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Abstract—Embedded grids have been increasingly adopted
into applications such as More Electric Aircraft where different
power converters are interconnected to each other. Interactions
between the grid components poses the risk of instability to
the system, more so when in the presence of reduced passive
filters. An approach of automated and scalable tuning of such
embedded grids with consideration for the dynamics introduced
by a PLL is presented in this paper. A structured state feedback
optimal control approach is proposed which enables a controller
to be synthesised is such a way that maximum performance of
the grid can be achieved, whilst guaranteeing power converter
synchronisation to the grid, and avoiding instability due to
converter interaction, and PLL dynamics.

Index Terms—Optimal Control, H2 Control, Embedded Power
Grids.

I. INTRODUCTION

In recent years, embedded power grids are becoming of
particular interest in a range of different fields, particularly
in more electric aircraft (MEA) [1]. MEA has introduced a
multitude of advantages for the aviation industry, such benefits
being a reduction in total weight, required maintenance,
increased system reliability and increased aircraft efficiency. In
order to continue maintaining the benefits from MEA, research
has been moving towards developing optimized on-board
electrical and power electronic conversion systems. These
embedded grids system are generally comprised of many
power electronic converters interconnected together along with
their associated input and output filters. One of the aims
in MEA is to reduce the total weight and size of these
systems, where 25% - 40% of the total weight is comprised
of the filters themselves [2], where reduction in filter size and
weight by optimisation is a priority [3]. This reduction in filter
and overall grid size tends to make the interaction between
interconnected converter no longer negligible which leads to
undesirable and often unstable behaviour. In order to decrease
these effects the most common approach is to increase the
size of these passive filters, but this obviously increases the
growth in the overall system and which in turn results in
increased size, weight and cost of the overall system, away
from the main goals of MEA research. Also, the fact that
nonlinear systems such as the Active Front-End (AFE) are
incorporated into the system model only further complicates
the controller design. There have been many approaches to
the development of nonlinear control systems in the past, for
instance Lyapunov methods [4], feedback linearization [5],
SISO conversion controller design [6] and passivity-based
control [7]. Though, all of these methods have only been
applied to a single converter, and not to the scale of an
interconnected grid. There has been approaches proposed in

recent literature to evaluate the stability of grids by estimating
converter impedances [8] as well as a recent investigation into
developing a global scalable control for a simple micro-grid
system [9].

Though, what hasn’t been investigated in the work presented
in [9] is an implementation of a PLL which synchronises
the AFE to the grid. In this paper, it shall be presented
how using the model shown in Fig. 1 can too a PLL which
synchronises the AFE to the grid be implemented into the
global optimization problem, such that the designed controller
not only has consideration for converter interaction, but also
the PLL influence over the system.

In order to perform this, a state-space average model
is derived. From this controller are derived by solving
a structured state-feedback problem. This study does look
at a relatively simple topology as an example, however,
the approach discussed is easily scalable to more complex
topologies, since all tuning is automated.

II. CONVERTER SYSTEM MODEL

Fig. 1 shows the system which shall be analysed in this
study. The system consists of a three-phase voltage source
inverter (VSI) which is fed by a fixed DC voltage source, along
with an LC filter on the three-phase output. The three-phase
Active Front End (AFE) rectifier is directly connected to the
AC grid set up by the VSI via an inductive filter. On the
output DC side of the AFE there is a filtering capacitor and a
load. A Phase-Locked Loop (PLL) has been implemented into
the system in order to synchronise the AFE PWM switching
actions to that of the AC grid. Two different type of AFE dc
load are analysed in the following: resistive load and constant
power load.

A. VSI Model

In order to simplify the analysis of three-phase AC
systems, a common approach to modelling is by using the
dq-synchronous frame. By use of this transformation can a
three-phase AC system be modelled by two coupled DC
systems. Fig. 2 shows the resulting small-signal DQ model

Fig. 1: VSI-AFE system with integrated PLL
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Fig. 2: Small-signal DQ model of VSI converter

for the VSI, whilst Fig. 3 shows the same transformation
performed on the AFE [10]. From these figures, can state
equations be developed using Kirchoff’s current and voltage
laws. (1) shows the developed state equations for the VSI.

