperature, presumably leading to the formation of a naked singularity.

3. EsGB gravity: field equations and the shape of ξ (ϕ)

We now consider the more standard framework of the action of equation (2). Varying with
respect to the metric tensor we obtain the Einstein equations

Eµν ≡ Gµν −Tµν = 0, (16)

where

Tµν =∇µϕ∇νϕ− 1
2
gµν (∇ϕ)

2
+α⋆R⋆

µανβ∇α∇βξ (ϕ) ,

and

⋆R⋆
αβµν ≡ 1

4
ϵαβγδR

ρσγδϵρσµν = 2gα[µGν]β + 2gβ[νRµ]α −Rαβµν ,

is the double-dual Riemann tensor (the square brackets denote anti-symmetrization). The
scalar field equation is

Eϕ ≡□ϕ+
α

8
ξ̇(ϕ)G = 0, (17)

where the dot denotes differentiation with respect to the scalar field ϕ.
Starting with the scalar field equation (17), we review how different shapes of the coup-

ling function ξ (ϕ) allow different phenomenologies. First we note that classical vacuum GR
solutions require that ϕ= 0, and that these solutions only exists for couplings that obey the
condition ξ̇(0) = 0. On the other hand solutions of models whose couplings obey ξ̇(0) ̸= 0
necessarily differ from those of GR and possess a non-trivial scalar field. Common examples
of couplings obeying ξ̇(0) ̸= 0 are

ξ(ϕ) = eγϕ, (18)

and

ξ(ϕ) = ϕ. (19)

The first, hereby dubbed the dilatonic (or exponential) coupling, is motivated from string the-
ory, as it is the coupling that appears in the 4D low-energy limit of heterotic string theory
[18–20, 29–33]. The second—the linear coupling—can be considered as a linearization of the
first around ϕ= 0, and additionally possesses a shift-symmetry in the scalar field [3–5]. For the
dilatonic coupling, we focus on the γ= 1 case. Note, however, that as discussed in [55, 57, 58]
the properties of BH solutions might differ for other values of γ. In fact, for sufficiently negat-
ive values (γ ≲−1), the small mass limit and the small size (radius) limit might not coincide,
with small mass limit solutions being regular on and outside the horizon. For all the solutions
discussed on this work, however, the minimum size and mass limits coincide, and therefore
we will use these terms interchangeably. We chose to focus on the γ= 1 case because values

6
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γ ≲−1 were explored in references [55, 57, 58], and in our numerical explorations, all other
values of γ to lead to similar behaviour as the one we observe for γ= 1. Therefore, we choose
γ= 1 as a fiducial value.

As discussed, if the coupling function satisfies ξ̇(0) = 0, then ϕ= 0 solves the field
equations and the GR solutions are solutions to the model. If however, ξ̈(0)> 0 then the GR
solutions are subject to tachyonic instabilities in the large curvature regime. This can be seen
by linearizing the scalar field equation around GR solutions, for example about the Schwar-
zschild solution. For a perturbation δϕ (for which ξ̇(0+ δϕ)≈ ξ̇(0)+ ξ̈(0)δϕ) one finds that(

□GR+
α

8
ξ̈(0)GGR

)
δϕ≡

(
□GR−µ2

eff

)
δϕ= 0, (20)

where GGR = 48M2/r6 = 12r2H/r
6 > 0 (with M being the ADM mass of the BH and rH

the event horizon radius in Schwarzschild-like coordinates). Thus for α > 0, if ξ̈(0)> 0 the
Schwarzschild BH may develop an instability (as the effective mass gets negative, µ2

eff < 0). 7

In this tachyonic regime, it has been shown that another class of solutions with a non-trivial
scalar-field profile coexists with the GR solutions and are dynamically preferred, triggering
spontaneous scalarization. In order to explore spontaneous scalarization we assume couplings
of these type to obey the conditions

ξ(0) = 0, ξ̇(0) = 0, ξ̈(0) = 1. (21)

The first condition can be imposed as the theory is invariant under ξ(ϕ)→ ξ(ϕ)+ cte, the
second condition arises by requiring the existence of GR solutions and third condition can
be imposed without loss of generality while maintaining a tachyonic instability in the large
curvature regime. An example of such a coupling, commonly used in the literature [6, 11, 14,
47, 68–71], and that we shall study here is the ‘quadratic exponential’ coupling

ξ(ϕ) =
1
2β

(
1− e−βϕ2

)
, (22)

where β is a constant. Note that this choice is by no means unique, and a simple quadratic
coupling ξ(ϕ) = ϕ2/2 (which is a particular case of equation (22) in the limit of vanishing β)
would suffice to explore spontaneous scalarization per se. However, BH solutions in models
with a simple quadratic coupling are unstable, contrarily to those with a quadratic exponential
coupling [9], and phenomenologies might differ. Note that the β= 3 case was studied extens-
ively e.g. in [6, 47]. We find that for any coupling obeying the conditions (21) the instability
of a Schwarzschild BH exists for (see appendix A for a detailed discussion)

rH/
√
α≲ 0.83. (23)

