
Accepted Manuscript

Modelling of textile composites with fibre strength variability

M.Y. Matveev, A.C. Long, I.A. Jones

PII: S0266-3538(14)00345-5

DOI: http://dx.doi.org/10.1016/j.compscitech.2014.09.012

Reference: CSTE 5940

To appear in: Composites Science and Technology

Received Date: 19 August 2014

Accepted Date: 21 September 2014

Please cite this article as: Matveev, M.Y., Long, A.C., Jones, I.A., Modelling of textile composites with fibre strength

variability, Composites Science and Technology (2014), doi: http://dx.doi.org/10.1016/j.compscitech.2014.09.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.compscitech.2014.09.012
http://dx.doi.org/http://dx.doi.org/10.1016/j.compscitech.2014.09.012


  

1 

 

MODELLING OF TEXTILE COMPOSITES WITH 

 FIBRE STRENGTH VARIABILITY 

M. Y. Matveev*, A. C. Long, I. A. Jones 

Polymer Composites Group, Faculty of Engineering, Division of Materials, Mechanics 

and Structures, University of Nottingham, University Park, Nottingham, NG7 2RD, UK 

* Corresponding author: Mikhail.Matveev@nottingham.ac.uk, tel. +441159514147 

Abstract 

Scatter in composite mechanical properties is related to variabilities occurring at 

different scales. This work attempts to analyse fibre strength variability numerically 

from micro to macro-scale taking into account the size effect and its transition between 

scales. Two micro-mechanical models based on the Weibull distribution were used 

within meso-scale finite element models of fibre bundles which were validated against 

experimental results. These models were then implemented in a meso-scale model of an 

AS4 carbon fibre plain weave/vinyl ester textile composite. Monte Carlo simulations 

showed that fibre strength variability has a limited effect on the strength of the textile 

composite at the meso-scale and introduces variability of less than 2% from the mean 

value. Macro-scale strength based on the predicted meso-scale distribution was lower 

than the strength of the composite without variability by 1-4% depending on the model. 

The presented multi-scale approach demonstrates that a wide fibre strength distribution 

leads to a narrow distribution of composite strength and a shift to lower mean values.  

Keywords: A. Textile composites, B. Mechanical properties, C. Multiscale modelling 

1. Introduction 

Composite mechanical properties are highly scattered due to the presence of 

variabilities [1], e.g. the tensile strength of unidirectional (UD) composites can have 

coefficients of variation (CoV) of up to 5% [2]. Defects induced by manufacturing (e.g. 
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yarn waviness or variable ply placement) or variations in constituent properties affect 

composite properties. According to the multi-scale approach, uncertainties are divided 

into groups by length scale [2]. Micro-scale variabilities include packing of fibres 

within yarns, fibre waviness [3], voids between fibres and variability of constituent 

properties; meso-scale variabilities include variation of yarn path [4], size and shape of 

yarn cross-section, nesting and voids between yarns. All of these cause variations in 

local moduli (and therefore global stiffness), local strength (hence global strength) and 

local component shape distortions (hence global geometry), and it is not known a priori 

which of these are significant. Variability of fibre strength is well-known to affect 

composite properties and is well-studied [5]. However, no published studies explicitly 

link the distribution of fibre strength to the strength distribution of a woven composite. 

Many analytical and numerical methods are based on the multi-scale approach, 

whereby a complex structure is divided into hierarchical sub-structures according to 

characteristic length. A heterogeneous medium at one scale is replaced by a 

homogeneous medium with the same properties at a higher scale. Homogenisation is 

usually based on the assumption of ideal periodicity at all levels and subsequent 

representation of a composite as a periodic unit cell. This approach has shown good 

results [6-8] despite controversy regarding the variability for real structures.  

At the micro-scale the strength of single fibres can have a CoV of up to 20% and has 

a strong length dependence (strength can drop by 10% when length is increased by a 

factor of 10) [9]. This dependency and distribution are usually described by a two-

parameter Weibull distribution with a length scale effect [5]. However, additional 

parameters are often required for correct description of the length effect [9].  