İid = −R
L
Iid + ωIiq +

Vcd
L
− md

2L
Vdci (1a)

İiq = ωIid −
R

L
Iiq −

1

L
Vcq +

mq

2L
Vdci (1b)

V̇cd =
1

C
Iid + ωVcq −

1

C
Iad (1c)

V̇cq = −ωVcd +
1

C
Iiq −

1

C
Iaq (1d)

Iid and Iiq is defined as the output inductor currents on
the VSI for the corresponding d- and q- frames. Vcd and
Vcq represent the output capacitor voltage on the VSI for the
corresponding d- and q- frames. C, L and R correspond to
the values of the filter capacitance, inductance and intrinsic
resistance of the filter. ω represents the angular frequency of
the output AC grid produced by the VSI. The modulation
indexes for both the d- and q- axes are defined by md and
mq respectively.

B. AFE Model: Resistive load

By similar approach to previous subsection, the state
equations in (2) for the AFE can be developed.

İad = −Ra
La

Iad + ωIaq +
Vcd
La
− pd

2La
Vdc (2a)

İaq = −ωIad −
Ra
La

Iaq +
Vcq
La
− pq

2La
Vdc (2b)

V̇dc =
3

4Ca
(Iadpd + Iaqpq)−

1

RLCa
Vdc (2c)

Iad and Iaq are defined as the input filter inductor currents
to the AFE in the corresponding d- and q- frames, and Vdc
denotes the DC-Link output voltage. Ca, La and Ra are
the values of the DC-Link capacitance, filter inductance and
intrinsic filter resistance. pd and pq are the modulation indexes.

In system (2) the following equilibrium points exist:

Fig. 3: Small-signal DQ model of AFE converter

p∗d =
2Vcd − σ√

RL

Vdca
p∗q = − Laωσ

Ra
√
RLVdca

I∗ad =
σ

2Ra
√
RL

σ =
√
RLVcd ±

√
RLV 2

cd −
8RaV 2

dca

3

(3)

It is important to note that the system has two equilibrium
points. To minimize the load current being outputted by the
system, the equilibrium point resulting with the minimum Iad
shall be used hereafter.

C. AFE Model: Constant Power Load

An important case to consider is the case when the
DC-Link is to power a constant power load (CPL). A good
representation of a motor drive system loaded at the output of
the converter. In order to incorporate the CPL into the system
model, only an adaptation of (2c) is required, which results
in:

V̇dc =
3

4Ca
(Iadpd + Iaqpq)−

Pl
CaVdca

(4)

where Pl represents the desired steady state load power.
Also the system steady-state equilibrium points change,

giving

p∗d =
Vcd + σ

Vdca
p∗q = −Laω(Vcd − σ)

RaVdca

I∗ad =
Vcd − σ

2Ra

σ =

√
V 2
cd −

8PlRa
3

(5)

Where, as with the resistive load case, the above equations
results in the minimization of Iad.

III. PLL STATE-SPACE IMPLEMENTATION

PLL’s are an integral part in ensuring that interconnected
power converters are fully synchronised to the AC grid. They
are essential for ensuring the good power flow from grid to the
load. A common approach is to use Synchronous Reference
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Fig. 4: Three-Phase SRF-PLL Block Diagram

Fig. 5: Angle of operation between the grid and converter

Frame Phase-Locked Loops (SRF-PLL) to synchronise these
grid tied converters [8]. A block diagram of a three-phase
SRF-PLL is shown in Fig. 4 and its equations are[

V cd
V cq

]
= Tθc

[
Vα
Vβ

]
=

[
cos(θc) sin(θc)
− sin(θc) cos(θc)

] [
Vα
Vβ

]
(6)

{
θ̇c = KpV

c
q + xi

ẋi = KiV
c
q

(7)

where Vα and Vβ are the sinusoidal grid voltages in the
quadrature reference frame, θc is the estimated grid angle and
xi is the PLL integral state.

