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Abstract

The effect of gravity and proper acceleration on the frequency spectrum of an optical resonator—both
rigid or deformable—is considered in the framework of general relativity. The optical resonator is
modeled either as a rod of matter connecting two mirrors or as a dielectric rod whose ends function as
mirrors. Explicit expressions for the frequency spectrum are derived for the case that it is only
perturbed slightly and variations are slow enough to avoid any elastic resonances of the rod. For a
deformable resonator, the perturbation of the frequency spectrum depends on the speed of sound in
the rod supporting the mirrors. A connection is found to a relativistic concept of rigidity when the
speed of sound approaches the speed of light. In contrast, the corresponding result for the assumption
of Born rigidity is recovered when the speed of sound becomes infinite. The results presented in this
article can be used as the basis for the description of optical and opto-mechanical systems in a curved
spacetime. We apply our results to the examples of a uniformly accelerating resonator and an optical
resonator in the gravitational field of a small moving sphere. To exemplify the applicability of our
approach beyond the framework of linearized gravity, we consider the fictitious situation of an optical
resonator falling into a black hole.

1. Introduction

In general relativity (GR), as coordinates have no physical meaning, there is no unique concept for the length of a
matter system. Some notion of length can be covariantly defined using geometrical quantities or properties of
matter. The ambiguity in the notion of length poses a problem for high accuracy metrological experiments,
where gravitational fields or acceleration have a significant role to play. For example, the frequency spectrum of a
resonator depends on its dimensions and hence knowledge of the precise values of these dimensions is of utmost
importance. Cases in which the effects of gravitational fields and acceleration must be considered include those
in which the gravitational field is to be measured, such as in proposals for the measurement of gravitational
waves with electromagnetic cavity resonators [ 1-7] or other extended matter systems [8—14], tests of GR[15, 16]
or the expansion of the universe [17, 18]. Other situations are those in which the metrological system is
significantly accelerated [19-21]. A fundamental limit for the precision of a light cavity resonator asa
metrological system can even be imposed by the gravitational field of the light inside the cavity [22].

The two most important concepts of length are the proper distance and the radar distance. The proper
distance is a geometrical quantity usually associated with the length of a rod that is rigid in the sense of that given
by Born [23]. The radar distance is the optical length that can be measured by sending light back and forth
between two mirrors and taking the time between the two events as a measure of distance. It is this radar length
that gives the resonance frequency spectrum of an optical resonator for large enough wave numbers. However,
the resonators that are part of the metrological systems described in [1-22] are confined by solid matter systems,
and therefore, the notion of proper length plays also a role.

©2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
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In section 2, we start our considerations by modeling a one-dimensional resonator as a set of two end
mirrors connected by a rod of matter. If this rod is assumed to be rigid, the resonator is called a rigid optical
resonator. In section 3, we show that the resonance frequencies of an optical resonator are given by its radar
length. The general results derived in sections 2 and 3 are applied in the following sections.

Since proper length and radar length are generally different, it turns out that the resonance frequencies of a
Born rigid optical resonator change if the resonator is accelerated or is exposed to tidal forces. Furthermore, the
frequency of a mode is dependent on the reference time, which, in turn, is dependent on the position of the
resonator in spacetime. Taking all this into consideration leads to an expression for the resonance frequencies of
aresonator that is dependent on acceleration and curvature. This is presented in section 4.

A realistic rod cannot truly be Born rigid; depending on its stiffness and mass density, it will be affected by the
gravitational field and its internal interactions have to obey the laws of relativistic causality. In section 5, we
derive expressions for the dependence of the resonance frequencies on the deformation of the rod and show that
the change in resonance frequencies depends only on the speed of sound in the material of the rod. In this article,
we restrict our considerations to cases where acceleration and tidal forces experienced by the optical resonator
vary slowly. This way, we can neglect elastic resonances of rod. At the end of section 5, we compare the change of
the resonance frequencies due to deformations of the rod to the change of the resonance frequencies due to the
relativistic effects presented in section 4. Additionally, we discuss the notion of a causal rigid resonator which is
based on the definition of a causal rigid rod as one composed of a material in which the speed of sound is
equivalent to the speed of light.

The optical resonator can also be filled with a dielectric, or equivalently, the rod that sets the length of the
resonator can be a dielectric material and the mirrors can be its ends. The case of homogeneous isotropic
dielectric is discussed in section 6, and it is shown that the relative frequency shifts are independent of the
refractive index of the dielectric material. In section 7, we consider the case of a uniformly accelerated resonator,
in section 8 we consider the case of a resonator that falls into a black hole and in section 9, we consider the
example of an optical resonator in the gravitational field of an oscillating massive sphere. In section 10 we give a
summary and conclusions.

In this article, we assume that all effects on the optical resonator can be described as small perturbations. In
section 5, we present a certain coordinate system x*! valid in a region around the world line of the resonator’s center
of mass in which the spacetime metric takes the form g, .- = 75 + I, where ny = diag(—1, 1, 1, 1) is
the Minkowski metric and Ay is a perturbation. hiyr is considered to be small in the sense that || < 1 for
all M, V.

2. Arigid one-dimensional resonator in a curved spacetime

In GR, the gravitational field is represented by the spacetime metric g,,,, on a smooth four-dimensional manifold
M. We assume the metric to have signature (—1, 1, 1, 1). Then, for every vector v*"ata point p in M, the metric
delivers anumber g (v, v) = S vFv¥, which is either positive, zero or negative. These cases are called,
respectively, space-like, light like and time-like. For all space-like vectors v*, the square root of the positive
number g(v, v) is called the length of this vector. A curve s(c) parameterized by ¢ € [, b] in the spacetime M that
has tangents s’ () := ds* (<) /dgs that are always space-like is called a space-like curve. The geometrical distance
along this curve is the quantity L,(s) = J; " d J&.,5""s'"”, whichis called the proper distance. To define a
frequency we need to know how to measure time. A time measurement in GR is defined only with respect to an
observer world line. An observer world line is a curve 7y (¢) whose tangents 4/ (¢) = dy(¢)/dg are always time-
like. The time measured along the observer world line 7y (o) between the parameter values o; and g, is

T, (o1 02) = fg ’jz do./[— & VY This is the temporal counterpart to the proper distance, and it is called the

proper time. Additionally, at every point of a world line (o), there is a corresponding set of spatial vectors v
called the spatial slice in the tangent vector space at (o) with respect to (o), which is defined by the
condition §# (o) v”gW (v(0)) = 0.

In GR, there exist different notions of rigidity as it turns out to be less than straightforward to formulate this
basic concept of Newtonian mechanics in a relativistic way. Early attempts to understand rigidity in the
framework of electrodynamics date back to before Einstein’s formulation of the special theory of relativity
[24-28]. These approaches turned out to be inconsistent with Lorentz symmetry, which then led to the
formulation of a Lorentz invariant differential geometric definition of rigidity in [23] by Max Born after special
relativity was established. Formulated in a modern way, it is the condition of constant distance between every
two infinitesimally separated segments of a rigid body. Here, the measure of distance is the infinitesimal proper
distance between the two world lines measured in the spatial slice defined by any of the two world lines. This
concept of rigidity is denoted as Born rigidity in literature. A short time after the publication by Born in 1909, it
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Figure 1. The world lines () of the segments of the rod are assumed to form a family of curves which give rise to the rod’s world
sheet. The curve parameter p, which is not necessarily equivalent to their proper time, is the parameter for a family of space-like curves
s,(¢) that represent the rod. We assume that the curves s,(¢) are space-like geodesics and cross the world lines of each segment
orthogonally.

was found by Herglotz [29] and Néther [30] that Born rigidity is too restrictive. In particular, they found that,
with the exception of the singular case of uniform rotation, the motion of a Born rigid body is completely defined
by the trajectory of one of its points. Subsequently, there were attempts to give a less restrictive definition of a
rigid body which include the concept of quasi-rigidity in GR, a condition on the multipole-moments of a body
[31,32], and the model of a rigid body as a body in which the speed of sound is equal to the speed of light [33].
Here, we will use, as our starting point, a definition of a rigid rod that is Born rigid, and we will undertake a
perturbative analysis for small length scales, small accelerations, small velocities and small gravitational fields. In
this article, we will show that two types of effects are found; those due to spacetime properties alone and those
due to small deformations of the rod which correspond to small deviations from Born rigidity. Since all effects
can be considered to be small, we remain in the linear regime, where the different effects can be assumed to be
independent.

Let us assume that we have a rod of very small diameter in comparison to its length, i.e., it is effectively one-
dimensional. We assume that the world lines of the segments of the rod form a family of curves (o)
parameterized by ¢ which we assume to be in the interval ¢ € [g, b]. The end points of the rod are ,(0) and v;(0).
The spacetime surface F(g, §) = (o) can be called the world sheet of the rod. See figure 1. for each curve, the
curve parameter g is chosen so that the curves s, (<) = F (g, <) are space-like geodesics in the sense of the auto-
parallel condition Vsé(g)sél, (¢) = 0 with respect to the Levi-Cevita connection Vof the metric g given as
Ve = £995¢ + F?;q,f@( 7 for any two vectors £ and (, where

« 1 «
By = Eg P(958,, + 0183, — 983, @

are the Christoffel symbols. Note that we do not assume that the world lines of the segments of the rod be
geodesics. The segments move under the interior forces of the rod. We also do not assume that g is the proper
time of all the segments. Later we will assume that there is a single segment that has g as its proper time.

For every point of the world sheet F(g, ¢) of the rod, we assume that the tangent 5; (¢) lies in the spatial slice
defined by the tangent to the local segment’s world line 5, (o), i.e. g (4. (2), s{’, (s)) = 0. Later, we will find that,

due to the condition that the curves s,() be geodesics, the condition g (5. (o), s!/) (¢)) = 0is fulfilled up to the
second order in the proper length of the rod divided by alength scale [, which is associated with local curvature
and acceleration. We say that the rod is rigid if the proper distance between every two points on the curve s,(c) is
independent of the parameter . To further elucidate the meaning of the concept of a rigid rod that we use here,
we explain its relation to the concept of a rigid rod that may be familiar from special relativity in appendix A.

