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Abstract

This paper presents the first experimental validation of the stability analysis based on the online measurement of harmonic

impedances exploiting the Linear Time Periodic (LTP) approach, applied to AC networks of power converters. Previous publications

have provided the theoretical framework for the method, enabling the stability assessment of an unknown system adopting a black-

box approach, relying only on injected perturbations and local measurements. The experimental case study considered in this paper

comprises two single-phase converters, one acting as source subsystem and the other as load subsystem. A third converter, the

Stability Measurement Unit (SMU), is controlled to inject small current perturbations at the point of common coupling (PCC).

From the measured small-signal perturbations of PCC voltage, source current and load current, the harmonic impedances of source

and load subsystems are calculated. The LTP Nyquist Criterion is then applied to the ratio of the two harmonic impedances in

order to assess the stability of the whole system. Theoretical and experimental results from a 5 kW laboratory prototype are

provided and confirm the effectiveness of the method. In addition, the measurements do not require sophisticated equipment or

control boards and can be easily performed from data sampled by commercial micro-controllers.

Index Terms

Linear Time Periodic Systems, Harmonic State Space Model, Harmonic Impedances, LTP Nyquist Criterion, Stability Analysis

I. INTRODUCTION

STABILITY analysis of interconnected power systems has been an interesting and challenging topic for researchers in

the past decades, and it is still nowadays an open field for research [1], [2]. One of the first investigations presented

in the literature was provided by Middlebrook [3], who analysed the instability issues due to interactions between DC/DC

converters and their input filters. The linearised input and output impedances of the system were first evaluated and the Nyquist

Criterion was then applied to assess the stability of the system. This approach was then extended to AC power converters by
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Belkhayat [4], with focus on balanced three-phase AC systems. Exploiting the Park transformation, the system is represented

in dq reference frame, hence becoming a MIMO linear system. Then, stability is assessed by applying the Generalised Nyquist

Criterion [5].

This, however, is only one of the possible stability-assessment methods [6]. With a focus on balanced three-phase systems,

other approaches are: Harmonic Linearisation [7], where a small-signal perturbation is injected into the system in order to

measure the small-signal source and load impedances. Stability is then assessed based on the ratio of the two impedances.

Dynamic Phasors, with extension to multi-source and multi-frequency scenarios [8]. DQ-reference frame [9], where it has

been demonstrated that for a high power factor system, the only relevant impedance matrices are the dd and qq ones, allowing

a simplification of the whole system as two decoupled DC subsystems. Sequence Domain Method [10], which is based on

the calculation of the positive and negative sequence impedances and has a relevant connection with the dq-frame approach

[11]. Unified Impedance Model [12], where the system impedances and calculations are proposed in the αβ-domain. Finally,

the Harmonic State Space, where one of the advantages is that also the switching behaviour can be taken into account in the

analysis [13].

In general, some of the aforementioned approaches cannot be directly applied to analyse single-phase systems. In this case,

the Dynamic Phasor method can be used considering the real and imaginary parts of the phasor in order to build 2 × 2

impedance matrices and use the Generalised Nyquist Criterion [14]. Also the Harmonic Linearisation method [15] can be

applied following a similar approach. In the Apparent Impedance method [16], only the impedance at the measuring point

is evaluated, it being effectively a closed-loop transfer function that contains information about stability. Another option is

the Harmonic Linearisation defined using signal-flow graphs [17], providing a visual tool in order to understand the various

harmonic interactions. Harmonic State Space, which is based on the Linear Time Periodic (LTP) systems theory [18], [19],

[20], also provides a straightforward relationship between the various harmonic components of the system.

Focusing on a single-phase scenario, this paper proposes the experimental validation of the Harmonic State Space (HSS)

method in combination with the LTP Nyquist Criterion, already presented in detail in [21]. In the previous publication, the

ability of the method to assess stability of a black-box single-phase AC system was demonstrated theoretically and in simulation

but not experimentally. To fill the gap and prove the practical feasibility of the method, this paper presents its experimental

implementation in the same system configuration as discussed in [21]. The case study includes a source and load converter:

the source controls the AC voltage of the network and the load controls the current absorbed with unity power factor. The

Harmonic Impedances of both subsystems are measured through small-signal current perturbations injected at the PCC by a

third converter referred to as the SMU – Stability Measurement Unit. Then the LTP Nyquist Criterion is applied to the ratio

of the two Harmonic Impedances in order to assess the stability of the whole system.