To analyse how PLL affects system stability, it is convenient
to rewrite it in terms of an error angle. Fig. 5 shows the relation
between the grid synchronous angle (θ0) and the one estimated
by AFE (θc). Defining the angle between the two reference
frames as

θe := θc − θ0 (8)

it is possible to rewrite (6) and (7) as[
V cd
V cq

]
= Tθe

[
V 0
d

V 0
q

]
=

[
cos(θe) sin(θe)
− sin(θe) cos(θe)

] [
V 0
d

V 0
q

]
(9)

{
θ̇e = KpV

c
q + xi + ω0

ẋi = KiV
c
q

(10)

where ω0 is the grid pulsation. The PLL error model is
reported in Fig. 6. Substituting (9) in (10) and dropping the
exogenous input ω0{

θ̇e = −Kp sin(θe)V
0
d +Kp cos(θe)V

0
q + xi

ẋi = −Ki sin(θe)V
0
d +Ki cos(θe)V

0
q

(11)

Equation (11) describes PLL dynamic in the angle error
domain. In the case of our system, the PLL is locked to the
output capacitor voltages of the VSI. Therefore

Fig. 6: PLL error model

V 0
d = Vcd, V

0
q = Vcq (12)

During transients, the presence of the PLL affects the
interaction between AFE and VSI dynamics. Assume the
following case study; if the AFE is leading in angle with
respect to the grid as shown in Fig. 5, VSI terms which appear
in the AFE state-space equation, must therefore be lagging in
phase at an angle of θe with respect to the AFE. Vice-versa, the
AFE terms appearing in the VSI state-equations are leading
in phase at an angle of θe. The state-space equations of each
converter need to have this phase adjustment to each of their
cross-coupling terms. For instance, equations (1c) and (1d)
have to be modified as{

V̇cd = 1
C Iid + ωVcq − 1

C I
V SI
aq

V̇cq = −ωVcd + 1
C Iiq + 1

C I
V SI
ad

(13)

where IV SIad and IV SIaq are the AFE currents as seen by
the VSI. Following the case study, these two currents will
be leading the VSI states by an angle of θe. Performing the
transformation (9), the leading currents in the VSI terms can
be expressed as

[
IV SIad

IV SIaq

]
=

[
cos(θe) sin(θe)
− sin(θe) cos(θe)

] [
Iad
Iaq

]
(14)

The same adjustment will need to be performed for the
VSI terms in the AFE equations. (2a) and (2b) are therefore
modified as

{
İad = −Ra

La
Iad + ωIaq −

V AFE
cq

La − pd
2La

Vdc

İaq = −ωIad − Ra

La
Iaq +

V AFE
cd

La
− pq

2La
Vdc

(15)

V AFEcd and V AFEcq are the output capacitor voltages of the
VSI seen from the AFE. Staying with the case study, these
terms will be lagging the AFE reference frame by an angle of
θe. Therefore, transformation (9) has to be applied inverted

[
V AFEcd

V AFEcq

]
=

[
cos(θe) − sin(θe)
sin(θe) cos(θe)

] [
Vcd
Vcq

]
(16)

Equations (1a), (1b), (2c), (4), (11), (13-16) describe all of
the nonlinear system dynamics. However, equation (11) can be
rearranged in a more convenient form. Substituting (12) in (11)
and linearising the resulting system at steady state equilibrium

V ∗cq = 0, θ∗e = 0 (17)
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the PLL system (11) reduces to{
θ̇e = −KpVcdθe + xi
ẋi = −KiVcdθe

(18)

(18) can be rewritten in the form{
ẋ

PLL
= A

PLL
x

PLL
+B

PLL
u

PLL

u
PLL

= K
PLL

x
PLL

(19)

resulting in


[
θ̇e
ẋi

]
=

[
0 1
0 0

] [
θe
xi

]
+

[
−Vcd 0

0 −Vcd

] [
f1
f2

]
(20a)[

f1
f2

]
=

[
Kp 0
Ki 0

] [
θe
xi

]
(20b)

where f1 and f2 are dummy inputs. PLL equations (20a) can
now be augmented into the VSI-AFE state-space equations.
The PLL gains will be computed as part of the structured
static state feedback as explained in the following.
It is now possible to compute a linearisation at the equilibrium
point of the whole open loop system obtaining