There are two possibilities to construct a rigid resonator from the rigid rod defined above. One option is that
the rod itself is the resonator: for example, it could be a resonator for electromagnetic waves in different spectral
ranges or a resonator for the many different quasiparticles inside and on the surface of a solid matter system such
as phonons, plasmons and polaritons, to mention just a few, all of which may resonate between the ends of the
rigid rod. The second option is to create a cavity resonator by attaching two mirrors at the end points of the rod
such that the light is reflected between the mirrors. In practice, this would be achieved by maximizing the quality
factor of the resonator. We denote such resonators as rigid resonators. The second option is the focus of this
article, and it is illustrated in figure 2. The first option for a homogeneous isotropic dielectric is discussed in
section 6.

A realistic matter system can only be rigid for negligible tidal forces and accelerations. We will discuss our
model for a deformable resonator affected by tidal forces and acceleration in section 5. In section 3, we will
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location
center of of frequenc,
the cavity d 4
measurement
mirror A olL,/2 l mirror B
0
A | J
Ly

(1=PB)Ly/2 support

Figure 2. [llustration of our model of an optical resonator consisting of two mirrors that are attached to the ends of a rod. We assume
that the resonator is moved along a trajectory (o) by a support which is attached at a distance (1 — (3)L,/2 from mirror A. Since
proper time depends on the position in the gravitational field so does the measured frequency of a resonator mode. We assume the
frequency to be measured at a distance o L,/2 from the center of the resonator towards mirror B.

derive an expression for the resonance frequency spectrum of a resonator, rigid or deformable, under the
condition that the timescale for light propagation between the mirrors is much smaller than the timescale on
which the rigid resonator length is changing.

3. Resonance frequencies

In this section, we will derive an expression for the resonance frequencies of the resonator described above. As we
are dealing with an extended object in GR, the obtained resonance frequencies are ambiguous as we will see in the
following: first, every mode k existing in the resonator evolves with a certain phase /), this is a covariant quantity.
In order to extract a frequency wy from the phase, we require a time T such that we can express the phase as

¥ = wiT. As stated in section 2, such a time measurement is defined only with respect to an observer and the

time measured by the observer along the curve () is the proper time T, (91, 02) = f do. /— 8 YY"

Through the family of curves associated with the rigid rod, we can define a family of observers along the curves
Yd0) = 5,(5). We see that every point in the resonator corresponds to a different observer and, therefore, we
cannot give a proper time to the whole resonator, therefore the frequencies of the modes must depend on the
point in the resonator where they are observed.

First, we will consider the case of an optical resonator, discussing other cases at the end of the section. The
resonance frequencies can be obtained from the evolution of the phase 1/ of a resonator mode. This can be
found by explicitly solving Maxwell’s equations in the curved spacetime under consideration. However, we can
achieve the same result much faster by implementing the short wavelength expansion or geometric optical limit.
The purpose of the following calculation is to prove the expression in equation (5), which gives the resonance
frequencies in terms of the radar distance between the two ends of the resonator. Some readers may want to
jump to equation (5) directly.

In the short wavelength expansion, the electromagnetic field strength tensor for a freely propagating,
monochromatic light wave is given as [34]

Eu(x) = Re(e A5 Z@ W<x)( ) ) ©)

where the complex valued second rank tensors ¢, ,,.(x) give the slowly varying amplitudes, A is the wavelength,
ais the length scale of the slow changes of the properties of the light field and the real function S(x) is the eikonal
function which describes the rapidly varying phase. In particular, « is the smallest of the length scales given by
the waist of the resonator mode, the acceleration of the cavity and the spacetime curvature. This statement will
get its full meaning in section 5, where the effects of the motion of the resonator and the spacetime curvature on
the proper length of the resonator are considered explicitly by using a particular set of coordinates called the
proper detector frame. We assume that A < avand A < L,. We will only consider linear polarization in the
following. We find that the results for the change of the frequency spectrum do not depend on the polarization.
Therefore, the results also apply to circular and elliptic polarized fields as those can be obtained as superpositions
of linearly polarized fields.

The raised gradient of the eikonal function 2 "(x) = g0, S (x) is the normal vector field to the wave fronts
defined by S(x). Applying the Maxwell equations to the eikonal expansion in equation (2), we find in leading
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ya(0) 8(0)
valos) = €'(ss)
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ya(e1) =& (1)

Figure 3. The resonance frequencies of a resonator can be derived in the geometric optical limit by considering light bouncing back
and forth between the two mirrors of the optical resonator.

order that é "(x) mustbea light like vector field, i.e. é " (x) é (%) 8w (x) = 0[35]°. Additionally, the light like

condition implies that the integral curves of the tangents £ (x) are light like geodesics. In other words, there
exist curves £(¢) that have the tangents 2 "(€(5)): the light rays of geometric optics. Furthermore, the light like
property implies & (x) 0,S(x) = 0, which means that the phase %S (x) is constant along the light rays. We will
use these properties of the eikonal function and its gradient to derive the frequency spectrum of the optical
resonator in the following.

Inside a resonator, we create standing waves. Hence, we must assume that, for the resonator, there are
stationary solutions of Maxwell’s equations that fulfill the boundary conditions at the mirrors. This assumption
is valid if we assume that coordinates exist in a small region containing the resonator such that the positions of
the mirrors and the metric change only very slightly in the time span that light needs to propagate between the
mirrors. Assuming that linearly polarized standing cavity mode solutions exist, we consider the superposition of
two counter-propagating linearly polarized light waves F,7 (x) = F,,, (x) + Ffw (x), where F;, (x) and Ffw (x)
are as in equation (2) with the eikonal functions S"(x) and S'(x), respectively. Fllw
propagating to the left (negative direction) and F}, (x) represents the wave propagating to the right (positive
direction). We obtain

FiS(x) = Re[ei&“m >0 W(x)(i)n TS0 Sy W(x)(i)n} ®)
n=0 ’ @ n=0 ’ a

(x) represents the wave

We defined a rigid cavity by assuming that there are two mirrors attached to the ends of a rigid rod. We
consider the gravitational attraction of the two mirrors, all atoms in the rigid rod and the light itself to be
negligible. We assume in the following that the mirrors are so close to the ends and so tightly attached that we can
identify their world lines with those of the end points of the rod, i.e. v4(0) = v,(0) and ys(0) = 7;(0). Starting at
0 = oy with the mirror at y,(0;), we can define a curve £'(¢) with ¢ € [¢;, &;] such that £7(¢;) = 7, (¢1) and
£"(s2) = Y(02) for some g, and df““(g)/dg = é”“ (&(s)) = g"0,S"(£()) (see figure 3 for an illustration).
Since all tangents of £ '(c) are light like, this is a light like curve and can be interpreted as the path of a massless
point particle, a single photon, from mirror A to mirror B. At mirror B, the photon is reflected and the tangent of
its path becomes g9, 5" (75(02))- We can define a curve § (o) withg € [, ¢3] such that &(q) = 7 (02) and
€!(s3) = 3 (03) for some p; and dfl’“(c)/d'; = El’”(g () = g"0,S'(£(5)). Thisis the light like curve
representing the path of the photon back to the mirror A. At mirror A, the photon is again reflected and the
tangent becomes g/ 9,S" (7, (¢3))-

Then, a condition can be formulated that is necessary to fulfill the boundary conditions at each of the
mirrors: the phases of the left propagating and the right propagating parts of F;;’ (7, (2)) and F,;7 (73 (¢)) have
to match by a multiple of 27. In appendix B, the derivation of this condition is given. Since the phase is constant
along the geodesics ¢ "and &', we find that the change of the eikonal function at the position of the mirror must
have been %68,\ = %(S (74 (93)) — S(,(21))) = 2mm where m € Z. An observer at mirror A can measure this
phase and associate it with a frequency and a change in proper time as %68,\ = wrT,(o1, 03). The proper time
difference T,(0;, 03) is proportional to the radar length Ry = cT,(0, 03)/2 of the resonator measured at
0o = (03 + 01)/2byan observer traveling with mirror A. Therefore, we find that the frequencies of the modes
of the resonator measured by an observer along the world line of mirror A are given as

cnm
Wan = R 4)
where we assume n > 0, i.e. we consider only positive frequencies. A similar analysis can be made for mirror B,
whichleadsto wg ,, = % Accordingly, for any other observer inside the cavity, we obtain

> For any matter field in the eikonal approximation, the gradient of the eikonal function has to fulfill the characteristic equations which
derive from the highest derivative part of the matter field equations. In the case of Maxwells electrodynamics, the characteristic equations are
simply given by the light cone condition. For more details about this analysis see [34, 36, 37].
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Wy = —, 5
y R, 6
where R, is obtained by following a light like geodesic from the observer to one of the mirrors, after reflection, to
the second mirror and, after the second reflection, back to the observer. It is clear that this is an approximate
value; the notion of frequency means the rate of repetition of a signal. For this notion to make sense, it has to be
constant at least for a few repetition cycles. Hence, the observer measuring the frequency has to move slowly in
comparison to the time that a light pulse needs to propagate between the mirrors R, /c.
There is another way to understand equation (5): electrodynamics in a Lorentzian spacetime can be

interpreted as electrodynamics in a non-dispersive, bi-anisotropic, impedance matched medium using the
Plebanski constitutive equations [38]

‘ ) 1.
D' = &e'E; + ;e’fkijk, (6)

. ) 1.
B' = pop'H; — —cwiEy, @)

where we define the spatial co-vector as w; := g, /¢%° and the permittivity and permeability matrices
el = i := — [|detg| g¥/g,,. Maxwell’s equations in the curved spacetime g,,,, take the form of Maxwell’s
equations in this effective dielectric medium in flat spacetime. Note that the spatial co-vector w;, which mixes the
electric and magnetic field components, is defined by the spacetime mixing components of the metric. If the
metric is orthogonal in the chosen set of coordinates, w; vanishes and we are left with a normal anisotropic
medium.

Let us assume that the coordinate system was chosen such that the coordinate time ¢ coincides with the
proper time at mirror A and that zis the coordinate along the light ray. In this case, we find that the radar length
of the resonator measured by an observer at mirror A can be written as

c c e 2 (dz !
Ri==(t,— ) == dt’:cf (—) dz
a=sh - =7 4 . \dr

z, ¢ zy
= f —dz = n,dz, (8)
24 Vph Z,
where v, = dz/dtis the coordinate dependent phase velocity of the light and 7, = ¢/v,, can be understood as
an effective index of refraction. Equation (8) shows that the radar length can be understood as the optical path
length measured by a ray sent from mirror A to mirror B. Hence, equation (5) is the condition that the
frequencies measured at mirror A must be multiples of the speed of light divided by the optical path length.