Finally, we would like to point that another type of scalarization is possible, being induced
by spin. For the Kerr metric, while for dimensionless spins χ⩽ 0.5 the GB term is positive
definite, this is no longer true when higher spins are considered [72, 73]. Therefore, if along
with the other conditions in equation (21) ξ̈(0) is negative (instead of positive), fast-spinning
Kerr BHs might be subject to a tachyonic instability [12, 14, 15]. A coupling compatible with
this type of scalarization would be the coupling of equation (22) with a reversed overall sign.
We will briefly discuss spin-induced scalarized solutions in section 6.

7 See also [17] for the special case where ξ̈(0) = 0. In this situation, no tachyonic instability exists but GR BHs may
become unstable against non-linear scalar perturbations, leading to the formation of scalarized BHs.
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4. Static BH solutions, and their small mass limit

In the existing literature, it has been identified that static EsGB BHs exhibit similar behaviour
to that described for the analytic case of section 2. Namely that in these situations there is also
a minimum mass solution, beyond which solutions can no longer be described by BHs [4, 18].
In the shift-symmetric case, it was further noticed that an inner singularity and the horizon
overlap in this limit [4]. In this section we explore this small mass limit of EsGB BHs for
a generic coupling function, discussing the domains of existence of solutions. To explore the
small mass limit of static BHs in EsGBmodels we employ the static and spherically symmetric
line element of equation (6), for which the field equations are presented in appendix B. As
already noted above no analytic solutions are known, and so numerical methods must be used.

Nonetheless, near the boundaries of our domain, analytic methods can be employed. We
assume that a static BH solution of the model allows the asymptotic expansion near the event
horizon (hereby denoted by rH)

f(r) =
∞∑
n=1

fn ϵ
n, δ(r) =

∞∑
n=0

δn ϵ
n, ϕ(r) =

∞∑
n=0

ϕn ϵ
n, ϵ≡ r

rH
− 1 (24)

then, the near-horizon field equations to zeroth order in ϵ become

E tt = E rr =
2r2H− 2f1 r2H+αf1 ϕ1 ξ̇(ϕ0)

2r4H
= 0,

Eθ
θ = Eφ

φ =
( f1(−2+ 3δ1)− 2f2)r2H+αf 21 ϕ1 ξ̇(ϕ0)

2 r4H
= 0,

Eϕ =
2f1 ϕ1 r2H+

(
3δ1 f1 + f21 − 2f2

)
αξ̇(ϕ0)

2r4H
= 0, (25)

which can be solved for f 1 and ϕ1 in terms of rH and ϕ0, implying the following relations

f1 =
2 r2H

r2H+
√
r4H− 3 α2 ξ̇(ϕ0)2

, ϕ1 =
−r2H+

√
r4H− 3α2 ξ̇(ϕ0)2

αξ̇(ϕ0)
. (26)

From these expressions one immediately finds the remarkable result that the horizon radius has
a minimum size beyond which the solution can no longer be described by a BH.8 This follows
by imposing the reality condition that f 1 and ϕ1 must be real, leaving us with the condition

r4H− 3α2 ξ̇(ϕ0)
2 ⩾ 0 ⇔ rH ⩾ rminH =

√√
3|αξ̇(ϕ0)| (27)

or equivalently,

ξ̇(ϕ0)⩽
1√
3

(
rH√
|α|

)2

. (28)

The above condition defines a region in the (rH/
√
α, ξ̇(ϕ0)) plane within which BH solutions

with a regular (real) scalar field configuration can exist. This is illustrated in figure 2, where
we have also highlighted the spontaneous scalarization condition (23). Note, however, that the
minimum horizon radius rminH depends on ξ̇(ϕ0). It is, therefore, possible that models where
the minimum mass solution as given by equation (27) is never reached, depending on the

8 Hereafter we assume α> 0.
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Figure 2. Domain of existence of BH solutions with scalar hair (blue region), obtained
by plotting the condition of equation (27) for a general coupling. The darker blue region
denotes the region where the Schwarzschild BHs are unstable (cf equation (23)), for
couplings obeying the conditions of equation (21). Beyond the red line, solutions can
no longer be described by BHs.

behaviour of ϕ0 and of the coupling function. Indeed, as mentioned in the introduction, in [6]
the authors follow the fundamental scalarized branch all the way to vanishing masses.