The next step in multi-scale modelling is prediction of the strength of an impregnated  
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fibre bundle or UD composite at the meso-scale. Several approaches can be considered. 

The Equal Load Sharing (ELS) concept postulates that the load from a broken fibre is 

equally distributed over all surviving fibres. This was used by Daniels [10] to derive 

mean strength and its distribution for an unimpregnated fibre bundle. A development of 

the model known as chain-of-bundles was employed for prediction of the strength of 

long fibre composites [11]. A drawback of this concept for an impregnated bundle is 

that it does not account for the unequal redistribution of stresses between fibres. GLS 

(Global Load Sharing) models assume an unloading zone at each side of fibre breakage. 

Theoretical predictions with various modifications are possible for a regular fibre 

arrangement. It was shown that both ELS and GLS models give close results once 

correct normalising constants are chosen [5]. Strength predicted by both approaches can 

be approximated by a normal distribution [5]. Unlike the ELS, the Local Load Sharing 

(LLS) concept assumes that the load from a broken fibre is distributed unequally to a 

number of neighbouring fibres according to a sharing rule [12, 13]. The number of 

neighbouring fibres that take the load depends on the properties of fibres and matrix and 

on the chosen theory. A number of analytical LLS models [5, 14] are able to predict 

final strength and its distribution. Computational LLS enables direct numerical 

simulations to be performed. Okabe and Takeda [15] used a spring model in 

conjunction with a shear lag law to simulate the strength of UD composites. On the 

other hand, recent research [16] shows the importance of realistic geometry (i.e. fibre 

packing) in predicting the stress-strain state of a UD composite in the case of fibre 

breakage. Finite element (FE) analysis was used to obtain the strength of a bundle of 

randomly packed fibres whose strength followed a Weibull distribution [17]. These 

models were able to capture the process of damage propagation or a realistic stress-
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strain state of the fibre array during fibre failure. However, an implementation of these 

micro-scale models at the meso-scale is not feasible. 

The next step is meso-scale modelling of textile composites using properties obtained 

at the previous stage. Ismar et al [18] modelled an SiC/SiC woven composite with 

variability of yarn strength using FE analysis and a Monte Carlo method, varying 

strength in every element following a Weibull distribution and implementing a size 

effect. This showed the significant influence (about 10% reduction when a Weibull 

shape parameter was halved) of variability in impregnated bundle strength on tensile 

strength of woven composites. However, this study did not report standard deviation of 

final strength for a given distribution and predictions were not based on the distribution 

of single fibre strength. 

This paper applies a multi-scale modelling approach for a textile composite with 

variability in fibre properties. Fibre bundle strength models were chosen and validated 

against experimental data for UD composites based on single fibre strength 

distributions. The models ensured correct transition between scales taking into account 

the size effect which is critical for meso-scale FE modelling. Using the fibre bundle 

strength model, stochastic FE simulations were performed to determine the distribution 

of composite mechanical properties.  

2. Variability models 

2.1. Strength model of single fibre 

The Weibull distribution is often used for prediction of single fibre strength [5, 19]. 

Taking into account the length effect, a fibre of length L under tensile stress σ has a 

cumulative failure probability Pf given by 

 �
�
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where σ
0 is the Weibull scale parameter, ρ the shape parameter and L

0
 the gauge length. 

However, it was found that this approach tended to overestimate the strength of some 

types of fibres of shorter length [9, 15, 20], and the experimental fibre strength 

distribution at different length scales is better described by [9] 

 �
�
� 1 � exp	�	
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where α is an additional parameter satisfying 0 < α ≤ 1.  

This empirical relationship was related to fibre-to-fibre variation of the scale 

parameter [9]. This was explored by Beyerlein and Phoenix [21] for a bundle consisting 

of four fibres. This approach, termed Weibull of Weibulls, was extended further by 

applying it to all fibres in the composite [22]. Then the cumulative probability of fibre 

failure, Pf, under loading stress σ is 
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where L is fibre length, L0 is the reference gauge length, ρ’ = ρ / α is a Weibull shape 

parameter and the Weibull scale parameter 
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where m is a Weibull shape parameter and 
�

�
 is a scale parameter. Curtin showed that 

eqs. (3) and (4) give a strength distribution close to that from eq. (2), but with  

parameters measured directly from single fibre tests. Eqs. (3) and (4) are used later to 

describe distribution of fibre strength in fibre bundles. 