At the end of this section, we would like to discuss the effect of higher order terms in the eikonal expansion.
We derived the frequency spectrum (4) and (5) from a necessary condition for the existence of linearly polarized
standing wave solutions of the electromagnetic field in the resonator. This is the condition at the leading order in
the eikonal expansion. Terms in the eikonal expansion of higher order may be complex functions in general, this
canlead to additional phase shifts at the boundaries which, in turn, can lead to frequency shifts. Such additional
frequency shifts can be either considered as systematical errors that limit the predictive power of our approach or
have to be evaluated independently to be subtracted from the result of the measurement. One particular source
of additional frequency shifts is rotation of the resonator about an axis orthogonal to its optical axis. For
earthbound experiments, such rotation will be induced by the rotation of the Earth, for example, which can be
measured independently and taken into account explicitly. The effect of rotation may be calculated by taking
higher orders of the eikonal expansion into account or using other methods of electrodynamics such as the
paraxial wave equation. Here we assume that the optical resonator is non-rotating and we restrict our
considerations to the expression for the frequency spectrum given in equation (5). In the next section, we will
look at its application.

4. Born rigid optical resonators

In this section, we will derive the resonance frequencies of a Born rigid resonator in terms of its constant proper
length. For this purpose, we choose to work in a particular coordinate system which we will introduce in the
following.

Along the world line of an observer 4(7), an orthonormal, co-rotating tetrad ¢/, ,(7) (M € {0, 1, 2, 3}, all
calligraphic capital letters will run from 0 to 3 in the following) can be defined where ¢}) = 4/ (7) is the tangent
to the world line of the observer, €/ (7) (J € {1, 2, 3}, all capital non-calligraphic letters will run from 1 to 3 in
the following) are space-like, €/} (1) €'y (T)gW (y(1)) = ny N and ny N = diag(—1, 1, 1, 1). There also

exists a corresponding co-tetrad /" with 7" ¢/, = . The proper distance along the space-like geodesics
t ponding co-tetrad " with €} ¢/t - = /. The proper dist long the space-like geod
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timelike curve 7y (7' )

spatial
plane at y(79)

Figure 4. The proper detector frame can be defined along any time-like curve +y. The time coordinate is the proper time 7 measured
along the curve. The spatial coordinates at a proper time 7 are constructed from the proper distances along space-like geodesics that
originate at (7). The point with coordinates (c7y, X, y, z) is found by following the spatial geodesic with tangent x“¢/ a proper
distance (x2 + y2 + z2)!/2 from ().

extending from 7(7) in the spatial directions generated from ¢/ (7) and the proper time 7 along the world line of
the observer generate a coordinate system that is associated with the observer (see figure 4). This coordinate
system only exists in the vicinity of the observer’s world line, as it can only here be ensured that the spatial hyper-
planes generated by ¢/ (7) at different 7 do not intersect. In these coordinates, the spacetime metric seen by a
non-rotating observer can be given simply in terms of: the Riemann curvature tensor along y(7) given as
Ruinice (1) = €54(1) €5, (1) (1) € 1(1) 8, (7 (M) R 35(7 (7)) where

R = 0,05 — O5T%, + T4, 1%, — Tg T )

and the non-gravitational acceleration with respect to alocal freely falling frame, represented by the spatial
vector a/ = €L at, where a* = (V;4)".

This coordinate system is called Fermi normal coordinates for a freely falling, non-rotational observer (a = 0)
[39] or the proper detector frame if proper acceleration occurs [9, 40]. The proper detector frame of a non-rotating

observer is accurate for proper distances [40]

2 1 R/\/l
c [R™ arpal } (10)

|x] <€ lyar = min{—, ,
la/| " [RMppol'/? " |RM \po vl

In the following, we will assume that the length of the resonator L, is small in comparison to the scale [,,,. We
consider (1) to be the world line of the point at which the rod that holds the resonator is supported. We assume
that this point is somewhere inside the resonator. If it is not attached to any device, we assume that the center of
acceleration is the rod’s center of mass. We also assume that the resonator is not rotating in the frame of the
observer. We orient the spatial geodesic representing the rigid rod along the z-direction at y(7), i.e.

s/ (¢) = (0, 0, 0, 1). By construction of the proper detector frame, the geodesics s,(s) run along the z-coordinate.
Then, we consider two cases; for the first case we assume that

1 < min{c—z} (11)
|ROZOZ|1/2 |El]| ’

and we take curvature into consideration. For the second case, we neglect curvature. In the following, we treat the
first case directly and the second case can be obtained by setting the contributions of curvature to zero in the
equations for the relative frequency shift. In particular, in both cases, we are allowed to consider only first order
contributions of the proper acceleration. With this assumption, we can consider the metric in the proper detector
frame as a linearly perturbed flat spacetime metric. We define the metric perturbation k. := gf/t N — M- For
example, in the gravitational field of the Earth, the inverse of the square root of the spatial curvature in the direction
away from the center of the Earth is of the order of 10'" m, while the length scale given by ¢ over the gravitational
acceleration is of the order of 10'® m. Therefore, the condition (11) is fulfilled by four orders of magnitude for the
acceleration.

Neglecting quadratic terms in the acceleration, we obtain for the following components of the spacetime
metric in the proper detector frame of a non-rotating observer [40] (as above, Latin indices are used for the
spatial components with respect to the tetrads and spatial indices are raised and lowered with the spatial metric

7
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61] = dlag(l, 1, 1))
p 2 J IyJ
gOO(CT, x)~—|1+ Fa](T)x + Rorop (T)x'x
P 2 KoL
gO](CT’ X) ~ _gROK]L(T)X X
1
gII;(CT, X) ~ by — gR[K]L(T)XKXL. (12)

Since we assumed s/ () = (0, 0, 0, 1) and by construction of the proper detector frame, the proper length of
the geodesics s, (c)is L, = b — a, where the spatial positions of the mirrors are (0, 0, b) and (0,0, a) with b > 0
and a < 0. Then, we find from equation (12) that goi (c7, 0, 0, z) &~ 0 forall Tand zalong the resonator.
Furthermore, by construction, all segments of the rod remain at fixed coordinate positions along the z-axis
and we find that 5 ()M = ((gé;)’l/2 0, 0, 0). Since s’ () = (0, 0, 0, 1), we obtain gLN"yg(g)M N (c) =
(goo)’l/zg (ct(9), 0, 0, z()). From equation (12) and one of the symmetries of the Riemann tensor
Runice = —Ruvvzk follows that the condition gM/\/ . (oM [,N (¢) = 0, which we assumed in our definition
of arigid resonator in section 2, is approximately fulfilled for a small proper length of the resonator®.

To obtain the frequency of the rigid resonator measured by an observer at x using equation (5), we have to
calculate the corresponding radar distance between the mirrors. The radar distance is obtained from the
trajectories £, (¢) of light like particles bouncing back and forth between the mirrors as described in section 3 and
illustrated in figure 3. In section 3, we already assumed that acceleration and curvature only change very slowly
with 7. Under this assumption, we can replace acceleration and curvature in equation (12) by their values at 7.
The trajectories £ (¢) have to fulfill the null condition gf/l./\/ (€Q)E M )¢ N (¢) = 0and the geodesic equation

that governs the motion of test particles 5“4 () = —F?C(f (1)) fB (1) 5‘7 (¢).Infirst order in h/{)/t/\/’ one finds for
the Christoffel symbols

1
T = EUAR(thgR + Ochr — Orhic), (13)

which shows that the Christoffel symbols are of the same order as hf,l/\/' . Then, to first order in hf,l/\/' , the
trajectories are given by Ei’l () =c(o++ ¢ 0,0, £¢0) + 5f(L), where ¢ 1 are constants and the functions
52(1) are of the same order as W N . With Ryvice = —Ruyzk, we find that gZZ ~ land goi = gf; ~ 0along
£.(¢), and we obtain that Si(L) ~ chiy(cto,+ 0, 0, +c)and 5;0) ~ +chd(cto.1, 0, 0, ct) /2 solve the light
cone condition and the geodesic equation. The difference in coordinate time 7 between sending and receiving
the light pulse is given as

ot = fq’b Ef(b)db + fLi‘ﬂ éf(L)dL, (14)

where ¢, , and ¢4 j are the parameter values at which the ray intersects with the world lines of mirror A and
mirror B, respectively. A transformation of the integration variable to z.+ = £% (¢)leads to

b
f f Y(u(z1) do. + g "1z )) (15)
f Sz b ES (e ))
5 a 500
%fb c+§+z(2+/c)dz +f C+5TZ( z_/c) dz., (16)
a ¢+ 6+(z+/c) b —c+ 6 (—z_/c)
which reduces to
n s .20
b
A~ 2]; dzi(l - %(%aZ(TO)Zi + ROZOZ(TO)Z:ZE))
~ ELP(1 LGN M(sﬁz 4L ) a7)
c 2c? 24

where we defined 3 := 2b/L, — 1anduseda = (8 — 1)L,/2. Under the assumption of slowly changing
acceleration and curvature, the coordinate time 6 7 needed for a round trip of a light pulse inside the resonator is
independent of the point on the z-axis where it was sent from and received at, as long as it is sent and received at
the same point. Therefore, we can calculate the radar length of the resonator measured at a given position

Here small proper length means that the proper detector frame metric (12) is still a valid approximation to the actual spacetime metric.

8
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zy = (0 + P)L,/2 along the z-axis inside the resonator (o € [—1,1])as

c
Ry 2% =g (7, 0, 0, 20) Z67

[ + 2 (CTO) oL, + —ROZZ(TO) (Bo? + 608 — 1)L§]. (18)

Equation (18) was calculated for a given time 7, to make our assumption of slow changes of acceleration and
curvature explicit. Of course, we are free to choose the value of 7). Therefore, we can replace 7 in equation (18)
with 7. Then, the relative change of the resonance frequencies measured at zy = (0 + ()L,/2 is given as

az(?aLp 7R°Z2°Z(T)(3 24 603 — 1)L, (19)

b = i b~ 2c
where @, is the nth resonance frequency of the resonator for vanishing acceleration and curvature.