The comparison with other existing techniques, the theoretical analysis and an extensive set of simulation results have been

already presented in [21]. Hence, this paper is solely intended to discuss the experimental validation of the method. For this

reason, the focus will be more on the practical aspects required to apply the technique and replicate the results rather than on

the theoretical details, for which the reader is invited to refer to [21].

This paper is organised as follows: Section II describes the AC system under analysis and the SMU; Section III provides
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a practical review of LTP theory and the Harmonic Impedance measurement method; Section IV presents an extensive set of

experimental results from the case study; Section V discusses advantages and challenges and Section VI concludes the paper.

II. EXPERIMENTAL SYSTEM: SOURCE, LOAD AND SMU CONVERTERS

The case study for the experimental validation of the stability analysis based on LTP Nyquist Criterion and Harmonic

Impedances is reported in Fig. 1, and is the same as used in [21]: a source converter with inner current loop and outer voltage

loop that controls the PCC voltage and a load converter that draws a controlled current synchronised with the PCC voltage

via a DQ Phase-Locked Loop (PLL). Compared to the system in [21], the small current injection is now implemented by a

real converter with closed-loop current control (SMU).

From Fig. 1 it can be seen that control complexity has been deliberately kept to the bare minimum, using only PI controllers

and feed-forward terms. The reason is that the focus of the work is on the implementation of the black-box stability analysis

method rather than on the performances of the AC system, which is generally unknown to the SMU. In addition, showing

that the method is effective even with a simple hardware and control architecture for the SMU demonstrates its ease of

implementation, which does not require complex hardware or sophisticated controllers for current injection.

The load and source H-bridge converters are custom designs using IXYS IXFK120N65X2 power mosfets switching at

f
source/load
pwm = 10 kHz. The load current has been limited to iloadrms = 30 A. Three-level modulation is used with double update

at 20 kHz, also corresponding to the sampling frequency. All the controllers for source and load converter are implemented

in the same control platform, a Texas C6713 DSP with custom FPGA interface, and have been designed in the continuous

time domain (as in [21] and in Fig. 1) for a phase margin PM = 60o and later discretised using the Tustin method. Source
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Fig. 1. Case study: single-phase power-converter-based AC network with Stability Measurement Unit (SMU).
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Fig. 2. Experimental rig.

converter bandwidths are BW source
i = 830 Hz and BW source

v = 333 Hz for current and voltage loop respectively. Load

converter current bandwidth is BW load
i = 1 kHz and PLL bandwidth is BWPLL = 5 Hz.

To minimise complexity, the SMU H-bridge uses the same power boards developed for the source and load converters

but replacing the switches with Infineon IPX65R110CFD mosfets switching at fSMU
pwm = 20 kHz. Also here three-level

modulation is used with double update and sampling at 40 kHz. The SMU is controlled by a Texas F28377SMCU completely

independent from the source-load controller. The current control has been designed for PM = 60o and BWSMU
i = 2 kHz.

The SMU is also connected to a host PC, which through a dedicated Matlab script provides the reference signal for the

injections, stores the measured signals with a 20 kHz sampling frequency (one every two samples used by the SMU current

control) and finally calculates the LTP Nyquist plot once all the data is collected. The scope of this first implementation is to

validate the proposed impedance measurement method and demonstrate that measurements are feasible in practice also having

a relatively simple hardware and control software. On the other hand, the SMU has been designed as a fully independent and

automated unit, to be as close as possible to a dedicated measurement equipment. The SMU itself, its control and the overall

implementation of the harmonic impedance measurement can be greatly improved in terms of measurement speed, data storage

requirements, signal to noise ratio and minimum amplitude of injected signal to obtain correct results. All these analyses and

optimisations are currently ongoing.

A photo of the experimental rig, excluding the controllers, is shown in Fig. 2. The remaining system parameters, including

the controller gains referred to the continuous-time control design, are reported in Table I. Some of the parameters are slightly

different from those previously used in [21] due to laboratory constraints.

In order to avoid repetition, the system equations and most of the LTP theoretical analysis will not be reported in this paper

and the reader is invited to refer to [21] for a detailed analysis.