ẋ = Ax+B2u (21)

A =

AV SI ACv
APv

ACa
AAFE APa

0 0 APLL

 (22)

B2 =

BV SI 0 BPv

0 BAFE BPa

0 0 BPLL

 (23)

where the terms for the A matrix are define as:

AV SI =


−RL − 1

L ω 0 0 0
1
C 0 0 ω 0 0
−ω 0 −RL − 1

L 0 0
0 −ω 1

C 0 0 0
0 −1 0 0 0 0
0 0 0 −1 0 0

 (24)

ACv =


0 0 0 0 0
− 1
C 0 0 0 0

0 0 0 0 0
0 − 1

C 0 0 0
0 0 0 0 0
0 0 0 0 0

 (25)

APv
=



0 0

− I
∗
aq

C 0
0 0
I∗ad

C 0
0 0
0 0


(26)

ACa
=


0 1

La
0 0 0 0

0 0 0 1
La

0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (27)

APa
=


−V

∗
cq

La
0

V ∗cd
La

0

0 0
0 0
0 0

 (28)

APLL =

[
0 1
0 0

]
(29)

Matrix AAFE is defined as

ARAFE =


−Ra

La
ω − pd

2La
0 0

−ω −Ra

La
− pq

2La
0 0

3pd
4Ca

3pq
4Ca

− 1
CaRl

0 0

0 −1 0 0 0
0 0 −1 0 0

 (30)

in the resistive load case and

ACPAFE =


−Ra

La
ω − pd

2La
0 0

−ω −Ra

La
− pq

2La
0 0

3pd
4Ca

3pq
4Ca

Pl

CaV 2
dca

0 0

0 −1 0 0 0
0 0 −1 0 0

 (31)

in the constant power load case.
Terms found in the B2 matrix are found to be:

BV SI =


Vdci

2L 0
0 0

0
Vdci

2L
0 0

 (32)

BPv
=


0 0

− I
∗
aq

C 0
0 0
I∗ad

C 0

 (33)

BAFE =

−
Vdci

2La
0

0 −Vdci
2La

3I∗ad

4Ca

3I∗aq

4Ca

 (34)

BPa
=

−
V ∗cq
La

0
V ∗cd
La

0

0 0

 (35)

BPLL =

[
−Vcd 0

0 −Vcd

]
(36)

x =
[
xV SI xAFE xPLL

]′
(37)

xV SI =
[
Iid Vcd Iiq Vcq wVcd

wVcq

]′
(38)

xAFE =
[
Iad Iaq Vdca wIaq

wVdca

]′
(39)

xPLL =
[
θe xi

]′
(40)
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Fig. 7: General H2 Control Problem Configuration

u =
[
uV SI uAFE uPLL

]′
(41)

uV SI =
[
md mq

]′
uAFE =

[
pd pq

]′
(42)

uPLL =
[
f1 f2

]′
(43)

The terms scripted ω are the integral states to the
corresponding subscripted state of the system. Please refer to
[9] for more details. All the 0 are null matrices of appropriate
dimension. Please note the dummy inputs f1 and f2 defined
in (20) appear in (41) as well. They do not have physical
meaning and are used to permit the tuning of PLL gains as
part of the global state feedback matrix. In fact, because of the
structure of the feedback matrix K described in the following,
they affect only the PLL states.

IV. OPTIMAL H2 CONTROLLER DESIGN

With all the state variables having been described, there is
enough information in order to design a state-feedback optimal
controller to regulate the system. In designing a H2 controller,
the configuration shown in Fig. 7 is used.

Each of the signals are denoted as: u are the control inputs, v
are the measured system outputs, w are the disturbance signals,
and z is the performance output.

The generalized plant P is definite as


ẋ = Ax+B1w +B2u (44a)
z = C1x+D12u (44b)
u = Kx (44c)

A and B2 are reported in (22) and (23). B1 is the
disturbance input matrix and is set to be an identity matrix.
Finally, C1 and D12 are defined as

C1 =

[
Q

1
2

0

]
D12 =

[
0

R
1
2

]
(45)

where Q ∈ <13×13 contains the weightings for each of
the states [11]. Choosing a large value of Q for a given state
results in the synthesis of a controller which will attempt to
reject disturbances with the least possible change to the given
state. The matrix R ∈ <6×6 contains the weightings on the
control input. As with the Q matrix, a large value on a given
input results in the synthesis of a controller which will try

to to reject disturbances using less weighted energy for that
given input.