We find that the only linear contribution of the acceleration a” to the resonance frequency spectrum in
equation (19) is via a position-dependent red shift. It vanishes for o = 0, which corresponds to a frequency
measurement in the center of the resonator. The term 36” corresponds to a pure red shift with respect to the
center of the cavity. The term 630 is due to the displacement of the resonator’s support from its center. In order
to move the support along the trajectory v(7), while keeping the proper length of the resonator constant, the
acceleration aZ,(7) = a*(7) + ¢2Rg,0,(T) BL, / 2 must be applied to the center of mass of the resonator’. Based
on these considerations, we can rewrite equation (19) as

aim(T) ROZOZ (T)
Ouw,o R — oL, —
2¢2 24
However, a realistic rod can never be rigid. In the next section, we will consider the first order deviations from
the rigid rod by taking the deformation of the rod due to small inertial and gravitational forces into account.

(o2 — 1L, (20)

5. Deformable optical resonators

In the proper detector frame, every segment of the rod has a world line with constant spatial components. The
acceleration of a segment of the rod atx = (c7, 0, 0, ), in comparison to a freely falling test particle initially at
rest at the same position as that segment, can be derived from the geodesic equation

A (Trest) = — D25 (Yrest) Fre x (Trest) st x (Trest)» 1)

where, in first order in the metric perturbation the tangent for a test particle at rest is
Frestx = (€(— g00 x))"172, 0, 0, 0) with (— g00 @) V2 &1+ hi(1, 0,0, 2) /2 The dot means the derivative
with respect to the curve parameter 7. In first order in 1}, the Christoffel symbols are given by equation (13)
and are proportional to the metric perturbation. Therefore, expanding equation (21) in first order in the metric
perturbation, we find ’yrest N —c2I4d!. Since ch/dTrest = ~ 1+ hl(r,0,0,z) /2, we obtain
ap ~ —c2T), for the proper and tidal accelerations.
We consider the effect of ap on the resonator’s end mirrors and the resulting deformation of the rod to be
negligible in comparison to the direct effect of ap on the rod. Then, we obtain the inertial and tidal forces on the
rod by multiplication of ap with the mass density p. These forces give rise to stresses within the rod, represented
by the stress tensor oy;. For static forces and forces that change very slowly, the stresses are related to the strain
via Hooke’s law as

.0
/yrest,x

ey = (C kL ok, (22)

where C~!is the inverse of the stiffness tensor for the material the rod is composed of. From the strain, we can
calculate the deformation of the rod by integration along the length of the rod from its center of mass. Since the
change of diameter of the rod and its deformations in the x—y-plane are not of interest for us, we can restrict our
considerations to £,,, £.,and €,,,. We assume a constant cross section A of the rod, and we assume that the
diameter of the rod is much smaller than its length. The contribution of €, and ¢, on the length of the rod are of
second order in the metric perturbation and can be neglected (see appendix C) if

aP av > max {L5<|aPmax /C2W4 LS Pmax /CZ (23)

where af .. and a}, . are the maxima of proper acceleration in the x-direction and y-direction, respectively,
wy and w,,are the diameters of the rod in the x-direction and y-direction, respectively, and aj ,, is the largest of

This result can be directly obtained by considering the differential acceleration between the support and the center of the cavity by use of
the geodesic deviation equation.
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the values given by (5|a*(7)|) and ((33* + 1)L,c?|Ro0.(7)|/6), where () denotes the averaging over the
observation time (see appendix C for the derivation). With these considerations, the tidal accelerations in the
proper detector frame in the transversal direction can be neglected if the following conditions hold

a;,av 2 maX{Wx <|R0x0x|> <|R0y0y|> }’ (24)

Additionally, we assume that the various contributions to the transversal tidal acceleration do not oscillate on
resonance with any elastic mode of the rod that is not already on resonance with the oscillations of the
longitudinal acceleration and the longitudinal tidal acceleration. In most situations of interest, it should be easy
to fulfill these conditions by choosing an appropriate orientation of the resonator and appropriate values for w,
and w,. In particular, the conditions are fulfilled for the examples given in sections 7-9.

Under the above conditions, the only non-zero component of the stress tensor of interest for us is 0, and its
relation to the strain is given as

1
€2z = ;Uzz- (25)

where Yis the Young’s modulus of the rod material. If we assume a constant mass density, the force along the rod
in the positive z-direction can be obtained as

b 2
Fi(r,2) = f dz/pA aj(z/, 7) ~ —pA(b — z)(az(r) + %(b + Z)ROZQZ(T)). (26)

where we made use of aj(z, 7) =~ —c?T'%(z, 7) = —(@%(T) + ¢?Ry0,(T)z). For the force along the rod in the
negative z-direction, we find

2
FX(7, 2) =~ —pA(z — a) (aZ(T) + ?(Z + a)ROZOZ(T))' (27)
Since the support of the resonator is inside the resonator, we obtain the total deformation of the resonator by

integrating the strains €, = F; /Aand ¢,, = F” /A on the two sides of the resonator fromz = 0to the ends,
respectively. The effective change of the proper length is

b az
8L, =~ fo dz's () + f dz'e(2)) = — z—z ( 2(? AL, + R°Zl°z @ G524 1L ) (28)

where ¢, = /Y /p is the speed of sound in the rod material. The acceleration induces a contraction of one side of
the resonator and an expansion of the other. Therefore, the acceleration amounts to a change of the proper
length, proportional to the displacement 3 L,,/2 of the support with respect to the center of the resonator. The
change of the proper length proportional to R,o,(7) can be split into two terms. The term proportional to Iia
corresponds to the acceleration aZ,(1y) = a*(79) + c*Roz0.(T)GL » / 2 of the center of mass of the resonator that
we discussed at the end of section 4. For a freely falling resonator (5 = 0 = a*(7)), only the second term in the
brackets remains.

From equations (19) and (28), we find for the relative change of the resonance frequencies of the deformable
resonator

6L ? R 20z
R e e D)
a? 2
2(;)( B~ ) R"Zz‘zm (2%(362 +1) — 302 — 600 + 1)L§. (29)

Note that the deformation of the resonator changes the coordinate position of every point inside the resonator®.
This leads to a change in the trajectory of a light pulse within the resonator, and the whole calculation we made in
section 4 would be changed. However, this change would only amount to a change of the resonance frequencies
in second order in the metric perturbation and we can neglect it.

Again, we can write the relative shift of the resonance frequencies in a neater way using the center of mass
acceleration as

ax(T)cm C2 ROZOZ (T) 2
bpo ~ ——| =0 —0|L, + ——— +1—3U L. 30
’ 2c2 (cfﬁ ) P 24 cs g (30

As expected, we would obtain the result in equation (20) for the Born rigid rod from equation (30) if the speed of
sound in the material was infinite. This coincides with the observation that a Born rigid rod violates causality, as

8 Any deformation of the rod also leads to a change of density and the speed of sound in the rod which, in turn, leads to a modulation of the
deformation of the rod. We consider this effect to be negligible here. In particular, it corresponds to a nonlinear correction of Hook’s law.
Therefore, the result in equation (29) can be considered accurate as long as Hook’s law can be applied. As the deformations considered are
supposed to be small, Hook’s law should hold with a very good accuracy.

10
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Figure 5. In the case of a dielectric optical resonator, we consider the rod itself to be the resonator.

its segments would need to interact with an infinite speed. A more realistic definition of a rigid rod was given in
[33] asarod in which the speed of sound is equivalent to the speed of light. In appendix D, we show that the
approach of [33] leads to the same expression of the change of the length of the rigid rod as our equation (28).
The relative shift of the resonance frequencies for such a causal rigid rod is found from equation (30) in the limit
¢, — cas

z
e 5 - oy1, + 20— o G
In particular, we find that the contribution of curvature to the relative frequency shift vanishes if the frequency is
measured at one of the mirrors corresponding to o = +1.

However, the speed of sound ¢, in every realistic material is always much smaller than the speed of light: for
example the speed of sound in aluminum is of the order 5 x 10> m s~ . To date, the material with the highest
ratio of Young’s modulus and density Y /p = ¢ is carbyne, with a value of the order of 10° m* s> [41], which
would correspond to a speed of sound of the order of 3 x 10* m's~". Therefore, we find that the effect of the
deformation of matter is by far the most dominant and the rod is far from rigid (may it be Born rigid or causal
rigid) in all realistic situations. However, the relativistic effect of gravitational red shift gives a fundamental limit
on the definition of the frequency spectrum of an optical resonator as a property of the resonator alone; when
resonance frequencies of an optical resonator are to be specified with a precision of the order of this relativistic
effect, the position of the frequency measurement has to specified.

Finally, we want to point out that the ratio of Young’s modulus and density is called the specific modulus. In
this sense, ¢ can be thought of as the specific modulus of spacetime. It is interesting to note that this value is off
by a factor 4 from the value 4¢” given for the specific modulus of spacetime in [42].

Ouo &

6. Deformable dielectric optical resonators

Up to this point, we have only discussed the case of an empty cavity resonator. Now, let us assume that the rod
itselfis the optical resonator. In particular, we assume that it consists of an isotropic homogeneous dielectric
medium (see figure 5). In [43], it was shown that light rays in an isotropic dielectric follow light like geodesics
with respect to the dielectric metric tensor (see also [34, 44])

2
P,diel P Cdiel
gM/\lfe = g/VlN — ( CIZE — 1)14/\414/\/, (32)

where ¢ = (ep)~"is the speed of light inside the medium and uM = gP MV, is the normalized tangent

vector to the world line associated with the local segments of the dielectric. In our case, these are the segments of
the resonator, and therefore, uM(z) = (1 + hdy/2, 0, 0, 0)and uy(2) ~ (=1 + h& /2, b, b, hy). From
equation (32), we obtain the metric

2
. . 2

g(fo’d'el(CT, X) ~ ——Cdfl (1 + = aj(r)x) + R()[()](T)XIX])
c c

. 2 CZ.
gol;)dlel(CT, X) ~ —g :lzelR()K]L(T)XKXL
: 1
gﬁ’d‘el(cr, X) ~ & — ERIK]L(T)XKXL. (33)

Now, all of the considerations made for the empty resonator above can also be made for a resonator composed of
an isotropic, homogeneous dielectric by using the metric g/i’ljl\‘/el for the propagation of the phase fronts given by
the eikonal function. Hence, we obtain the resonance frequencies in an isotropic homogeneous dielectric by

11
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multiplying the result for the empty resonator with cg;e1/c. This factor cancels in the relative frequency
perturbation so that

§8 = 8,0 (34)

A similar metric as in (32) has been shown to arise for particles or quasiparticles in other matter systems, e.g. for
electrons in graphene [45]. Our analysis may also apply to these situations.