III. BASIC PRACTICAL REVIEW OF LTP THEORY

In this Section the basic tools required to perform LTP stability analysis are briefly discussed. For a detailed review, the

reader should refer to the original formulation presented by Wereley and Hall [22], [23]. Given the single-phase system in Fig.
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TABLE I. Experimental System Parameters

Voltages v∗o(t) = 115
√

2 sin(2π50t) V, fg = 50 Hz

VDC1 = VDC2 = VDC3 = 250 V

Current iref (t) = −Iref cos(θ) A, θ from PLL

minus sign: power-flow towards load

PWM and f
source/load
pwm = 10 kHz, fsource/loads = 20 kHz

sampling fSMU
pwm = 20 kHz, fSMU

s = 40 kHz

Dead-Time Tdt=1 µs (not compensated)

Filters L1 = 2.9 mH, RL1 = 0.26 Ω, C1 = 22 µF,

RC1 = 0.7 Ω, L2 = 0.88 mH, RL2 = 0.1 Ω,

Lx = 20 mH, RLx = 0.29 Ω

Controllers [kp1, ki1] = [0.022,10.95], [kp2, ki2] = [27.2,493.48]

in Fig. 1 [kp3, ki3] = [0.043,55.77], [kp4, ki4] = [0.061,49.20]

[kpx, kix] = [1,700], D → see [21]

1, the linearisation around its steady-state leads to the Linear Time Periodic (LTP) model

˙̃x(t) = A(t)x̃(t) +B(t)ũ(t), ỹ(t) = C(t)x̃(t) +D(t)ũ(t), (1)

where A(t), B(t), C(t) and D(t) are T -periodic, and T is the period of the steady-state, T = 1/fg = 20ms in the case study.

Exploiting the Exponentially Modulated Periodic (EMP) signal and the Toeplitz transformation, the Harmonic State-Space

Model (HSSM) of the system is derived as

sX = (A−N )X + BU , Y = CX +DU , (2)

with N = diag(. . . , N−n, . . . , N−1, N0, N1, . . . , Nn, . . . ), Nn being a diagonal square matrix of the same dimension as An

with diagonal coefficients equal to jnωg . A is the Toeplitz transform of A, defined as

A = T
[ A(t)︷ ︸︸ ︷

+M∑
n=−M

Ane
jnωgt

]
=



: : :

·· A0 A−1 A−2 ··

·· A1 A0 A−1 ··

·· A2 A1 A0 ··

: : :


, (3)

where M is the truncation order limiting the dimension of A to 2M +1. The same considerations hold for B, C, D. Stability

analysis could now be performed by evaluating the eigenvalues of the A−N matrix. However this requires a knowledge of

the system parameters, which is not available when a black-box assessment is required.

From (2), the Harmonic Transfer Function (HTF) of the LTP system is defined through

Y = H(s)U , H(s) = C [sI − (A−N )]
−1 B +D. (4)

In order to apply the LTP Nyquist Criterion and assess stability with a black-box approach, the Harmonic Impedances must

be measured. To do so, a small-signal current perturbation is injected by the SMU at the PCC, as in Fig. 3. The impact of
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Fig. 3. Small-signal current injection at the PCC and harmonic impedances.

an injected perturbation into the system requires careful consideration. In fact, when ĩx(t) = Ix cos(ωinjt) is injected by the

SMU, the PCC voltage and the source/load current perturbations can be written in Fourier form with truncation order M :

p̃(t) =

+M∑
n=−M

p̃ne
j(ωinj+nωg)t, (5)

with p̃(t) = ṽo(t), ĩsource(t), ĩload(t), respectively. Thus, the source harmonic impedance at ωinj satisfies

ṽo,−M (ωinj)

:

ṽo,−1(ωinj)

ṽo,0(ωinj)

ṽo,+1(ωinj)

:

ṽo,+M (ωinj)



= Zsource(jωinj)



ĩsource,−M (ωinj)

:

ĩsource,−1(ωinj)

ĩsource,0(ωinj)

ĩsource,+1(ωinj)

:

ĩsource,+M (ωinj)



, (6)

with ωinj ∈ (−ωg/2,+ωg/2) [21]. Written in a more compact notation, vo(ωinj) = Zsource(jωinj)isource(ωinj), and also

vo(ωinj) = Zload(jωinj)iload(ωinj).