To further explore the small mass limit of EsGB BHs, consider again the field equations
given in appendix B, where we note that a closed-form expression for δ ′(r) can be obtained
by a simple algebraic manipulation of the (r, r) equation. Substituting the value of δ ′ onto the
other field equations we can further rewrite the whole system of field equations in matrix form9

Mx ′ = b (29)

where M and b are a 2× 2 matrix and a 2× 1 column vector respectively, whose compon-
ents are given in appendix B, and x= [ f(r) ϕ ′(r)]T. Given the above system of equations, and
appropriate initial conditions at some point r= r0, the existence theorem asserts that a solution
to the Cauchy problem to extend our solution to a neighbouring point r1 will exist if (see e.g.
[53], which also studies the singularity structure of dilatonic BHs)

detM|r=r0 ̸= 0. (30)

Therefore if a point r= r∗ exists such that the determinant of M vanishes, the system of
field equations will be ill-posed at that point. The existence of such a point would indicate
the presence of a coordinate or physical singularity, whose nature would have to be studied
by other means. From a numerical point of view, any standard strategy used for numerical
integration will stop before r∗. The determinant ofM in equation (29) is given explicitly by

detM=
f
(
α3f 3 A+α2f 2 B+αfC+D

)
2r4

(
α(1− 3f)ϕ ′ξ̇+ 2r

)2 (31)

9 Here we have used the (t, t) and the scalar field equations.

9
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where the expressions for A,B,C,D are again given in appendix B. A simple examination of
the determinant (31) reveals the existence of two zeros at the locations where f(r) = 0, and
where

α3f 3 A+α2f 2 B+αfC+D = 0. (32)

The first, is related to the location of the event horizon (r∗ = rH) and the correspondent sin-
gularity is a coordinate one. The second case is more intricate, and is related to a curvature
(physical) singularity, as we will see.

As a toy model to help us understand this singularity, consider equation (32) for a Schwar-
zschild background. This can be seen as the zeroth order solution in an expansion in α of the
dilatonic and linear EsGB models. The solution is

r∗ = 61/6 (Mα)
1/3

. (33)

Similarly to the analytical example in equation (10), we observe that, at least for very
small couplings, there is a singularity obeying (approximately) a proportionality relation
rs ∝ (Mα)

1/3.
Let us now explore the behaviour of equation (32) near the event horizon of a EsGB BH.

Using the same near-horizon expansion as before (equation (24)), we observe that

α3f 3 A+α2f 2 B+αfC+D =−4 r5H

(
1− (rminH /rH)

4

+
√
1− (rminH /rH)4

)
+O(ϵ), (34)

where rminH was defined in equation (27). Thus we observe that equation (32) vanishes at the
event horizon if rH = rminH , indicating the presence of a singularity (other than the typical
coordinate one). Therefore, we conclude that in the limit rH → rminH , an overlap of the curvature
singularity and the event horizon occurs.

In the following sections we will explore the small mass limit of EsGB BHs in more detail,
utilising non-linear numerical solutions, and taking their inner structure into account.

4.1. Physical quantities of interest

To numerically integrate the field equations in order to obtain the BH solutions, we match the
near-horizon expansion of equation (24) with the appropriate asymptotic behaviour in far field
(r→∞) limit:

f(r) = 1− 2M
r

+O
(
r−2
)
, δ(r) =O

(
r−2
)
,

ϕ(r) =
Qs

r
+O

(
r−2
)
, (35)

where M is the ADM mass and Qs the scalar charge of the solution.
Horizon quantities of physical interest include the Hawking temperature TH , the horizon

area AH , and the entropy S. For the line element (6) these are given by

TH =
1
4π

f1e
−δ0 , AH = 4πr2H, (36)

S=
1
4
AH+

α

8

ˆ
H
d2x

√
hξ (ϕ)R(2) =

1
4
AH+παξ (ϕ0) (37)

10
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where h is the determinant of the induced metric on the horizon, and R(2) its Ricci scalar [74].
The horizon and asymptotic quantities are related by a Smarr-type relation given by [74, 75]

M+Ms = 2THS, (38)

where

Ms =− 1
4π

ˆ
d3x

√
−gξ(ϕ)

ξ̇(ϕ)
□ϕ. (39)

For the dilatonic coupling (18) the above relation simplifies toMs = Qs/γ. Furthermore, it can
be shown that for the linear coupling (19) the following condition holds [76]

Qs = 2παTH. (40)

These conditions can be used to estimate the accuracy of our numerical method.
Once again, an interesting remark can be made about the Hawking temperature, that in the

small mass/size limit gives

lim
rH→rminH

TH =
e−δ0

2πrminH

> 0 (41)

and thus, as in the case of section 2, evaporation will not halt in the small mass limit and the
BH will continue to lose its mass at a rate given by equation (15), posing a potential threat to
cosmic censorship10.