7. Example: uniform acceleration

To illustrate the applicability of our results, we will consider some examples in the following. A particularly
straightforward example is the situation of a non-rotating resonator that is uniformly accelerated along the
optical axis. From the equivalence principle follows that this situation is similar to the situation of an optical
resonator kept vertically at a fixed position in the gravitational field of a massive object like the Earth. However,
since we are considering an extended object, the curvature of the gravitational field would also enter the
frequency spectrum of the resonator as in equation (30). Hence, the effect of uniform acceleration and a
gravitational field do only coincide if the effect of curvature can be neglected. For uniform acceleration, we find

L
B A (ﬁz - %)a L (35)

C; c 2

For 3 = %1, alength of the resonator of L, ~ 2 cm, an acceleration of the order of 10 ms 2, which is similar to

the gravitational acceleration of the Earth, and a speed of sound in the rod of the order of 10° ms ™! (similar to the
speed of sound in aluminum), we obtain a relative frequency shift of the order of 10~”. This frequency shift is
given only by the first term in equation (35) as the second term is smaller by about 11 orders of magnitude. Since
the first term is due to the deformation of the resonator it is a Newtonian effect.

For the case § = 0 the first term in (35) vanishes. What remains is a purely relativistic effect, the gravitational
red shift, due to a difference in proper time between the center of the resonator and every other point along the
optical axis. Setting the parameter o to —1 and +1 means that the frequency is measured at the mirror A and
mirror B, respectively. We find a relative frequency shift of the order of 10718, The measurement of such a
small frequency shift seems to be experimentally challenging but may be feasible with state of the art technology.
For example, currently, optical clocks reach a relative precision of 10~ '® over an integration time of 1 s [46, 47].
Of course, higher frequency shifts can be reached with longer cavities and larger accelerations. In particular, the
effect of gravitational red shift was already measured on the length scale of about 33 cm [48]. As argued above,
the effect of gravitational red shift gives a limit on the validity of the concept of the frequency spectrum as a
property of the optical resonator itself. For the parameters of the example above, we find that a reference for the
frequency measurement has to be given when the frequency spectrum is to be specified with a relative precision
of 10~ "%,

8. Example: plunge into a black hole

We consider the results derived in this article as a basis for optomechanics in relativity and gravity which implies
their application to experiments in laboratories on the surface of the Earth or in space. However, our approach is
not limited to spacetimes that only bear weak gravitational effects. It is the spacetime metric seen by the optical
resonator in its proper detector frame that has to be a linearized metric. This is ensured by the condition

Lyar > L. Toillustrate the applicability of our results to spacetimes with strong gravitational effects, we consider
the situation of a non-rotating resonator that falls into a non-rotating black hole (see figure 6). To this end, we
consider the Schwarzschild metric in spherical Schwarzschild coordinates (ct, 1, ¥, ¢)

g= diag(—f(r), L, r2, 12 sinz(ﬁ)), (36)
f@)

wheref(r) = 1 — rg/rand rgis the Schwarzschild radius. We assume that the support of the resonator falls

radially fromr = Rinto the center of the black holeat ¢ = 0 and ¥ = 7/2. The corresponding trajectory is

givenin [49] as

r(0) = Rcos*(p/2), (37)
1/2
(o) = f(?) (o + sin o), (38)
S

parameterized by p. We see that r = 0 for o = 7, which means that the singularity at the center of the black hole
is reached in finite proper time 7 = 7R>/2/2cr} /2, The tangent to the world line of the falling support of the

12
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Figure 6. Artistic representation of the optical resonator plunging radially into a black hole.

resonator is

WZC(_V}W _ \E& 0, 0], (39)

f(r(o)’ 1+ coso’
where o = o(7) is implicitly given by equation (38), 4! can be obtained directly from equations (37) and (38) and
49 can be found from the normalization condition VY8, (r(0)) = —c?. Then, the time line can be found as

v = (ct(7), r(0(7)), 7/2,0), where ct (1) = j(; " dr! 4%(o (1")). An orthonormal tetrad that is parallel transported
along the time-like geodesic yis given as

P
€0 —'Y/I/Ca

o | [stane/2)  mes 0)
“ ( \/;f(r(g))’ 10, 0.0)

&'=1(0,0,r(0)!, 00 and
53” =(0,0, 0, r(g)fl). (40)

All other orthonormal tetrads can be obtained by orthogonal transformations in three-dimensions on the spatial
part of the tetrad (40). Due to the spherical symmetry of the spacetime and the radial trajectory of the resonator
atd¥ = w/2and ¢ = 0, we can restrict our considerations to rotations in the ¢{'~¢4 -plane. Then, we define the
rotated frame

4, el'=cosp &'+ singp &,

4 and €f = cosp &' — sinyp &', (41)

where the angle ¢ € [0, /2] gives the orientation of the resonator in the ¢{'—¢4 -plane. From the tetrad (41), we
obtain the proper detector frame. The z-direction is defined by ¢4 and we find from equation (29) that

2
By ’%22072(7)(2%(352 +1) — 302 — 608 + 1)L§,
C

S

where no proper acceleration appears since the resonator is assumed to be freely falling. The curvature tensor
component Ry.(7) is explicitly given as

Rozo-(7) = 65 613/ 65 ng/wpa(r(g)))

= 2 f(R) )ZR__ “
" gO(ﬂr(g)) (o, (42)
i o SO/ gy 4 5 M/

R? ( (o)) R°¢°°(r(‘-””+R(1+cosg)2R“"’¢(r(g))} 43)

Here, we used that Ry, = 0 for the Schwarzschild metric. The expressions for the other curvature tensor
components appearing in equation (42) at) = 7/2 are given as

& 1K
Rorir(r) = ==, Ragag(r) = f ()=
r 2r

and  Ryg(r) = — f(r)*lzr—i. (44)
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Figure 7. The frequency shift of a vertically oriented optical resonator falling into a black hole is plotted over the normalized proper
time measured at the center of the resonator.

We obtain

(1 + 3cos(2p))rs
ar (o)’

and we find that the specification of the angle of orientation of the rod ¢ gives rise to a numerical factor which
vanishes onlyat ¢ = arccos(—1/3) /2. Hence, for ¢ = arccos(—1/3) /2, the frequency shift is proportional to
the frequency shift at ¢ = 0, which corresponds to vertical orientation. For a vertically oriented causal rigid
resonator supported at its center, we find the relative frequency shift at its center is given by

Rozo0, (T) = (45)

rsL;
8r(0)*

The time evolution of this frequency shift is plotted in figure 7. We see that the frequency shift in equation (46)
stays finite until r = Oisreached at o(7) = . In particular, there is no effect due to the crossing of the event
horizon at rs. As stated at the beginning of this section, our approach is accurate only for I,,; > L,. From
equation (45), we find that I,,, = /7 (9)?/rs for ¢ = 0. The stellar black hole has a Schwarzschild radius of the
order of 10> m. For an optical resonator of alength of the order of 102 m, this implies that that our approach
breaks down when a radius of the order of 1 m is reached which is far beyond the event horizon at r = rs.

The effect of the event horizon can be seen by considering a situation in which the measured frequency is
imprinted on a signal at the center of the resonator and sent out radially to an observer that stays at constant
coordinate r = R > rg. This observer receives a signal with frequency

_ [few 75 sing(r(®) ) cnm
() [ (\/f(R) +\/; 1—|—cosg(7(t))) @) 01+ ot 47)

Bno(T) ~ — (46)

where r(f) and 7(¢) are given implicitly by the time line (7). The first factor on the right-hand side of

equation (47) corresponds to the gravitational red shift and the second factor to the Doppler shift due to the
relative velocity between the emitter and the receiver. The red shift factor f (()"/? vanishes when the resonator
passes the event horizon and becomes imaginary.

The above result can be applied as well to an optical resonator falling towards the Earth. For a distance from
the center of the Earth of the same order as its radius, we find that the relative frequency shift in equation (46) is
of the order of 10’ for an optical resonator of 2 cm length. This relativistic effect is mostly gravitational red
shift due to curvature. It is far from being observable with state of the art technology. However, it gives a
fundamental limit of the validity of the concept of frequency spectrum as a property of the optical resonator
without any reference as discussed above.

9. Example: an oscillating mass

As athird example, we consider the situation of a non-rotating resonator in the gravitational field of an
oscillating solid sphere of massive matter. The result could be used to consider the possibility of detecting the
gravitational field of a small sphere of dense material, like gold or tungsten (see figure 8). This situation is similar
to the one considered in [50, 51], where the resonator is a second massive sphere on a support with restoring
force. Here we will restrict ourselves to the derivation of the resonance frequency spectrum and an evaluation of
its relative change for certain realistic experimental parameters. Also, we assume that the solid sphere is the only
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L
resonator
- WL

Figure 8. [llustration (not to scale) of the resonator placed in front of a gold sphere that oscillates by a lever with frequency §2/27. The
gravitational field of the sphere induces a change of the resonance frequencies of the resonator.

source of a gravitational field affecting the optical resonator. To model an earthbound experiment, the
gravitational field of the Earth would have to be taken into account as well. To derive our model of the
gravitational field of a massive sphere, we start from the Schwarzschild metric, which is given as

000
4 1+£6
S i ( 4R)
gw—(1+ 4R) o (48)
0 010
0 001

in isotropic Cartesian coordinates (X° = cf, X, 7, Z), where rs :== 2GM /c? is the Schwarzschild radius of the
source massand R == (82 + 72 + 2%)//2. To first order in rs/R, the difference of (48) from the Minkowski
metric diag(—1, 1, 1, ) has only four non-zero components, namely kg = h S =h %7 = h$, = 5. Letus
assume that the sphere moves much more slowly than the speed of light and that we are close enough to the
sphere so that all changes of the gravitational field can be considered to be instantaneous. With this, we can
model the metric perturbation for the moving sphere by replacing Rby R(f) := (£ — ~},( N+ G — Y& ))?
+ (Z — 7‘;[(? N)HL/2, where o4, (£) is the trajectory of the source mass. The resulting metric perturbation
becomes

h

S

—pM M M S M 49
xx 5%3 zZz R(f) ( )

M
h,, = 0for u = v. (50)

We assume that the support of the resonator is at rest in the isotropic coordinates on the Z axis in the negative Z
direction. To be completely accurate, we would need to fix the proper distance between the support of the
resonator and the average position of the sphere, as this corresponds to the assumption that the distance is fixed
by another matter system. Furthermore, in every realistic situation, the proper distance would change as the
matter system is affected by the gravitational field of the sphere and the gravitational force experienced by the
resonator. However, any small error in the position of the resonator will be negligible, as it corresponds to a
small change of the acceleration and curvature that we already assumed to be small. From equation (13), we find
thatan acceleration a®(1) = (Vi ¥(7))? & ¢*['g, ~ —c?rs /2R (7)? along the Z-axis is necessary to keep the
resonator at a fixed position Z; < 0 on the Z-axis,i.e. v(7) = (7, 0, 0, Z,). For the linearly perturbed metric,
the curvature tensor is given as

1
R s ~ Enaﬂ(agawhgj — OpOsh) — 0,0,hls + O50,hi). (51)

We assume that the resonator is fixed along the Z-axis. From the equation (51), we obtain the curvature
component Rg;5:(7) = —r5/R(T)>.