2.2. Strength model of impregnated fibre bundle 

Analysis of failed UD composites shows that fibre damage tends to cluster before 

final failure [15]. Here it is assumed that in a full-scale FE model these clusters can be 

modelled as small bundles or domains (finite elements) whose strength is calculated 

using a theoretical model. Three approaches were employed for comparison: the ELS 

concept using direct calculations as described below, the ELS concept in its normal 
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distribution approximation [5, 10] and the GLS concept in its approximation as a 

Gaussian process [5, 23, 24]. However, the entire approach effectively implements an 

LLS model due to stress redistributions in an FE model which follow element failure. 

To find the strength of an individual element a bundle of N fibres is considered. For 

the ELS approach the stress Si prior to i-th fibre failure is [10]: 

 
�� �

�
�

�
	� � � � 1��

�

� � 	1 � ����
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	 ,  (5) 

where Vf is fibre volume fraction, �
�

	 � �
�
�
�

�/�
�
 is stress in the matrix at the fibre 

failure strain and �
�

� , i = 1...N are the strengths of individual fibres, calculated with eqs. 

(3) – (4). The second term in eq. (5) accounts for matrix stress contribution. 

Eq. (5) defines a series of stresses corresponding to progressive failure of fibres in 

the bundle. The ultimate bundle strength is then defined as max(Si). It was shown by 

Daniels [10] that the strength of an infinitely large bundle tends to a normal distribution.  

A more realistic GLS concept was also employed as an alternative method for 

determining the bundle (finite element) strength. It assumes that load is redistributed 

through shear after a single fibre break. The strength distribution along the length of the 

bundle predicted by this concept was shown to be asymptotically close to a Gaussian 

process which mean, standard deviation and covariance function can be found in [23]. 

The comparison with the ELS model was shown to be possible when the correct 

characteristic strength is used for the GLS model [5].  

It should be noted that, in all the models, fibres within the impregnated bundle are  

assumed to be perfectly aligned with the finite element edges and therefore the size of 

the element defines its strength through the length and size of the fibre bundle. 

2.3. Damage model 
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A continuum damage mechanics (CDM) approach was used for the impregnated 

bundle [25]. This suggests linear behaviour until damage initiation, followed by gradual 

degradation of elastic properties. Five failure modes were considered: longitudinal 

tension/compression, transverse tension/compression and transverse shear. Damage 

initiates when one of the damage variables Di defined by eqs. (7) – (9) exceeds 1. Stress 

tensor components σ
ij
 are calculated in local coordinates where “1” is the longitudinal 

fibre direction, and “2” and “3” are orthogonal transverse directions, which are 

equivalent due to transverse isotropy of an impregnated bundle.  
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where σ
2
 and σ

3 
are principal stresses in the plane orthogonal to the fibre direction,  

��

� 

are strengths of the impregnated bundle (yarn) where indices i, j = 1,2 correspond to 

directions and index m = t, c stands for tension and compression. 

After damage initiation, Young’s and shear moduli E
i
, G

ij
 of the yarn are given by:   
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where P(Di) is a damage factor function and is defined as 

 � � ,1 �
1

exp 	�-


�
�
� -
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. . (13) 

From eq. (10) it can be seen that damage initiation in the longitudinal direction 

causes catastrophic failure. Transverse damage is assumed to propagate gradually, 
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similar to Puck’s theory [26]. Poisson’s ratios remain unchanged. Constants c
1 

and c
2
 in 

eq. (13) were determined by Ruijter [25] and a ratio c
2
/c

1 
equal to 1.62 was found to 

give close agreement with experimental stress-strain curves for a plain weave composite 

under tensile load. Setting c
1
 and c

2
 to zero leads to abrupt degradation similar to [6, 8]. 