4.2. Numerical method

We now compute numerical solutions to the field equations. We use a Runge-Kutta-45 ordin-
ary differential equation solver and implement a shooting method for the parameter ϕ0 such
that the asymptotic expansions are matched. In more detail, the near horizon expansion of
equation (24) is used to set initial conditions for a numerical integration, with the only free
parameter being ϕ0 (once rH and α are fixed). The field equations are then integrated from the
horizon outwards to large r, the result is compared with the asymptotic expansion at large r,
ϕ0 adjusted, and the procedure repeated until the results of the numerical integration match the
asymptotic expansion. Finally, using the results for the shooting parameters, the field equations
are integrated from the horizon inwards to probe the internal structure of the BH. We mon-
itor curvature scalars such as the Ricci and GB scalars throughout the domain of integration,
along with the determinant presented in equation (31). To test the accuracy of the numerical
solutions we use the relations (38) and (40). We remark that errors are on the order of 10−8.

4.3. Numerical results

Using the numerical algorithm described, we have explored the linear (19), dilatonic (18) and
quadratic exponential (22) couplings. For the latter, we explore several values of β.

4.3.1. Linear and dilatonic couplings. For the linear and dilatonic couplings, by monitoring
the Ricci and GB scalars, a finite radius singularity was always found at a radius r= rs > 0
inside the horizon, whose value ultimately depends on the ratio between the horizon radius

10 See however [77] (and [78] for a review) where a similar situation occurs for charged dilatonic BHs in the Einstein–
Maxwell-scalar theory, but where cosmic censorship holds nonetheless.

11
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Figure 3. Determinant presented in equation (31) for the solution of the plot on the
left in figure 4. We observe that detM has two zeros, one at the event horizon (blue
dot-dashed line) and another at the singularity rs (red dashed line).

Figure 4. Metric functions and scalar field for two different values of rH/
√
α. The blue

vertical line denotes the event horizon, while the red one denotes the location of the
finite radius singularity rs.

and the coupling α. The singularity is located where detM in equation (31) vanishes inside
the event horizon, as observed in figure 3.

In figure 4, we plot the metric functions along with the locations of rs and rH for several val-
ues of rminH /rH. As the horizon radius approaches rminH (as one would expect to happen dynamic-
ally as Hawking evaporation proceeds), the horizon and the singularity overlap, and numerical
solutions reveal divergences of the curvature invariants, derivatives of the metric functions and
the scalar field. That the location of rs and rH overlap when rH → rminH is in agreement with our
analytical exploration shown in equation (34), and is similar to the behaviour observed in the
analytical example of section 2 (cf figures 1 and 5, right).

The domains of existence were constructed for both couplings, and can be observed in
figure 5 (left), where each point on the dashed and dot-dashed lines represent a numerical BH
solution. Note that the domains of existence end at the red line, where rH = rminH . Assuming
that Hawking radiation gradually reduces the mass of a BH (and hence rH) for some fixed α,
but that our numerical solutions instantaneously remain an accurate approximation, we see

12
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Figure 5. On the left we observe the domain of existence of BHs for the exponential
(dashed line) and linear (dot-dashed line) couplings, delimited by the singular line in red.
The intersection of the red line with the black ones denote the point in the domain where
the finite radius singularity and the event horizon overlap, as rH → rminH , as observed in
the figure on the right, for both couplings.

that the fate of all BHs for both these couplings is to follow the lines on figure 5 and to always
to reach the red line.

4.3.2. Quadratic exponential (spontaneous scalarization) coupling. Consider now the coup-
ling of equation (22).Wewill perform a similar analysis as before, for several values of β. Note
that higher values of β suppress scalarization. The domains of existence for β = 1,3,6 can be
observed in figure 6 on the top left. We observe that for the β= 1 case, the domain of existence
of solutions is similar to the dilatonic and linear coupling cases, where the location of the hori-
zon and singularity overlap as the BH shrinks, terminating in a critical solution. However, for
β= 3 and 6, the domain of existence is radically different from the previous cases, as solutions
never reach the singular (red) line, allowing the BH to shrink to rH ∼ 0. This is possible due
to the dependence of rminH on the value of the derivative of the coupling function at the horizon
(as in equation (27)), and this behaviour was observed for values

β > βcrit ≈ 2.33125, (42)

while for lower values the black line would intersect the red one, the domain of existence
ending in a critical solution.

The behaviour of the inner finite radius singularity is rather curious for β > βcrit. We find
there exists a finite radius singularity with rs > 0 only until to a certain value of rH/

√
α, below

which there is no singularity other than at the origin. This is shown in figure 6 (top right)
for β= 3, where the dashed line show the part of the domain of solutions where rs > 0 and
the solid line the part for which rs = 0. The transition is abrupt as shown in figure 6 (bottom
left), where the location of rs is plotted as a function of rH . On the bottom right in figure 6
we plot the location of the jump for a range of β. We have performed simulations for very
large β ofO

(
102
)
, and observed that the finite radius singularity exists only in a narrow of the

domain of existence. For example, for β= 100 the finite radius singularity exists only from
rH/

√
α≈ 0.83 (as in equation (23)) down to rH/

√
α≈ 0.828, and the maximum value of rs/rH

is about 0.5.
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Figure 6. (Top Left) Domain of existence of spontaneously scalarized solutions for
β = 1,3,6. For values β < βcrit, the characteristics of the domain of existence are similar
to those of the dilatonic and linear couplings, where the inner singularity and the hori-
zon overlap as the BH shrinks. For larger values of β, solutions never reach rH = rminH ,
and can shrink all the way down to rH = 0. (Top Right) Behaviour of the inner finite
radius singularity for β= 3. A finite radius singularity with rs > 0 exists only until
the BH shrinks to a certain rH/

√
α value, beyond which there is no singularity other

than at the origin. This can be observed at the bottom figure (left). The location where
the jump in the singularity behaviour occurs is presented in the bottom right, for a
range of β.