To construct the proper detector frame, we need to fix the tetrad corresponding to the observer at the
support of the cavity. Since we assume that the support stays at rest in the coordinates (£°, X, 7, Z), we have
el = ((gﬁsﬁ)‘l/ 2,0, 0, 0). We define the three spatial vectors of the tetrad 6‘,‘ with] = 1,J] = 2and]J = 3such
that they point in the X-direction, -direction and Z-direction, respectively. Therefore, we find
el = (0, (g5)71/%, 0, 0), €5 = (0, 0, (ggy)fl/Z, 0)and €5 = (0, 0, 0, (g5,)"'/%). We conclude that the
transformation to the proper detector frame is a linearized coordinate transformation. A linearized coordinate
transformation leaves the curvature tensor invariant and we obtain Ro,,(7) = —r5/R(7)>. Furthermore,
a*(t) = g,a(1) ~ a®(T) to first order in the metric perturbation.

Let us assume that the motion of the sphere can be described as R(7) = Ry + OR sin {27, where R, is the
average distance between the sphere and the position of the support of the resonator, § Ry is the amplitude of the
sphere’s oscillation and 272 its frequency. If we assume that 6R, is much smaller than R, the proper
acceleration and the curvature can be written as
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2
a*(1) =~ _C_ri(l — 20R, sin(Q7 + (p)), (52)
2R0 0
R0, (T) & r—53(1 _ 3R sin(Qd1 + ga)). (53)
R; Ry

The first terms in (52) and (53) are constant, and we can calculate their effect on the frequency spectrum using
equation (29). The resulting time dependent resonance frequencies are given by equation (29) as

2 2
By —@([C—zﬁ - a) n (2%(352 +1) — 30— 680 + 1)i] (54)
[on [on 6Rg
Let us assume that the sphere is of gold or tungsten, that the mass of the sphere is 100 g (corresponding to a
radius of the order of r,, ~ 1 cm), which corresponds to a Schwarzschild radius of the order of 10™% m, the
amplitude of the oscillations 6R is of the order 1 mm, while the length of the resonator and R ,;,,, the minimal
distance between the resonator and the sphere, are of the order of 1 cm. Then, we find that Ry = rgp, + 6
Ro + Ruin + Ly(1 + 3)/2 takes values between 2 and 3 cm. This results in values for acceleration and spacetime
curvature of the order of 1071 ms~2and 10> m ™2, respectively. We mentioned above that the speed of sound
inarod ofaluminumisabout5 x 10’ ms™'. Therefore, the relative change of the resonance frequencies of a
resonator with its length fixed by an aluminum rod, in the gravitational field of the moving mass, yields
8, ~ F107 18 for 3 = +1, where the acceleration is dominant, and §, ~ 107! for 3 = 0, where only the
curvature contributes. The relativistic effects in equation (54) are ten orders of magnitude smaller. Hence, to
detect them, the whole experimental setup would need to be under control with this precision.

For oscillation frequencies 2 far below any elastic resonances of the resonator rod, we can also derive the
effect of the sinusoidally modulated terms in (52) and (53) with equation (29). We find

L,6R 2 2 L
6%, ~ %SiH(QT + w)((z—zﬁ - 0) + [22—2(3ﬁ2 +1) — 302 — 660 + 1)%} (55)

0 s s 0

For the parameters used above, we find for 3 = =1 an amplitude of the frequency oscillations of the order of
10~". The temporal modulation of the frequency shift may be an advantage in experimental situation as it may
be used to increase sensitivity. As for the example of uniform acceleration, the values for the frequency shifts that
we found for this setup seem to be challenging but not out of reach of state of the art experimental techniques.
Oscillations of the source mass on resonance with the elastic modes of the resonator rod may be used to increase
the effect on the frequency spectrum significantly. However, the consideration of this situation is beyond the
framework developed in this article. It will be treated in a future article.

10. Conclusions and outlook

We derived an expression for the resonance frequencies of an optical resonator moving in a weak gravitational
field in a relativistic setup. Firstly, we considered a Born rigid resonator, which we assumed to be constructed
from a Born rigid rod. Secondly, we considered a deformable resonator, where we assumed the rod to consist of a
realistic material with finite Young’s modulus. In this context, we discussed the concept of a causal rigid rod.
Besides gravitational effects, the expressions that we derived take proper acceleration of the resonator into
account. As well as empty optical resonators, we considered optical resonators filled with ahomogeneous
dielectric material.

Our investigation revealed three fundamentally different effects. One is a simple gravitational red shift: the
resonator is an extended object and time runs differently at different points inside the resonator. Therefore, the
resonance frequencies of the resonator are not a global property of the resonator, but depend also on the position
inside the resonator at which it is measured. The second effect is due to the difference between proper length and
radar length, which leads to a shift of the resonance frequencies in the presence of non-zero curvature and
acceleration even for a Born rigid resonator. The third effect is the deformation of the resonator due to curvature
and acceleration, when the resonator is deformable. The deformation of the resonator is governed by only one
parameter, the speed of sound ¢, in the rod. It turns out that the effects of deformations are larger than the
relativistic effects, red shift and difference between proper length and radar length, by a factor c2/c?. A causal
rigid rod can be considered to be one with the speed of sound equivalent to the speed of light, overcoming the
problems of Born rigidity [33]. We gave an expression for the resonance frequency spectrum of a causal rigid rod
in equation (31). Since the largest speed of sound in any material is still many orders smaller than the speed of
light, the deformations of realistic materials will dominate over the relativistic effects significantly. Therefore, a
very high degree of control over the material parameters would be necessary to observe the relativistic effects.
However, the relativistic effect of gravitational red shift can be seen as posing a fundamental limit on the validity
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of the concept of the frequency spectrum as a property of the optical resonator alone; when resonance
frequencies are to be specified with a precision of the order of the gravitational red shift, the position of
frequency measurement has to be specified additionally.

The results derived in this article can be applied to general spacetime geometries if acceleration and tidal
forces in the proper detector frame of the resonator are small enough. This includes freely falling resonators in
strong gravitational fields like a black hole beyond the Schwarzschild radius or a uniformly accelerated cavity
which we gave as examples in this article. As a third example calculation, we considered the gravitational effect of
an oscillating tungsten or gold sphere on the resonance frequencies of an optical resonator in section 9. This
situation is similar to the one considered in [50, 51], where the resonator is a second massive sphere on a support
with a restoring force.

Note that our results can be applied to oscillating gravitational fields like that due to the oscillating source
mass as long as the oscillation frequency is much smaller than the elastic resonances of the rod that constitutes
the optical resonator. In the particular situation of an aluminum rod of a few centimeters and an oscillating
source mass of a few gram, this is a very good approximation as the elastic modes of the rod have frequencies of
the order of 100 kHz, which is hard to achieve with a source mass of this size. However, for longer resonators,
smaller source masses or other oscillating gravitational fields like gravitational waves, elastic resonance may be
achieved which can amplify the effect on the frequency spectrum significantly. A gravitational wave isa
particular example of a situation in which the acceleration vanishes and only an oscillating curvature remains’.
Since we already identified the deformation effects of a realistic rod as the dominant effect, the effect of
oscillating curvature on the rod can be treated similar to the effect of a gravitational wave on the antenna of a
resonant mass detector (see for example [9] and chapter 37 of [49] as a reference for the latter). A detailed
description for a resonantly driven optical resonator as a follow up of this article will be given in a future
publication.

The precision of metrological experiments with resonators depends strongly on the knowledge of the
resonance frequencies of these resonators. On the one hand, the effects of acceleration and curvature on the
resonance frequencies can be seen as an experimental systematic error which has to be taken into account. On
the other hand, these effects can be used to measure a proper acceleration or spacetime curvature. In such
experimental situations, the model we used will certainly not be fully valid and the effects have to be calculated
for the precise apparatus that is used. However, the results of this article can serve as a basis for investigations of
the accessibility of spacetime parameters and parameters of states of motion in the more advanced framework of
quantum metrology [16].

In our analysis, the only non-Newtonian effects are the relativistic red shift and time dilation and the
difference between radar length and proper length. However, the formalism employed here contains further
relativistic effects (see table I of [40]) such as the Sagnac effect and magnetic type gravitational effects such as
frame dragging, which induces the Lens—Thirring effect in gyroscopes. It would be interesting to include these
effects in a more detailed analysis. One way could be an extension to three-dimensional optical resonator
geometries and the inclusion of the polarization of the light field.