The static controller K can be computed solving a H2
optimal control problem, i.e. finding a feedback matrix K
which stabilize the system and minimizes the H2 norm of
the transfer function from w to z. In the time domain, this
results in the following optimization problem:

min
K

=

√∫ ∞
0

tr(B
′
1e

(A−B2K)′t(Q+K ′RK)e(A−B2K)tB1)dt

(46)
The resulting control law (44c) can be rewritten asuV SIuAFE

uPLL

 =

K11 K12 K13

K21 K22 K23

K31 K32 K33

xV SIxAFE
xPLL

 (47)

From (47) it can be noted that the three input vectors
of the three subsystems depend on all system states. This
would require additional communication between the 2 system
modules increasing cost and complexity. In addition, the PLL
subsystem must respect the structure defined in (19) and (20).
To solve the problem, the gain matrix is constrained to have
the structure

K̂ =

Kv 0 0
0 Ka 0
0 0 KPLL

 (48)

where Kv ∈ <2x6 are the VSI gains, Ka ∈ <2×5 are the
AFE gains and KPLL ∈ <2×2 are the PI controller gains for
the PLL. From the structure in (48), it can be easily observed
that the VSI duty cycles will only depend on VSI states, with
the same occurring for the AFE duty cycles, and the PLL
states only depending on the dummy inputs as shown in (20).
Thus, creating three fully optimised decentralized controllers
for each of the converters, and the PLL.

Finding K ∈ K̂ that minimize (46) is a structured static
feedback control problem [12] that can be solved by computer
software as explained later.

V. SIMULATION RESULTS

The proposed method of controller design and
implementation has been tested in simulation. The average
dq models of the system in Fig. 1 was implemented into
MATLAB R2017a, with verification from Simulink. The
system parameters used in this model is shown in Table I.
Qres and Qcpl are the Q state weights for the resistive load

and constant power load cases respectively.
To solve the numerical problem in (46), the HIFOO toolbox

was used [12] [13].

A. Resistive Load Case

In order to produce a controller with the required dynamic
response, first the Q and R weighting matrices need to be
determined. As a starting point to the development of these
matrices, the general rule of weighting each given integral state
in Q by 1 / xmax, where xmax denotes the maximum steady
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TABLE I: System Parameters

Parameter Value Unit
ω 2π(400) rads−1

Ri 120e−3 Ω
Li 970e−6 H
Ci 31.8e−6 F
Vdci 200 V
Ra 90e−3 Ω
La 400e−6 H
Cdca 100e−6 F
Qres 1000*diag(0 0 0 0 0 0 0 0 1 1 1 1 1);
Qcpl 10000*diag(0 0 0 0 0 0 0 0 1 5 1 5 1);
R diag(100 100 800 800 1 1);

Fig. 8: Resistive Load Average Model Simulation Results

state value of the given state being integrated, and setting the
R matrix as an identity matrix. This was shown to give an
unsatisfactory system response, and thus the weights for both
matrices were iteratively adjusted to the values observed in
Table I. This is why there is a different in the Q matrix values
between the resistive and constant power loads.

The resistive load case described in section II-B is first
tested. The system equilibrium point has been computed
according to (3) considering V ∗id = 81V, V ∗dca = 270V and
RL = 36.45Ω. The obtained values along with (30) have been
used in (22) and (23) and the structured optimal controller
gains being computed using the method described in Section
IV.

Two models, a dq average model, and a switching model
have been used for the analysis of the proposed control
method, to cross compare between the ideal and realistic
environments.

Fig. 8, shows a step response in the dq average model from
a no-load condition, to full load condition (2kW) at a time of
0.07s. It is evident from Fig. 8 that a very fast response is
achieved across all states.