On figure 7 we observe a fiducial numerical BH solution (along with other relevant quant-
ities) for which there is no finite radius singularity. Note that detM is strictly positive inside
the event horizon. From a physical point of view we note that, as seen by the profile of the
radial pressure pr in figure 7 (right), repulsive effects are maximum near the turning point of
detM. The determinant then gets further away from zero as the repulsive effects get gradually
weaker further inside the horizon.

An intuitive view onHawking evaporation for this couplingwould be the following. Starting
from a (sufficiently large) Schwarzschild BH, Hawking radiation will gradually reduce the
mass of the BH (for some fixed α), until the condition of equation (23) is met. A tachyonic
instability would then settle in, leading to dynamical scalarization of the Schwarzschild BH.
The new scalarized solution will itself evaporate, with the endpoint now depending on the
value of β. If β < βcrit, the picture would be not too different to that of the dilatonic and linear
couplings explored in the previous sections and references [57, 58], where the formation of a
naked singularity is expected. However, if β > βcrit, the evaporation process is expected to be
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Figure 7. On the left we observe a fiducial BH solution with no finite radius singularity
(other than at r= 0). Note that detM never vanishes inside the event horizon and the
Ricci scalar is well-behaved all through the domain of integration (except at r= 0). On
the right we present the components of the stress-energy tensor ρ and pr (scaled by a
factor of 10−1 for presentation purposes) for the same solution, where we observe that
repulsive effects are maximum near the turning point of the determinant.

similar to that of a Schwarzschild BH, going all the way down to scales where quantum effects
are expected to be important on general grounds, and our theory breaks down.

Remarkably, the behaviour of the inner singularity for the quadratic-exponential coupling
shows that the critical solution end point of the domain of existence is not a generic feature of
gravitational theories with higher-order curvature terms.

5. Upper bounds on the coupling constant

If evaporation proceeds as expected the behaviour we have been illustrating indicates that the
small mass regime of EsGB theories may constrain the allowed form of couplings through self
consistency arguments. However, even if evaporation is not taken into account, the minimum
allowed size of BHs can place constraints on the strength of the allowed coupling through
observational constraints.

To do so it is important to take a different form of the action such that results are consistent
across the literature, and thus imposed on equivalent definitions of the coupling constant.When
discussing observational constraints, the action for EsGB theories is usually presented in the
following form [79–83]

S=
ˆ
d4x

√
−g
(

R
16π

− 1
2
(∇φ)

2
+αF(φ)G

)
. (43)

The mapping of the action (2) to the above parametrization can be done as

ϕ=
√
8πφ, α= 64πα, (44)

and choosing ξ(ϕ) accordingly such that it is compatible with the definition of F(φ). To be
consistent with the literature, we will constraint the coupling constant α.

For each of coupling functions, we consider the singular static solution with rH = rminH . Each
of these singular BHs will have an associated minimum mass Mmin. From our numerical BH
solutions we can extract the quantity

mmin ≡Mmin/
√
α.
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Table 1. Upper bounds on the coupling
√
α obtained using data from several different

events.

Upper bound on
√
α (km)

Event/reference Mobs (M⊙) F(φ) = φ F(φ) = eφ

GW190814 [84] 2.59 ± 0.09 0.82 ± 0.03 0.78± 0.03
[85] 3.04± 0.06 0.95 ± 0.02 0.91± 0.02
[86] 3.30+2.8

−0.7 1.04+0.89
−0.22 0.99+0.84

−0.21

GW200115 [87] 5.70+1.8
−2.1 1.80+0.57

−0.66 1.71+0.54
−0.63

Assume now that an observation was made, in which a BH was measured to have mass Mobs.
To be consistent with the description of a BH within the EsGB theory we impose that the
observed mass is greater than the allowed minimum mass

Mobs/
√
α > mmin. (45)

Therefore, reintroducing the physical constants, from the above relation we obtain the bound
√
α <

GMobs

c2 mmin
. (46)

This last equation allows us to impose an upper bound on the coupling constant for each coup-
ling function. From our numerical solutions we have extracted

mmin ≈ 4.66717, for F(φ) = φ,

mmin ≈ 4.91642, for F(φ) = eφ. (47)