In the future, it would be desirable to have a description beyond the restrictions to small accelerations and
curvatures. For that purpose, a fully relativistic description of elasticity has to be used such as those presented in
[32,33, 52]. For significant variations of the curvature on the length scale of the wavelength of the resonator
modes, it would be necessary to abandon the eikonal approximation and to derive the resonance frequencies
directly from solutions of the Maxwell equations in a curved spacetime. This is the case if the effect of the
gravitational field of the light inside the resonator is to be considered in full generality [22]. Furthermore, the
effect of rotation of the resonator has to be considered in the future. This can be done by considering higher
orders of the eikonal expansion or using methods of electrodynamics like the paraxial approximation.
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Appendix A. Relation to the concept of a rigid rod in special relativity

In special relativity, the proper length of a rod is given as the coordinate distance between its end points, calculated
in the coordinate system defined by the rest frame of the rod. Here, we call L,(s,) the proper length of the rod and
describe it in the following. By definition, for every g, and every point s, (o) of the space-like curve s, (<)
representing the rod, there is a space-like tangent 55/)0 (So) = ds,, (<) / dg],,. For every point of the curve s, (<)
representing the rod, there is an associated vector in the tangent space T, (,) M via the inverse of the exponential
map, where the exponential map is given as exXp, (o) * L, oM — M and eXpsyo(go)((g — go)s; (50)) = S4,(5).In
particular, the two end points of the rod s, (@) and s, (b) are associated with the vectors (o — a)s 1/70 (so) and

b - §0)5;0 (So)- Since s, () is a space-like geodesic (in the sense of the auto-parallel property), the proper distance
from s,, (o) to s,,(a) and s, (b) is equivalent to the norm of — (5o — a)sé ,(so)and (b — go)s; , (S0), respectively,
with respect to the metric g, at s, (). Hence, for every point s, () on the rod, there is a representation of the
rod as a straightline gséo (o) in the tangent space to this point and the sum of the proper distances in both
directions of the rod is equivalent to the length of the line given as (b — a) 8o (5;0 (<o), s ;0 (o). We can find
coordinates such that (gsﬁ0 @ = T This s called alocal Lorentz frameat s, (5o). In the local Lorentz frame, the
coordinate distance (in tangent space) between the end points of the line gs;0 (o) is equivalent to its length

b —a) 86,0 (s;0 (<0)s 5;0 (S0))- In special relativity, the spacetime and the tangent space to every point can be
identified since spacetime is flat. Then, the length of the line representing the rod in tangent space is also the proper
length of the rod. Therefore, we can identify L(s,) as the generalization of the proper length of a rigid rod in GR.

Appendix B. Boundary conditions

In the following, we will will apply Maxwell’s equations to the eikonal expansion in equation (2) along the same
linesas in [35]. We will write V(¥ = (?, , for the covariant derivative. In the following, we will apply the Lorenz
gauge condition and Maxwell’s equations to the eikonal expansion in equation (2). Maxwell’s equations in
vacuum imply that [35]

F,u,I/;>\;/\ + (RU;LE/U - R”VF;‘LO') + Raﬂulema =0, (B1)

where R, is the Ricci tensor. We have

o

. o0 ~ n
F/n/;)\ = Re (elis(x) Z(i%(ﬁn’m’f/\ + (ZS”)#V;/\)( A) ] and (BZ)
n=0

. 105y o a)? Aa A A AY
Fgl/;/\’)\ = gM Re (e ’\S(X) Z((;) d)n,;wf/\fa + lx(d)n,;wg)\;a + 2¢n,pl/;/\§0) + ¢n,pl/;)\a)( ) ) (B3)

n=0 «

Inleading order, we find the null condition gA(’g )\ é(, = 0. By taking the covariant derivative of the null condition
and taking into account that 5 L= 0,5 (x), we find

0= (g)\gé)\gg);u = 2%‘7&-0;# = Zégs(x);(fu = Zgag#;g (B4)

which means that the integral curves of the vector field £” are light like geodesics. These are the light rays of
geometrical optics. In the next to leading order, we find

AN AN
0= ¢O,/w§;)\ + 2¢0,/u/;/\£ . (BS)
We define the scalar

Go = (g Mgﬁ%o,aﬁfb:ﬁ(s)l/ % (B6)

and the polarization tensor fy .., = 0.,/ $o. We find that

o wn = EB) B s — (Do) 200, 00,0) (B7)
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:f ((¢0) 1¢0,uu;)\ - E(¢0) 3¢0,,u,1/ga 'g‘%(¢0,aﬁ;/\¢0,n,5 + ¢0,(yﬂ;)\¢0,’y§)) (B8)

:(¢0)71¢0,;LV;A5A + %(¢0)71¢0,MV8;)\)\ = 0. (B9)

This means that the zeroth order polarization tensor is parallel transported along the light rays. Furthermore, for
. o . Loz z 2\
linear polarization, we can write f0 w = exp(iy,) ﬁ)) w where ¢ and ﬁ)) L A€ real. From fuv; 1§ = 0,wefind
that ¢, Ag * = 0. Therefore, the phase of the zeroth order amplitude function does not change along the light ray.
In particular, we can assume that ¢, ,,,, is real everywhere as we can set the initial conditions accordingly.
With these considerations, we can investigate the boundary conditions at the mirrors. To express the boundary

conditions in a covariant form, we define the frames of the mirrors in the following. The tangents 4, (¢ )" and

4 (0)" of the world lines of the mirrors define a spacetime split; the spatial slice at the mirror () = A, Bis defined

as the set of vectors 'V # such that & r® "4 ()" = 0 (no summation of 7). Inside these spatial slices, we can

define three orthonormal vectors 6?)“ such that the vector €{"* is orthogonal to the mirror and the normal vectors
eV and €"" are tangential to the mirror'”. Furthermore, we choose € " to be directed in the polarization
direction of the right propagating light field at the mirror (i). Together with ¢ = Yy (@) / ;) (©) |, the vectors
e(]i) H(J€{1,2,3}) form an orthonormal tetrad. Using the tetrads, the components of the field strength tensor in the
frame of the mirror are given as F/(\’/; o) = 6(/3{‘ e(ji}”FW %y (@) Then, the boundary conditions at the mirrors

are that the electric field is perpendicular and the magnetic field parallel to the mirrors, i.e. FS (¢) = 0 = E$) (o)
and F9 (o) = 0.

The tetrads were defined such that the polarization direction of the light field is in the direction of ¢{"*. We
define ¢ff’)0’ 1/ o) = 68”‘ e ¢;/ L L,y (@) which are non-zero and we find the boundary conditions

; Qg 2\ AY 12l 2 G A
0= Féll)reS(g) _ Re[el)\s 0w (2)) Z¢S,)Jl(g)(_) + ey S0l Zgb(nl’)oll(g)(_) ) (B10)
n=0 Q n=0 Q@
From the lowest order in A/, we find that
128" (v, i i Sl i
0 = Re (el/\s (,(,)(ﬂ))gbg,)orl(g) + ens (“/m(l’))QSg‘)Oll(g)). (B11)

Above, we found that the zeroth order amplitude tensors are real. Then, the boundary condition (B11) can only
be fulfilled for all g if ¢6’01(,_0) = ¢fwl(g) and %Sr(%)(g)) = %Sl(’y@(g)) + 2mm;, where m;y € Z.

Appendix C. Deformations of a rod

For isotropic media, the stiffness tensor depends only on the Young’s modulus Y, the shear modulus G and the
Poisson ratio v. We have

1

Exx = ?(Uxx - V(Jyy + 022)), (C1)
1

Ey = ;(Jyy — V(0 + 022)), (C2)
1

€2z = ?(Gzz — v(ow + Uyy))a (C3)

1 . .
€j = € = EUij fori = j. (C4)

Since the change of thickness of the rod holding the resonator and its deformations in the x—y-plane are not of
interest for us, we can restrict our considerations to €, €, and €,,,. The elements of the strain tensor €,,and €,
lead to a deformation of the curve s(¢) in the x and y-direction, respectively. Since the corresponding forces are
always transversal to the line elements of the rod, they only bend the rod and do not change its proper length. In
the proper detector frame, the proper length of the part of the rod in the positive z-direction of the support is
approximately given as

10 . D . .
We only need the latter to be defined up to rotations around ¢”* in the spatial slice.
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1 + 5 /x)2 + (Sly)Z + (512)2)1/2

(1+8)L,/2—6b 1x\2 1y \2
~ [T el L (S)+(ﬁ) , (C5)
2 SIZ S/Z

where ¢ bis the shift of the z-coordinate of the position of mirror B. For the analysis of the transversal
deformations, let us assume that the rod has a rectangular cross section with side lengths w, and w,. Furthermore,
let us consider the extreme case of 3 = 1. An expression for the transversal deformation of such a rod can be
found, for example, in equation (2.2) [53]. For the x-direction, we find

dZ x P (LP _ Z)Z
<6tay,  ——, C6
dz? vy’ w}? (6)

X

where a} .. is the maximal acceleration in x-direction experienced by a part of the rod. With s’ = ds/d¢ = 0O at
z = 0, we obtain that

I3 3
s’ ds* P ox L, — @y —2)

C7
$7 dz Y w; )

A similar expression can be found for s’ ¥ /s’ ?. With equation (C5), we obtain the approximate upper bounds for

the change of the z-position of the mirror B
X 2 y 2
a a
( Prr;ax) + ( Prr;ax] . (C8)
Wy W,

Then, the new position of mirror B is approximately (s*(L,), s”(L,), L, — 6b), where we get

ob <

N | o
o)
"’»l*@h\l

3L7 o 3L, al,
s¥(Ly) < —P ap —2% and $¥(Ly) < 2 —E, (C9)
2¢2 w2 2 w,

by integration equation (C7) and the corresponding expression for the y-direction. Since 6b, s*(L,) and s”(L,)
are already of second and first order in the metric perturbation, respectively, the change of the round trip time

can be calculated as
T LWy — 802 + 55 (L + L2 — L) (C10)
c
2
1Ly (@ e ) aj)
~— P max + max . Cll
3cc! ( w? wy2 ©1

Let us define aj, ,, as the larger of the values of (8]a*(7)|) and ((36% + 1)L,c?|Ro;0.(7)|/6), where () denotes the
averaging over the interaction time. Comparison of equation (C8) with equation (28) shows that the effect of the
transversal bending on the length of the rod can be neglected in comparison to the effect of the longitudinal
deformations if

A ay > Max (L ([ah ey |)* /7w Ly ([ah o 1) /c2 Wy} (C12)

In the gravitational field of a small massive sphere of 100 g of the example in section 9, an observer at rest experiences
an acceleration of the order of 10'* ms™>. So we assume a3 ,, = 1071° ms~2, (|a} ;... ) < 107 ms~2and
(|a} a1} < 10710 ms—2"", Let us consider an aluminum rod where ¢, = 5 x 10°ms~". Forarod of length 1 cm, we
findthat L, /w, < 10°and L, /w, < 10°is sufﬁaent to fulfill the conditions in equation (C12). Let us consider the
situation for accelerations of the order of 10 ms ™ as they are experienced in the gravitational field of the Earth. So we
assume ap ,, = 10 ms™2, (|a} .. |) < 10 ms~2and (|a}, ., [) < 10 ms 2. For an aluminum rod of length 10 cm,
the conditions in equation (C12) are fulfilled for Lp /W < 10and L,/ wy 10. For larger accelerations, the
orientation has to be chosen such that aj ., < aj,, andap . < ap,, tofulfill the conditions and still use a rod.
Now, let us consider the longitudinal deformation. From aj, ~ —c2T}, ~ ¢?0;hqo, we obtain the inertial and
tidal forces on the rod by multiplication with the mass density p. Since hyo contains terms that are independent of
zand terms that are proportional to zand 27, we can write the acceleration as

11 . . s 5
We consider the massive sphere as the only source of a gravitational field here. In an earthbound laboratory, the effect of the Earth’s
gravitational field has to be taken into account as well.