The ratio c
2
/c

1
 determines the damage variable Di when properties are fully degraded 

and the appropriate elastic modulus becomes insignificantly low. 

The matrix was assumed to be elastic prior to failure. Failure onset in the case of 

prevailing tensile behaviour was described by the von Mises criterion. Young’s 

modulus degradation was described by a damage factor as in eq. (13). This was 

implemented in a UMAT user-defined material subroutine within Abaqus/Standard™. 

2.4. Validation on tensile strength tests of impregnated tows and UD composites  

The proposed model was validated on fibre bundles with different numbers of fibres. 

Statistical distributions often possess a strong size effect, therefore the model should be 

able to predict the correct behaviour of tows and UD composites of various lengths and 

numbers of fibres. All three approaches described in Section 2.2 were employed for 

full-scale FE modelling and results were compared. Published experimental results [15, 

22, 27, 28] were used to validate the model. 

For direct calculation of an ELS fibre bundle, the number of fibres in each finite 

element was found and fibre strengths were assigned following eqs. (3) and (4) using 

the length of the element as input parameter L. Then bundle strength was calculated as 

max(Si) where Si is defined by eq. (5). For alternative models (ELS and GLS), strength 

of elements was seeded using a normal distribution with mean and standard deviation as 

given in [5, 19, 23] using parameters listed in Table 1. The covariance function in the 

GLS distribution was found to be negligibly small and therefore strengths of 
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neighbouring elements were assumed to be independent. The other properties of the 

impregnated bundle were found using the Chamis formulae [29]. Input data for the 

bundle strength model were taken from published sources, as listed in Table 1.  

Using the above damage model, mesh convergence studies for a full scale model 

(overall length 20 mm) of a T700/Epoxy 12K impregnated fibre bundle were conducted 

for the three fibre bundle strength models. The strength of brick-shaped elements varied 

with mesh refinement reflecting change of length and number of fibres per element. 

Convergence of strength with refinement is shown in Fig. 1a, where each point is the 

average of 40 calculations and error bars represent one standard deviation. The Weibull 

plot and its parameters for experimental and predicted data are shown in Fig. 1b. The 

ELS model predicted a strength approximately 3% lower than the GLS model, which in 

turn was 1.5% lower than the experimental value. The difference between the direct 

calculations in the ELS model and its approximation were negligible. The distributions 

have the same Weibull shape parameter (lines are almost parallel, difference between 

shape parameters within 3% for both ELS and GLS approaches) but the experimental 

Weibull scale parameter is 5% higher than predicted using the ELS approach and 4% 

lower than predicted with the GLS model. Convergence studies for the full scale model 

of AS4/Epoxy were published earlier by the present authors [30].  

Results of the Monte Carlo method coupled with FE damage analysis for two 

different composites are listed in Table 2. As expected, both versions of the ELS model 

yielded results in very close agreement. The GLS model predicted average strength 5% 

higher than that predicted with the ELS models but the standard deviation was about the 

same in absolute terms. In general, the proposed algorithms tend to underestimate the 



  

10 

 

actual strength for UD composites while the “rule of mixtures” always overestimates it 

(when manufacturer’s data are used within the equation Suts = VfSf + (1-Vf)EmSf/Ef). 

3. Finite element model of composite with fibre strength variability 

3.1. Unit cell model of textile composite 

A plain weave textile composite consisting of eight layers of AS4 reinforced vinyl 

ester [31] was used to investigate the influence of fibre strength on overall strength.  

TexGen software [32] and a voxel meshing technique [33] were used to generate an FE 

model of the composite. The unit cell is shown in Fig. 2, where geometric parameters 

were: L = 6.27 mm, H = 0.624 mm, hy = 0.31 mm, wy = 2.81 mm [31], giving a fibre 

volume fraction of Vf = 0.44 [31]. Constituent properties were: matrix Young’s modulus 

Em =3.45 GPa, Poisson’s ratio νm =0.35, strength σm=76 MPa, fibre Young’s modulus 

Ef=221GPa and constant fibre strength σf =3930MPa. Other elastic properties and 

parameters for the variability model are listed in Table 1. Yarn effective moduli and 

strengths were found with the Chamis formulae with an intra-yarn fibre volume fraction 

of 63% [29]. The composite tested in [31] had no nesting between layers, therefore 

periodic boundary conditions [34] were applied to the unit cell in all three directions.  