Considering the case of GW190814 [84], where a compact object with amass of aroundMobs =
2.6 M⊙ was observed, and assuming it is a BH, our calculations using equation (46) give the
upper bound

√
α≲ 0.82km, for F(φ) = φ,√
α≲ 0.78km, for F(φ) = eφ. (48)

To the best of our knowledge, these constraints are the tightest constraints on α so far, with the
previous strongest upper bound being

√
α≲ 1.18km for the linear coupling [79]. Constraints

on the coupling obtained using data from other events can be found in table 1.
We have not studied constraints on the quadratic-exponential coupling in equation (22) for

several reasons. First, there is an important dependence on β, i.e. if β > βcrit, then as discussed
above, no minimum mass solutions exist and no upper bound can be imposed. Also, in the
small β limit we know solutions to be unstable [46, 47]. Secondly, there is no guarantee that
the BH in question is a scalarized BH.

Note that our results should be taken with a pinch of salt given that EsGB models are not
UV-complete. It is possible that the pathological behaviour in the small mass limit is cured
by higher-order corrections to the theory, depending on the scale they at which they become
relevant.

6. Spinning BH solutions

So far we have only studied static BH solutions. In this section we will go one step further and
explore spinning BH solutions in EsGB theories. For this we resort, once again, to numerical
integration of the field equations given in section 3. The numerical procedure we adopt follows
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closely that of [5], section 4. Namely, we consider a stationary and axi-symmetric line element
of the form

ds2 =−e2F0

(
1− ρH

ρ

)
dt2 + e2F1

(
dρ2

1− ρH
ρ

+ ρ2dθ2
)

+ e2F2ρ2 sin2 θ (dφ−Wdt)2 , (49)

where the functionsFi,W and the scalar field ϕ depend only on ρ and θ, and ρH is the location
of the event horizon in this coordinate system. The boundary conditions are implemented as
follows. Asymptotic flatness is guaranteed by imposing

lim
ρ→∞

Fi = lim
ρ→∞

W= lim
ρ→∞

ϕ= 0, (50)

while at the horizon, with the introduction of a new radial coordinate x=
√

ρ2 − ρ2H, we have

∂xFi = ∂xϕ= 0, W=ΩH, at x= 0, (51)

where ΩH is the horizon angular velocity. Axial symmetry and regularity impose

∂θFi = ∂θW= ∂θϕ= 0, at θ = 0,π. (52)

Focusing on BHs with parity reflection symmetry, we consider only the range 0 ⩽ θ ⩽ π/2,
and impose the previous boundary conditions on the equator θ = π/2 instead of θ = π. The
absence of conical singularities further imposes that on the symmetry axis F1 = F2.

The system of coupled PDEs resulting from the EsGB field equations is solved with the
FIDISOL/CADSOL solver [88–90], which implements a finite difference method together
with the root finding Newton–Raphson method. We have also independently developed a new
code to verify the accuracy of solutionswhich utilizes pseudo-spectral methods (andwhichwill
be described in a forthcoming publication [91]). The ADM mass M and angular momentum J
of the BH solutions are read of the asymptotic decay of the metric functions

gtt =−1+
2M
r

+O
(
r−2
)
, gtφ =−2J

r
sin2 θ+O

(
r−2
)
. (53)

For future convenience we define the dimensionless spin of the solutions11

χ≡ J/M2. (54)

Using the numerical method described above, in order to assess how the existence of a small
mass limit changes with spin, we have explored the domain of existence of EsGB BHs for the
linear, dilatonic, and quadratic exponential couplings.

For the dilatonic and linear couplings case (F(φ) = eφ and F(φ) = φ in equation (43)), the
domain of existence of solutions with dimensionless spins χ≲ 0.96 is displayed in figure 8
(left). The domain of existence is bounded by a critical line. As we approached the critical line
numerically, we observed a divergent behaviour on the Ricci and GB scalars e.g. on the equator
on the horizon, and the code eventually crashed. We observe that higher spins result in higher
values of the minimum allowed mass (for fixed coupling). This is not unexpected, as spin adds
another repulsive effect to the system. In turn, this translates to tighter upper bounds on the
allowed value of α, if spin is considered. Therefore, the constraints of table 1 constitute legit-
imate upper bounds. From the point of view of cosmic censorship and Hawking evaporation,
BHs in both the linear and dilatonic theories are expected to give rise to naked singularities as

11 For the case of a Kerr BH, 0 ⩽ χ ⩽ 1.
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Figure 8. (Left) Domain of existence of BH solutions in the
(
M/

√
α,χ

)
plane (shaded

region), with dimensionless spins χ≲ 0.96. The blue (red) line denotes the crit-
ical line for the linear (exponential) coupling. Note that here we used the conven-
tion of equation (43). (Right) Domain of existence of scalarized BH solutions in the(
M2/α,χ

)
plane (shaded region), with dimensionless spins χ≲ 0.8, for the coupling

of equation (22) with β= 6. The blue (red) line denotes the existence (critical) line. For
small spins (χ≲ 0.1), the absolute values that constitute the critical line should be taken
with a pinch of salt because that region of the domain is particularly difficult to explore
numerically as the mass of the solutions reach almost to zero.

their endpoint, regardless of the initial spin of the solution, again raising questions about the
consistency of these theories altogether.