In general, the harmonic impedance will be of the form (7), which is a square matrix of dimension 2M + 1 and where x

stands for either source or load. A possible solution to measure these impedances at the frequency ωinj , is to perform a set

of 2M + 1 independent small-signal current injections:

• n=1: the first injection is ĩx(t) = Ix cos((ωinj −Mωg)t). ṽo(t), ĩsource(t), ĩload(t) are measured and represented by

their Fourier series as in (5) and their complex harmonic coefficients are collected into the column vectors v(−M)
o (ωinj),

i
(−M)
source(ωinj), i

(−M)
load (ωinj) as in (6).

• · · ·

• n=M+1: the intermediate injection is ĩx(t) = Ix cos(ωinjt), and the perturbed signals provide the vectors v(0)o (ωinj),

i
(0)
source(ωinj), i

(0)
load(ωinj) as in (6).

• · · ·

• n=2M+1: the last injection is ĩx(t) = Ix cos((ωinj +Mωg)t), and the perturbed signals provide the vectors v(+M)
o (ωinj),

i
(+M)
source(ωinj), i

(+M)
load (ωinj) as in (6).
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Zx(jωinj) =



Z0
x(j(ωinj −Mωg)) · ·

:
. . .

. . .
. . .

Z0
x(j(ωinj − 1ωg)) Z−1

x (jωinj) Z−2
x (j(ωinj + 1ωg))

Z1
x(j(ωinj − 1ωg)) Z0

x(jωinj) Z−1
x (j(ωinj + 1ωg))

Z2
x(j(ωinj − (1)ωg)) Z1

x(jωinj) Z0
x(j(ωinj + (1)ωg))

. . .
. . .

. . . :
· · Z0

x(j(ωinj +Mωg))


(7)

These vectors are then rearranged into matrices as

Vo(ωinj) =

[
v
(−M)
o · · · v

(0)
o · · · v

(+M)
o

]
Isource(ωinj) =

[
i
(−M)
source · · · i

(0)
source · · · i

(+M)
source

]
Iload(ωinj) =

[
i
(−M)
load · · · i

(0)
load · · · i

(+M)
load

]
(8)

and finally the source and load harmonic impedances at ωinj are calculated as

Zsource(jωinj) =Vo(ωinj)
[
Isource(ωinj)

]−1

Zload(jωinj) =Vo(ωinj)
[
Iload(ωinj)

]−1
. (9)

This procedure has to be performed for each ωinj ∈ (−ωg/2, ωg/2) that has been chosen to reconstruct the LTP Nyquist plot

experimentally.

Now, from Fig. 3, the LTP Nyquist plot is obtained by evaluating the eigenvalues of the open-loop HTF F(jωinj), which

is equal either to F(jωinj) =
[
Zsource(jωinj)

]−1Zload(jωinj) or F(jωinj) =
[
Zload(jωinj)

]−1Zsource(jωinj). The stability

of the system is assessed using the following theorem.

Fig. 4. LTP Nyquist contour plot in the complex plane. Red crosses - poles of the open-loop HTF, either Z−1
source(s)Zload(s) or Z−1

load(s)Zsource(s).

Theorem: consider the open-loop harmonic transfer function F(jωinj) and assume that it has no unobservable or uncon-

trollable right-half-plane poles. Then, the LTP system (1) is stable if and only if the LTP Nyquist plot of the eigenvalues

of Z−1
source(s)Zload(s) (or Z−1

load(s)Zsource(s)), for s = jω and ω ∈ [−ωg/2, ωg/2], has a number of counter-clockwise

encirclements of the critical point (−1, 0) in the complex plane equal to the number of poles of Z−1
source(s)Zload(s) (or

Z−1
load(s)Zsource(s)), included within the LTP Nyquist contour plot, as shown in Fig. 4 [22].
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IV. EXPERIMENTAL BLACK-BOX STABILITY ASSESSMENT

In this section, the Harmonic Impedance measurement method and the LTP Nyquist Criterion discussed in Section III are

applied to the experimental case study discussed in Section II. The proposed method has been developed as a black-box

stability assessment, since it relies only on current injections and measured perturbations and does not require any of the

system parameters. For the sake of completeness, the results of the black-box stability assessment are also compared with the

analytical prediction based on the nominal values of the system parameters and on the LTP model in [21]. In the following,

two configurations are analysed:

• CASE A: stable mode with the parameters in Table I;

• CASE B: bounded unstable mode, with a steady-state high-frequency oscillation in all the waveforms.