3.3. FE voxel model 

The solution error is defined by the quality of the conformal tetrahedral mesh e.g. by 

the ratio of maximal element dimension  and sine of maximum angle between element 

faces [35] or by the element aspect ratio [36]. However, conformal FE meshes of textile 

composite unit cells usually contain distorted elements in regions between yarns [33, 

37] which will increase the solution error. This can be solved by use of a specially 

constructed geometry with yarns forced to touch each other in a pre-defined manner 

[38] or by  introduction of an artificial clearance between yarns [7, 39]. Both methods 
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allow generation of a good quality mesh but limit the creation of a realistic geometry. 

The mesh superposition [40] and domain superposition techniques [41] provide 

alternative ways to discretise a textile composite by meshing the textile and boundary 

domain separately and linking them during FE analysis. Although capable of good 

predictions for elastic properties, these techniques introduce a discontinuity in stresses 

and strains at the yarn/matrix interface which may affect strength predictions. 

Meshing problems as discussed above are avoided using a voxel mesh technique 

[33]. A voxel mesh consists of rectangular cuboidal elements with element attributes 

defined by those at the voxel centroid. Mesh quality is known a priori and the mesh can 

be generated for any geometry without any artificial changes in textile geometry. On the 

other hand, the resolution (number of elements) of a voxel mesh, required to be high to 

achieve accurate representation of the textile geometry, is limited by computational 

costs. A voxel mesh can be locally refined [33] or a smoothing algorithm can be used to 

improve tow/matrix interface surfaces [37].  

To validate the voxel approach, conformal and voxel meshes were generated for the 

same textile geometry. A vertical clearance between yarns was introduced to achieve a 

good quality conformal tetrahedral mesh. The periodic tetrahedral mesh was generated 

via TexGen which implements Delaunay tetrahedralization using TetGen software [42]. 

The gap introduced between yarns reduced overall fibre volume fraction and hence 

Young’s modulus to 85% of the original value. Convergence of elastic modulus and 

initial failure strain are shown in Fig. 3a. Comparison of stress-strain curves presented 

in Fig. 3b shows that the voxel and conformal meshes give similar solutions for the 

considered materials and load case. This allows a highly refined voxel mesh to be used 
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instead of a conformal mesh for later studies. All FE models in this study had 120000 

nodes giving a compromise between analysis time and accuracy.  

3.4. Effect of strength variability on textile composites 

The influence of fibre strength variability on textile composite strength was studied using 

the unit cell model. The strength of each voxel was chosen according to the direct ELS and 

GLS approaches described above and AS4 fibre parameters are listed in Table 1. Stochastic 

simulations were performed for a mesh of the same size as for the model without variability. 

Experimental and predicted stress-strain curves for composites under tensile loading are 

shown in Fig. 4. Predicted final strength of 530 MPa for the composite without variability 

was above the experimental value of 480 MPa. However, predicted and experimental stress-

strain curves were in relatively good agreement below the failure point. An interesting feature 

of both experimental and predicted stress-strain curves is a “knee” at a strain of about 1%. 

The FE simulations showed that the “knee” is preceded by development of large transverse 

cracks in transverse yarns together with minor shear damage in longitudinal yarns. Damage in 

transverse yarns “relaxes” the stress-strain state in longitudinal yarns allowing them to 

straighten to a degree which results in the “knee”. After yarn straightening, the composite 

exhibits a modulus close to its initial value, since the contribution of transverse yarns to 

overall stiffness is minor. This “knee” is not present in the stress-strain curve on Fig. 3b as 

here the large matrix pockets introduced in this fictional composite prevented the behaviour 

described above. 