We now consider the spontaneous scalarization coupling of equation (22) with the particular
value β= 6. In the static case we recall that nominimummass was observed.We find, however,
that when spin is brought into account, the picture changes and critical solutions do appear
to exist, where curvature scalars diverge e.g. on the equator on the horizon, as observed in
figure 8 (right). It is, however, unclear if the existence of rotating critical solutions changes
the self consistency of the theory from the point of view of cosmic censorship and Hawking
evaporation as it is not obvious that these solutions are ever reached. Indeed, a possibility is
that during evaporation angular momentum is emitted at a (much) larger rate than mass, such
that a rotating BH spins down to a non-rotating state (which has no critical configuration)
before most of its mass has been given up [92]. The endpoint of evaporation for this coupling
is therefore an open question and constitutes an avenue of further research.

Finally, we have obtained preliminary results for spin-induced scalarized BHs, exploring
several values of β (for the coupling of equation (22) with an overall reversed sign). In all
cases, critical solutions were reached, in agreement with the results of references [14, 15].

7. Discussion and conclusions

In this work we have explored the small mass limit of stationary (both static and spinning) BHs
in theories containing GB terms in the action. Starting with an analytical example, we explored
the small mass limit of BHs in the theory known as gravity with a generalized conformal
scalar field [59], which contains a GB term, and where static closed-form BH solutions are
known. These BHs do possess a minimum mass solution, where an inner singularity and the
event horizon overlap. The inner singularity is intimately connected with the reality condition
(that solutions must be real), because of the existence of terms containing square-roots on the
solution (as is typical in GB theories). From a more physical point of view, the singularity is
related to repulsive effects originating from the presence of the GB term in the theory.
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Later, working with a more standard framework for EsGB theories, using numerical solu-
tions of the field equations, a similar behaviour was observed for the dilatonic (18) and linear
couplings (19). A curious case concerns the quadratic-exponential coupling (22), where for
sufficiently high values of the constant β > βcrit (defined in equation (42)), no static minimum
mass solution was observed, thus showing that the existence of a critical singular BH is not a
generic prediction of theories containing GB terms. Then, from the point of view of cosmic
censorship, this quadratic-exponential model might be viewed as more realistic option. The
singularity structure for these models with β > βcrit is rather different from that of the dilatonic
and linear and merits a deeper study. Once spin is considered, critical solutions do exist, but
it is unclear if these are ever reached from Hawking evaporation. Also, for the coupling of
equation (22), scalarized BH solutions exist only for curvatures above a certain threshold, ren-
dering it particularly interesting.

Finally, we used the results concerning the minimummass solutions into account to impose
the tightest upper bounds to date on the coupling constant from observations, for both the
dilatonic (

√
α≲ (0.78 ± 0.03) km) and linear (

√
α≲ (0.82 ± 0.03) km) theory, with the

previous tightest upper bound being
√
α≲ 1.18 km [79]. Spin effects were found to only

strengthen the previous upper limits.
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Appendix A. Onset of instability and spontaneous scalarization of a
Schwarzschild BH

Let us solve the perturbed scalar field equation (20) in a Schwarzschild spacetime background
given by the line element of equation (21) with

f(r) = 1− rH
r
, δ(r) = 0, (A1)

where rH = 2M. Taking into account that the background geometry is static and spherically
symmetric, the scalar field perturbation can be separated in the following way

δϕ=
u(r)
r
e−iωtYℓ,m(θ,φ), (A2)
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where Yℓ,m(θ,φ) are the spherical harmonics. The resulting equation for the radial part takes
a Schrodinger-like form (ℓ= 0)

du
dr∗

+
(
ω2 −Veff

)
u= 0, (A3)

where dr∗ = dr/f(r) and

Veff =
(
1− rH

r

)( rH
r3

− 3 αr2H
2r6

)
. (A4)

A sufficient condition for the existence of an unstable mode (bound state as in quantum mech-
anics) is

ˆ +∞

−∞
Veff(r

∗)dr∗ =
ˆ +∞

rH

Veff(r)
1− rH

r

dr< 0. (A5)

The above condition gives rH/
√
α <

√
3/5≈ 0.774597 (or equivalently, M/

√
α≲

0.387298). Therefore Schwarzschild BHs with horizon radius obeying the previous con-
dition, should be unstable in this framework. This, in turn, can be translated into a curvature
condition: when the GB curvature at the horizon obeys

α2 GGR|rH >
100
3

,

the Schwarzschild BH should be unstable. This is only a sufficient condition for instability,
but bifurcation of solutions actually occurs for slightly smaller curvature. To find the onset of
instability we solve numerically the Schrödinger-like equation such that ω2 = 0 (when ω2 < 0
the tachyonic instability settles in). We find that the onset of instability occurs approximately
at rH/

√
α≈ 0.83. This condition imposes a boundary on the domain of existence of (spon-

taneously) scalarized solutions. This result is valid for any coupling obeying the conditions of
equation (21).