In order to validate the result achieved from the average dq
model, a switching model was implemented using Simulink.
A two level three-phase voltage source inverter is used to
facilitate both the VSI and AFE sides. The gate switching
functions are generated by use of Pulse Width Modulation
(PWM) with a switching frequency of 20kHz. Fig. 9 displays

Fig. 9: Resistive Load Switching Model Simulation Results

the results of the switching model using the same conditions
used for the average model simulation, where we transition
between a no load to full load condition at 0.07s. It can
be observed from comparison of Fig. 8 and Fig. 9 that the
DC-Link voltages match very well to one another. The grid
voltages and currents between the two models also match up
very well, where the peak value of each waveform in Fig. 9
match the d-axis values shown for the average model. This
clearly shows the reliability of designing the control using
average model, and the performance when applying to a more
realistic switching model.

Another key feature to note is the PLL angle error in Fig.
9. This graph is computed by analysing the output of the
optimized PI controller, and comparing it to the angle of the dq
voltages outputted by the VSI. The plot shows a very quick
response to synchronizing the AFE back to the grid after a
large step change in load; with only a small undershoot and
overshoot observed during transition. This has clearly shown
the incorporating the PLL dynamics into the average model
and optimising the PLL PI controller gains with regards to
the rest of the system has achieved a fast acting and reliable
PLL.

B. Constant Power Load Case

In this second model, a control method for the system in
the presence of a constant power load on the AFE DC-Link
side is presented.

In this case, the system equilibrium points have been
computed according to (5) and resulting parameters substituted
in (22) and (23) where (31) has been used instead of (30). The
approach to performing the H2 optimization remains the same
method as for the resistive load case. The nominal load power
has been set to be 2000W. It is important to note that in this
case, matrix (31) has an eigenvalue with positive real part
meaning that the open-loop system is unstable. The method
for controller synthesis described in Section IV requires that
a stabilizing initial value of the gain matrix K be submitted
into the algorithm which is complicated for open-loop unstable
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Fig. 10: Constant Power Load Average Model Simulation Results

Fig. 11: Constant Power Load Switching Model Simulation Results

systems. By taking the approach in [9], an initial unstructured
gain matrix is computed by a standard LQR approach. Then
the gain matrix is constrained to the gain structure imposed
by (48), such that all matrix elements that do not follow the
constraint are forced to zero. This following matrix is then set
as the initial starting point for the H2 optimization algorithm.

Fig. 10 shows the simulation results from the dq average
model for the response from no load to a connection to a
2kW constant power load on the AFE DC-Link side. As had
been observed with the previous resistive model, a fast a stable
system response is achieved, across all systems states, with all
controlled at the required references, and the AFE modulation
indexes and d- axis current following the equilibrium points
described in (5) accurately.

As done with the previous study a switching model was
used to validate the results that was obtained in the average
model, shown in Fig. 11. What is shown is that the switching
model closely reflects the behaviour observed in the average

model. This can be easily seen by observation of the DC-Link
voltage, where the undershoot and rise times are approximately
exact. The peaks of the grid voltages and currents accurately
reflect the dq response observed in the average model, where
the d axis value generally equates to the peak value of the
three-phase signal. The angle error of the PLL is shown to
synchronise the AFE converter back with the grid after the
load being connected, with larger overshoot when compared
to the result observed in the resistive model (but still small
in relative terms), but reaching the point of synchronisation
within similar time to the previous model, showing the PLL
gains have been implemented correctly.

VI. CONCLUSION

This paper has presented a global optimisation approach
to tune the controllers of both the power converters of the
embedded grid, but also the PLL controller to synchronise
the AFE to the grid. Small-signal linearized models are
used in order to synthesis the regulators whilst keeping into
consideration the interactions between grid components and
PLL dynamics. The controller design has been analysed
for the case of a constant power load and resistive load
case, along with validation of the method using MATLAB
simulations. This work has successfully shown how the PLL
dynamics of a SRF-PLL can be incorporated into the controller
synthesis problem. Good dynamic behaviour and responses
where achieved across all systems states, as well as the
mitigating the effect of the cross-coupling interaction between
converters, by enforcing a strict structure on the synthesized
regulators.
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