The average final strength of the composite with fibre strength variability predicted with 

the ELS model was lower than that without variability due to the presence of weak fibres and 

hence elements with lower strength where damage is more likely to initiate. The distribution 

of final strengths is shown in Fig. 5. The original fibre strength distribution (Distribution 1) 
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was varied to increase standard deviation by factors of two (Distribution 2) and three 

(Distribution 3) leaving mean fibre strength unaltered. Compared to the composite without 

variability, fibre strength variability decreased the composite’s failure strength by 1.7% while 

for Distributions 2 and 3 was reduced by 5.6% and 15.7% respectively. Standard deviations 

of strength for these three cases were 6.0 MPa, 3.7 MPa and 3.4 MPa, respectively. These 

compare favourably with the experimental standard deviation of 7.3 MPa (for four 

specimens). Reduction in standard deviation with broadening fibre strength distribution can 

be explained considering the composite prior to final failure which occurs when several 

elements are damaged in the most highly stressed region of longitudinal yarns. In case of a 

wide fibre strength distribution it is highly probable that weak elements from the lower tail of 

the strength distribution will be present here and will trigger final failure. 

Results of simulations using the GLS model were different from those obtained with the 

ELS model. First of all, the average final strength of the composite was found to be 1.9% 

higher than the value predicted with no variability, although the CoV was similar to that 

predicted with the ELS model and was equal to 1.2%. 

However, in modelling of macro-scale damage, a composite with variability cannot be 

represented as a single unit cell due to the size effect, since larger specimens show lower 

strength compared to smaller samples [2]. This is often described by a weakest link approach 

based on a cumulative distribution function G for a chain of n links: 

 +	
� � 1 � 	1 �  	
��� (14) 

where F is the cumulative distribution function of the links’ strength. 

Strength predicted with eq. (14) over the number of links in the chain is shown in Fig. 6. 

For a chain consisting of 25 links compared to a single unit cell, strength is reduced by 2.7% 

which gives a strength of 507 MPa and 528 MPa at the gauge length of 160 mm 
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(experimental specimen length [31]) for ELS and GLS models, respectively. The standard 

deviation is reduced by the same factor as the strength. 

4 Discussion 

The chosen models of impregnated fibre bundle strength were compared with 

experimental results. Mean values of strength predicted by the ELS and GLS models differed 

respectively by 6.3% and 1.5% from experimental data for a 12K bundle. Here the predicted 

strength distribution had a shape parameter close to the experimental one but Weibull moduli 

ere different. This could stem from the fact that experimental data for single fibre strength 

and bundle strength originated from different sources with no confidence of similar fibre 

treatment and therefore properties. Another possible source of error is the bundle strength 

models which do not take into account stress redistribution after single fibre failure and 

therefore predict reduced overall strength. Nevertheless, the proposed model has correctly 

captured the variation of bundle strength and has made it possible to estimate the effect of 

fibre strength variability on textile composite properties. The difference between predictions 

with different bundle models can be explained by the concept of the ELS model which is 

based on an “all or nothing” paradigm, resulting in lower bundle strength and higher standard 

deviation. 

Comparison of a voxel mesh against a conformal mesh for a plain weave composite 

showed that under tensile loading a voxel mesh can be used instead of a conformal mesh but 

requires more elements for convergence. The CDM model showed adequate results in 

prediction of nonlinear response under tensile loading. However, it over-predicted final 

failure strength by 11% compared to experimental data. 

Variability of fibre strength was shown not to have a dominant effect on composite  

strength at the meso-scale when only one unit cell is considered. For both models there were 

small changes in final strength with the GLS model predicting higher final composite 
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strength and the ELS model predicting lower strength when compared to simulations without 

variability. It is worth noting that the CoV for both cases was approximately the same at 

1.1%. However, broadening the distribution of fibre strength changed failure strength by 5% 

and 15% when the standard deviation of fibre strength was doubled and tripled, respectively. 

For a broader distribution of fibre strength, fibre damage initiated much earlier compared to 

the original distribution and this early damage initiation changed the shape of the stress-strain 

curve and decreased the standard deviation of the composite strength distribution.  