The experimental measurement of the Harmonic Impedances has been performed as discussed in Section III. ωinj has been

selected from [2, 3, 4, 5, 6, 8, 10, 12, 15, 20] Hz, which identifies 10 groups of independent measurements. Each single group

comprises 2M + 1 separate injections, with M chosen equal to 27. The first group, with ωinj = 2 Hz, thus comprises 55

different injections, i.e. abs(−1350 + 2) Hz, abs(−1300 + 2) Hz, . . . , abs(1300 + 2) Hz, abs(1350 + 2) Hz, and it allows

measurement of the Harmonic Impedances at abs[2 +m(±50)] Hz, with m = 0, 1, 2, . . . , 27. Similar considerations hold for

the other injected frequencies.

To evaluate the quality of the experimental stability assessment, analytical calculations have been performed using the LTP

model of the system (1)–(4), using the nominal parameters and truncating at M = 80. The Harmonic Impedances have been

calculated by injecting frequencies equal to ωinj = 2π[−24.9,−24.8, . . . ,−0.1, 0.1, . . . , 24.8, 24.9] rad/s.

It is important to highlight that the set of frequencies in which the harmonic impedance in (6) is measured, i.e. [2− 20] Hz

for the experiment and [−24.9, 24.9] Hz for the simulations, should not be confused with the frequency range in which the

individual impedances are estimated. In fact, the two ranges are related through the truncation order M : each point measured

in the first range generates a greater number of points in the second range. In the range considered for the experimental

validation, each ωinj leads to abs[ωinj +m(±2π50)] rad/s, with m = 0, 1, 2, . . . , 27 in the individual impedances. It is also

worth remembering that the LTP Nyquist plot for the range [−ωg/2, 0] is the complex conjugate of the one for [0,+ωg/2], so

only the evaluation of the latter is required.

In the following subsections, the two cases will be evaluated starting from the analytical prediction and comparing it with the

stability measured with the black-box approach, estimating the Harmonic Impedances and applying the LTP Nyquist Criterion.

CASE A - Stable System

In this configuration the system works in a stable operating mode, with the parameters reported in Table I. The currents iL1,

iL2 and voltage vo are reported in Fig. 5.
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Fig. 6. LTP eigenvalue loci plot from the analytical model - CASE A.

Fig. 5. Experimental data [5 ms/div] - CASE A. Currents: pink - iL1, blue - iL2; voltage: green - vo - steady-state waveforms with SMU off.

The stability of this operating mode is confirmed by the analytical LTP eigenvalue loci in Fig. 6, calculated by feeding the

nominal system parameters in the model derived in [21]. As shown in the figure, all the eigenvalues lie on the left-hand side

of the complex plane. It is worth noting that this analytical prediction is not required by the black-box stability assessment

method and has been presented here only to compare the experimental results with a theoretical prediction.

In order to apply the LTP Nyquist Criterion, first the Harmonic Impedances, Zsource(s) and Zload(s), are experimentally

measured using the small-signal current injection method previously described. As examples of waveforms during the injection,

Fig. 7-(a) shows the current and voltage waveforms when the SMU is injecting 1 A peak at 6 Hz, and Fig. 7-(b) when the

SMU injects 1 A peak at 606 Hz. The point-to-point measured Harmonic Impedances are reported in Fig. 8, where we show

only those up to order ±4 for the sake of clarity.

The set of required injections is programmed into the SMU controller and the measured perturbations are logged and post-

processed in Matlab to calculate the impedances. Then, the Harmonic Impedances are used to evaluate the open-loop harmonic

transfer function F(s) = Zsource(s)
−1Zload(s), which is shown in Fig. 9. The location of the poles of F(s) is important

to determine the number of counterclockwise encirclements that the LTP Nyquist plot must perform around the critical point

(−1, 0) for a stable system. Since the HTFs are measured point-to-point, a closed-form expression to calculate the poles is not

available. The solution adopted in this paper to overcome this limitation is to perform a curve-fitting of the single HTFs shown

in Fig. 9. In the case study, only the 0-component of F(s), i.e. F0(s), shows poles that lie inside the LTP Nyquist Contour

plot, and therefore the other components will not be discussed further. However, in general the poles of all the components of

F(s) must be checked. The fitting has been based on the package provided by Gustavsen [24], [25] and is reported in Fig. 10,

from which it is possible to locate the poles of interest, shown in Fig. 11. It can be seen that F0(s) has a pole at the origin

and a pair of complex-conjugate poles at s = 53.2± j2π50. F0(s+ jωg) has the same poles as F0(s) but with a shift equal to
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+jωg , meaning that it has poles at s = 53.2, s = 53.2+2j2π50 and s = j2π50. Similar considerations apply to F0(s− jωg).