Appendix B. EsGB field equations for a static and spherically symmetric
background

For a static and spherically symmetric background (21), the field equations take the form

E tt =
f
(
3 αf ′ϕ ′ξ̇−

(
ϕ ′2 (r2 − 2 α( f− 1)ξ̈

))
+ 2 α( f− 1)ϕ ′ ′ξ̇− 2

)
− f ′

(
αϕ ′ξ̇+ 2r

)
+ 2

2r2
= 0,

(B1)

E rr =
α(3 f− 1)ϕ ′ ( f ′ − 2 fδ ′) ξ̇− 2 rf ′ + r2 fϕ ′2 + f(4 rδ ′ − 2)+ 2

2r2
= 0, (B2)

Eθ
θ = Eφ

φ =
1
2r

[
f
(
αf ′ ′ϕ ′ξ̇− 2 rδ ′2 + 2 δ ′ + 2 rδ ′ ′ − rϕ ′2

)
+ f ′

(
δ ′
(
3 r− 5 αfϕ ′ξ̇

)
+αf

(
ϕ ′2ξ̈+ϕ ′ ′ξ̇

)
− 2
)

+αf ′2ϕ ′ξ̇− rf ′ ′ + 2 αf 2
(
ϕ ′
((

δ ′2 − δ ′ ′) ξ̇− δ ′ϕ ′ξ̈
)
− δ ′ϕ ′ ′ξ̇

)]
= 0,

(B3)
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and the scalar field equation is

Eϕ =
eδ

r2

[(
r2e−δfϕ ′) ′ + α

2
ξ̇
(
( f− 1)eδ

(
e−2δf

) ′) ′
]
= 0, (B4)

where the primes denote a derivative with respect to r.
Once a closed-form expression for δ ′ is obtained by solving E rr, taking the E tt and Eϕ

equations, the above system can also be written in matrix form (equation (29)) with

M11 =
α(3 f− 1)ϕ ′ξ̇− 2 r

2r2
, M12 =

α( f− 1)fξ̇

r2

M21 =
8r4 fϕ ′ +α2 ϕ ′ ( f(r2(3 f(5 f− 4)+ 1)ϕ ′2 + 6 f( f+ 1)− 14

)
+ 2

)
ξ̇2 + 2 αr

(
f
(
3r2(1− 3f)ϕ ′2 − 6f+ 4

)
+ 2

)
ξ̇

4r2f
(
α(1− 3f)ϕ ′ξ̇+ 2r

)2
M22 =

f
(
αξ̇

(
4r3(1− 5f)ϕ ′ +α

(
r2( f(15 f− 8)+ 1)ϕ ′2 − 2( f(3 f− 7) + 5)

)
ξ̇
)
+ 8r4

)
+ 2 α2 ξ̇2

2r2
(
α(1− 3f)ϕ ′ξ̇+ 2r

)2
b1 =

f
(
ϕ ′2 (r2 − 2 α( f− 1)ξ̈

)
+ 2

)
− 2

2r2

b2 =
αξ̇

(
f
(
−2 α( f− 1)(3 f− 1)ϕ ′2 ( f(r2 ϕ ′2 − 2

)
+ 2

)
ξ̈+ f

(
r4(5 f− 1)ϕ ′4 + 4r2(21 f− 5)ϕ ′2 − 12f+ 28

)
− 20

)
+ 4

)
4r2 f

(
α(1− 3f)ϕ ′ξ̇+ 2r

)2
+

−4r3 fϕ ′ ( f(r2 ϕ ′2 + 6
)
+ 2

)
− 4 α2 rf 2( f(15 f− 8)+ 1)ϕ ′3ξ̇2

4r2 f
(
α(1− 3f)ϕ ′ξ̇+ 2r

)2 . (B5)

The values appearing in equation (31) are

A= 3 ϕ ′ (5r2 ϕ ′2 − 4
)
ξ̇3,

B =−6 ξ̇2
(
6r3 ϕ ′2 +αϕ ′ (r2 ϕ ′2 − 4

)
ξ̇− 2r

)
,

C = ξ̇
(
αϕ ′ξ̇+ 2r

)(
14r3 ϕ ′ −α

(
r2 ϕ ′2 + 12

)
ξ̇
)
,

D =−4 r
(
2r4 +αξ̇

(
r3 ϕ ′ − 3 αξ̇

))
. (B6)
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