The predicted CoV is lower than the CoV that sometimes observed in experimental results 

for composite materials. This poses a question as to the significance of other types of 

variability. Other possible sources (and differences between predicted and experimental 

results) are local geometrical distortions, manufacturing induced defects and effects such as 

stiffening of carbon fibre. The latter can decrease the final strength of a textile composite due 

to higher stresses at high strains and increase the CoV of strength of the composite due to 

additional variability in Young’s modulus. However, more probably, the non-Hookean 

behaviour of carbon fibres will be outweighed by yarn straightening at low strain levels and 

damage propagation at high strain levels. 

The macro-scale length effect was investigated using a weakest link model with link 

strength obtained from the unit cell strength distribution. A gradual decrease in composite 

strength was predicted with increase in composite length. Mean composite strength for a 

length of 160 mm was predicted to be 4.5% and 1% lower than that of a single unit cell 

without variability for the ELS and GLS approaches, respectively. However, the number of 

unit cells along the length is lower than the total number of unit cells in a specimen as 

specimen width and thickness are neglected in the model. Also, the weakest-link model 

neglects load redistribution between unit cells. Nevertheless, the trend of decreasing strength 
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with increasing number of cells suggests that strength for a full sized model will be lower 

than predicted by the presented model and hence closer to experimental data. 

5 Conclusions 

Three fibre strength models were validated against experimental results for fibre bundles 

of different sizes. The difference between ELS and GLS models was within 5% in mean 

value and 10% in standard deviation. GLS yielded higher values than the ELS model which is 

expected as the latter is a more extreme case of load sharing between fibres. Models were 

then implemented in a FE model for a textile composite. 

The textile composite was modelled by FE analysis using the voxel mesh technique and a 

CDM approach. The voxel mesh was validated against a conventional conformal mesh and 

shown to be acceptable. Stochastic simulations showed that fibre strength variability changed 

the final strength at meso-scale by 2% in comparison with predictions with no variability and 

introduced a CoV of about 1.1%.  

The strength of the composite with a length of 160 mm, calculated using the weakest link 

approach and distributions predicted with ELS and GLS models, were respectively 4.5% and 

1% lower compared to the strength of a single unit cell with uniform fibre strength 

distribution. 
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Figure 1. a) Convergence of FE solution with mesh refinement; b) Weibull plot for 12K impregnated 
fibre bundle of T700 fibres. 

 

 

Figure 2. The unit cell of plain weave textile composite with removed matrix 

Figure(s)



  

 

 

Figure 3. a) Convergence of voxel and tetrahedral meshes; b) Comparison of stress-strain curves for 
voxel and conformal mesh solutions 

 

Figure 4. Experimental and predicted stress-strain curves (ELS model) for plain weave composite with and 

without variability; Distributions 1, 2 and 3 are original and widened (�2, �3) distributions of fibre strength 
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Figure 5. Final strength distribution (30 simulations, ELS fibre bundle model) 

 

Figure 6. Average strength of the chain of unit cells 

1 unit cell 
Composite [32] 
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Table 1. Fibre and matrix properties 

Fibre/matrix 

�
�
, 

MPa 


�
, 

mm 
ρ m α 

�



�, 
GPa 

�



�, 
GPa 

/




�  /

�

�  Em, 
GPa 

νm 


�

, 
MPa 

AS4/Epoxy [5] 4275.0 12.5 10.3 8.0 0.6 234 16.6 0.26 0.30 2.7 0.35 69.0 

T700/Epoxy 
[22, 24] 

5470.0 20.0 5.60 7.0 0.6 220 15.0 0.26 0.30 3.5 0.35 73.0 
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Table 2. Results of simulations for UD composites 

 Vf, 
% 

Length,
mm 

Experimental 
strength, MPa 

Predicted strength, MPa Rule of 
Mixtures, 
MPa ELS ELS approx. GLS 

AS4/Epoxy [5,32] 59 152 1890 1958±7 1957±8 2005±8 2337 

T700/Epoxy [22] 70 20 3409±202 3189±55 3189±53 3358±49 3452 

 

 