Hence, the poles of F(s) that are inside the LTP Nyquist Contour are s = 0 and s = 53.2, so the system is stable if the LTP

Nyquist plot has two counterclockwise encirclements of the critical point (−1, 0). Please note that the phase of F0(s) starts

from a value close to −180o, which is due to a pole located in s = −1.22. However, the magnitude of F0(s) has an initial

slope of −20 dB/dec, confirming the presence of only one pole in the origin.

Finally, the LTP Nyquist plots for Case A are shown in Fig. 12: (a) and (b) show the experimentally measured plot and (c),

(d) the one calculated with the analytical model from [21]. As can be seen, the outer encirclement is derived with an infinite

enclosure. For each pole at the origin of F(s) (there is a single such pole in the present case study) half a circle must be

added between the diverging lines of the LTP Nyquist curve, according to the LTP Nyquist theory. The inner counterclockwise

encirclement, shown in the zooms in (b) and (d), provides the second required encirclement, which confirms the stability of the

system. The comparison between the zoomed plots in (b) and (d) also shows that the experimentally measured LTP Nyquist is

consistent with the analytical one, even though a full match is not to be expected since the analytical one is based on nominal

system parameters that may differ from the actual ones in the experimental rig.

CASE B - Bounded Unstable System

In the second case under analysis, the system is in a bounded unstable operating mode, obtained by reducing the phase

margin of the load converter current control. The only difference with the parameters reported in Table I is that the integral

gain ki1 has been increased to ki1 = 490. The currents iL1, iL2 and voltage vo when the SMU is off are reported in Fig. 13,

(a)

(b)
Fig. 7. Experimental data [5 ms/div] - CASE A. Currents: pink - iL1, blue - iL2, yellow - iinj ; voltage: green - vo. Current injection at (a) - 6 Hz; (b) -
606 Hz.
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(a)

(b)
Fig. 8. Experimental data: (a) Source and (b) Load Measured Harmonic Impedances - CASE A.

Fig. 9. Experimental data: measured Open-Loop HTF F(s) - CASE A.

where it can be seen that a steady-state high-frequency oscillation affects all the waveforms of the system. Such instability

does not diverge and hence does not cause tripping of the protections. The experimental evaluation of Case B follows the same

steps as the one proposed for Case A.

The unstable operating mode is also confirmed by the analytical calculation of the LTP eigenvalue loci, shown in Fig. 14,

where some of the eigenvalues lie on the right-hand side of the complex plane.

As in Case A, the first step to determine the LTP Nyquist plot is to measure the source and load Harmonic Impedances. Fig.

15 shows the current and voltage waveforms when the SMU is injecting a 1 A peak current perturbation at (a) 6 Hz and (b)

606 Hz, as examples of the current injections performed with the SMU. It can be seen that the amplitude of the oscillations

induced by the injection is bigger compared to the amplitude of those in the stable case (Fig. 7), which is consistent with
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Fig. 10. Experimental data: measured (dots) and fitted (line) Open-Loop HTF F0(s) - CASE A.

Fig. 11. Experimental data: measured pole location of the Open-Loop HTF F0(s) - two poles inside the LTP Nyquist Contour - CASE A.

the unstable nature of the system in this case. The point-to-point measured Harmonic Impedances are reported in Fig. 16. An

interesting feature that is worth pointing out is that the difference between the stable and unstable case is solely due to the

change in the integral gain of the load current control. However, this change also has the consequence that the source harmonic

impedance is different in the two cases, since the harmonic impedances are small-signal models and they change with a change

in the steady-state trajectory of the system.

The Open-Loop HTF F(s) is shown in Fig. 17, and again the fitting of only the 0-component F0(s) is provided in order to

evaluate the open-loop poles and determine the number of encirclements for the LTP Nyquist plot. This fitting is reported in

Fig. 18, and the open-loop poles are shown in Fig. 19, where it can be seen that for the unstable case there is only one pole

inside the LTP Nyquist Contour, which is a pole at the origin.

Hence, the system is stable if the LTP Nyquist plot provides one counterclockwise encirclement of the point (−1, 0). However,

as shown in the experimentally measured and analytically calculated LTP Nyquist plots reported in Fig. 20, no encirclements

of the critical point are made, confirming the unstable nature of the system in Case B.

V. DISCUSSION

The main advantage of the proposed stability analysis based on the measurement of Harmonic Impedances and LTP Nyquist

Criterion is that it is general and can be applied to different power electronic systems, both single-phase and three-phase,

balanced or unbalanced. In addition, the experimental validation provided in this paper demonstrates that the method is fairly

robust against implementation accuracy, since a good match with a theoretical prediction can be obtained with a simple
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(a)

(b)

(c)

(d)
Fig. 12. (a)-(b) Measured LTP Nyquist plot and (c)-(d) analytical prediction of the LTP Nyquist plot. Two counterclockwise encirclements of the critical point
- stable system - CASE A.

implementation of the SMU for current injection, without the need for sophisticated control structures or high bandwidth

current measurements.

Compared with other methods, like Harmonic Linearisation or Dynamic Phasor, the main advantage provided by the HSS
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Fig. 13. Experimental data [5 ms/div] - CASE B. Currents: pink - iL1, blue - iL2; voltage: green - vo - steady-state waveforms with SMU off.

approach is the possibility to include in the analysis any number of harmonic components, just by setting the truncation order.

Furthermore, due to the structure of the HTF operator, the interaction between harmonics is automatically taken into account.

This can be achieved also by the Graph Flow based Harmonic Linearisation, or by the Dynamic Phasor method were multiple

frequencies are considered. However, in these cases the mathematical derivation becomes a significant constraint and is not

always a feasible solution.

One drawback of the proposed Harmonic Impedance measurement method, in its present implementation, is the large number

of injections required to obtain accurate LTP Nyquist plots. Nevertheless, at this stage of the research this is not considered a

critical limitation since the main goal of the work is to prove the feasibility of the method. Also, in any practical implementation,

a stability monitoring system is not likely to run continuously but rather to assess stability at specific discrete time intervals,

reducing the impact of a measurement delay. If needed, there are several approaches that can be investigated in order to

improve the measurement process, making it faster and computationally more effective. Among all the possible solutions,

potential candidates are the injection of a transient to determine the impedance [26], the use of wavelets [27] or impedance

measurement techniques based on neural networks [28].

VI. CONCLUSIONS

This paper has presented a set of experimental results on a 5 kW single-phase two-converter AC network to validate

the black-box stability analysis method based on Harmonic Impedance measurements and LTP Nyquist Criterion originally

proposed in [21]. The stability assessment is based on the measurement of Harmonic Impedances through the injection of small

Fig. 14. LTP eigenvalue loci plot from the analytical model - CASE B.
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(a)

(b)
Fig. 15. Experimental data [5 ms/div] - CASE B. Currents: pink - iL1, blue - iL2, yellow - iinj ; voltage: green - vo. Current injection at (a) - 6 Hz; (b) -
606 Hz.

(a)

(b)
Fig. 16. Experimental data: (a) Source and (b) Load Measured Harmonic Impedances - CASE B.
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Fig. 17. Experimental data: measured Open-Loop HTF F(s) - CASE B.

Fig. 18. Experimental data: measured (dots) and fitted (line) Open-Loop HTF F0(s) - CASE B.

current perturbations by an external converter, the SMU (Stability Measurement Unit) whose controller defines the required

current injections and stores the measured load/source voltage and current perturbations. Stored data are then post-processed

in Matlab to assess stability. The method does not require the knowledge of the system parameters, relying only on injections

and measurements. However, to evaluate the quality of the black-box stability assessment, an analytical prediction is also

performed based on the nominal design parameters. The experimental results, shown for a stable and an unstable operating

condition, demonstrated the feasibility of the method and its good match with the analytical prediction, despite the simplicity

of the proposed implementation.

Fig. 19. Experimental data: measured poles location of the Open-Loop HTF F0(s) - one pole inside the LTP Nyquist Contour - CASE B.
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(a)

(b)

(c)

(d)
Fig. 20. (a)-(b) Measured LTP Nyquist plot and (c)-(d) analytical prediction of the LTP Nyquist plot. No counterclockwise encirclements of the critical point
- unstable system - CASE B.
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