20



10P Publishing

New J. Phys. 20 (2018) 053046 D Riitzel etal

(C13)

ap(T, x, ¥, z) = ap(1, %, ¥, 0) + zdiafg(T, X ¥, Z)
Z z=0

Let us assume that the rod has a constant cross section A and a constant mass density. Then, the sum of inertial
forces and gravitational force along the rod acting on a segment of the rod at z > 0 can be approximated as

b
Fi(r,2)~ f dz'Ap ai(7, 0, 0, z')
zZ

ww—am#m&mm+§wtw%m§#m&0w) (C14)
Z

z=0

where, by considering the acceleration only atx = 0 = y, we neglected terms proportional to the width of the
rod. For the force along the rod acting on a segment of therod atz < 0, we find

F(1,2) =~ (z — a)Ap a5(7, 0, 0, 0) + l(z2 — az)Apiaf)(T, 0, 0,2) (C15)
2 dZ 2=0
Due to the support, this corresponds to the stresses
Fi (T,
oE(r, 2) = i#. (C16)

The differential force in the x-direction acting on a one-dimensional segment of the rod with coordinates x, y
and zinduced by all one-dimensional segments with the same z-coordinate, the same y-coordinate and x’ > x
can be written as

W /2
dFi(7, x, y, 2) = dzf dx'w, pap(T, x', y, 2).
X
Furthermore, we find

dF*(t, x, y, z) = dzfx dx'w, pap(T, x, y, 2)
—we/2

for the differential force induced by all one-dimensional segments with the same z-coordinate, the same y-
coordinateand x’ < x. Since the metric (12) contains constant, linear and quadratic terms in the spatial
coordinate and a}, ~ —c?T%},, we conclude that daj(, x, y, z) /dx cannot depend on y in first order in the
metric perturbation, and we find that the acceleration in the x-direction can be written as

d
(T, X 3, 2) = &(T, 0, 3, 2) + x=-ap(7, %, 0, 2) -0 (C17)
The first term corresponds to an acceleration that all segments feel in the same way. Therefore, it does not lead to
astress. Hence, the stress on a segment of the rod at zbecomes
wy d

Ok (T, 2) = ?"p—a’{a(r, x, 0, z)

dx

x=0

An equivalent expression can be derived for the stress 7,,. The length change of the rod is given as

b 0
5LP(T):J; dz'el (1, 2') + f dz’e (7, 2')

b 0 b
= lf dz'al(T, 2') + lf dz'o (1, 2") — Zf dz’ (0w (7, 2') + 0y,(T, 2)) (C18)
Y Jo Y Ja Y Ja
We obtain that
1 b 1 0
— f d2'at(r, ) + — f delo (T, 2') (C19)
Y Jo Y Ja
2L — aazr,0,0,0) + 10° — @)Lt 0, 0, 2) (C20)
vl2 3 dz o
L1 (Lar,ai0r, 0, 0,00 + G52 + D2 Lai(r, 0, 0, 2) , (C21)
Y § 2 pep > > Uy 12 pdz P > Uy > o

Since the highest polynomial order of terms in the metric perturbation in the coordinates is 2,

iaﬁ(T, x, 0, z)|x—¢ can only contain terms that are independent of zand terms that are linear in z. Hence, we
find

b
% f dz' (0w (7 2) + 0, (7, 2), (C22)
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2 2

vp. |we d | wy d
~—L,| —~—a3(7, x,0,0,0 + —<—a,(1,0,9,0 . C23
" P 3 dr ( ) - 8 dy ( ¥, 0) ( )

y=0

Therefore, the effect of acceleration and curvature on the proper length via o, and o, is suppressed by a factor
vwy /L, and vw,,/L,, respectively, in comparison to the effect via o,. For most materials v < 1and we can

assume that w; /L, < 1. Therefore, if 3a}(, 0, 0, 0)or (3% + 1)L, %afp(T, 0, 0, z)|,—¢/6 is of the same order
or larger than w %aﬁ(ﬂ %, 0, 0)x—o/4 and w, ;—yaly)(r, 0, y, 0)],—0/4 and if the oscillations of the transversal
stresses are not on resonant with any elastic mode of the rod that the longitudinal stresses are not on resonance

with, we can neglect the effect of the transversal stresses and we can restrict our considerations to o, and ;.
Then, we can write the conditions as

af’,av 2> max {wyc <|R0x0x|> <|R0y0y|> (C24)

Appendix D. The causal deformable rod from relativistic elasticity

In [33], a covariant formulation of the relativistic elastic rod was given. In this section, we show that the
definitions of [33] lead to our result equation (31) for the causal rigid rod when applied to the metric in
equation (12) in the proper detector frame.

The author of [33] formulates the theory of one-dimensional relativistic elastic bodies by considering a
motion of a one-dimensional continuum movinginal + 1-dimensional spacetime. Our arguments from
sections 2, 4 and 5 lead exactly to such a situation. The rod is dragged along the world line of its support or its
center of mass is assumed to move along a geodesic. All accelerations of the rod segments are encoded in the
metric in the proper detector frame given by equation (12). Furthermore, our rod is assumed to lie along a spatial
geodesic and we neglect all transversal accelerations. What remains is only gravitational effects along the rod
encoded by the metric corresponding to the line element

s2= —(1 — h{y(r, 2))dr? + dz% (D1)

Due to our assumption that acceleration and curvature only change very slowly, we find that this situation
corresponds to equation (22) of [33]. The coordinate transformation in equation (23) of [33], Z = f (z) with

f(z) = foz dz'(1 — hE)'/*leadsto
s2a —(1 — hoy(r, f7H@)(AT2 + d22) &~ (1 — hgo(T, 2))(—d7? + d2?). (D2)

in first order in the metric perturbation since f~!(£) = Z in zeroth order in the metric perturbation. The rigid
rod of [33] has constant coordinate length in the coordinates (7, Z), which are called conformal coordinates
because the line element differs from the that of Minkowski space only by a conformal factor e2¢?), where in our
case, €2?@ = (1 — hdy (7, Z)). Thisrigid rod can be called a causal rigid rod because the speed of sound in the
rod material is equivalent to the speed of light. In contrast, a Born rigid rod would correspond to an infinite
speed of sound.

The square root of the conformal factor is the stretch constant of [33]. We obtain the proper length of the
causal rigid rod by integrating the stretch constant from one end of the rod to the other. However, we have to
note that the stretch factor also contains boundary conditions of the rod; every point at which ¢ (Z) vanishes
corresponds to a free end of the rod. Therefore, we cannot just use the expression for h, that we used in
section 5. We have to consider the two sides of our rod separately, and in each situation, add a constant to h&;
such that the free end is ata or b. Adding a constant to the metric does not change any dynamics and we are free
to do such an operation. We define

his (T, 2) = h& (1, 2) — hE (T, a) and (D3)
hé (T, 2) = hiy(T, 2) — hy(T, b). (D4)
The proper length becomes
0 b
Lpzf dz (1 — hid(r, 2)/2 + f dy (1 — hi (7, D)2

b
~ f (1 + —(z —a)+ ROZOZ(Z 2)) + f (1 + —(2 - b+ ROZOZ( bz)) (D)
0 2

and we reproduce the result of equation (28) for ¢, = c.

22



10P Publishing

New J. Phys. 20 (2018) 053046 D Riitzel etal

ORCIDiDs

Dennis Ritzel ® https://orcid.org/0000-0003-3452-6222
Daniel Braun @ https://orcid.org/0000-0001-8598-2039
Maximilian P E Lock © https:/orcid.org/0000-0002-8241-8202

References

[1] Tarabrin S P 2007 Interaction of plane gravitational waves with a Fabry—Perot cavity in the local Lorentz frame Phys. Rev. D 75 102002
[2] Reece CE, Reiner P Jand Melissinos A C 1982 A detector for high frequency gravitational effects based on parametric conversion at
10-GHz Proc., 1982 DPF Summer Study on Elementary Particle Physics and Future Facilities (Snowmass 82), eConf C8206282 (Snowmass,
Colorado, 28 June—16 July, 1982) pp 394-402
[3] Pegoraro F, Picasso E and Radicati L A 1978 On the operation of a tunable electromagnetic detector for gravitational waves J. Phys. A:
Math. Gen. 11 1949
[4] Pegoraro F, Radicati L A, Bernard P and Picasso E 1978 Electromagnetic detector for gravitational waves Phys. Lett. A 68 1658
[5] Grishchuk L P etal 1981 Quantum electromagnetic oscillator in the field of a gravitational wave and the problem of nondemolition
measurements J. Exp. Theor. Phys. 53 639
[6] Grishchuk L P and Sazhin MV 1975 Excitation and detection of standing gravitational waves J. Exp. Theor. Phys. 41 787
[7] Gemme G, Chincarini A, Parodi R, Bernard P and Picasso E 2001 Parametric gravity wave detector Electromagnetic Probes of
Fundamental Physics. Proc., Workshop (Erice, Italy, 16-21, October 2001) pp 75-83
[8] JuL, Blair D G and Zhao C 2000 Detection of gravitational waves Rep. Prog. Phys. 63 1317427
[9] Maggiore M 2008 Gravitational Waves: Volume 1: Theory and Experiments vol 1 (Oxford: Oxford University Press)
[10] Graham P W, Hogan ] M, Kasevich M A and Rajendran S 2013 A new method for gravitational wave detection with atomic sensors
Phys. Rev. Lett. 110 171102
[11] Arvanitaki A and Geraci A A 2013 Detecting high-frequency gravitational waves with optically levitated sensors Phys. Rev. Lett. 110
071105
[12] Sabin C, Bruschi D E, Ahmadi M and Fuentes I 2014 Phonon creation by gravitational waves New J. Phys. 16 085003
[13] Goryachev M and Tobar M E 2014 Gravitational wave detection with high frequency phonon trapping acoustic cavities Phys. Rev. D 90
102005
[14] Singh S, Lorenzo L A D, Pikovski I and Schwab K C 2017 Detecting continuous gravitational waves with superfluid “He New J. Phys. 19
073023
[15] Braginskii VB, Caves CM and Thorne K S 1977 Laboratory experiments to test relativistic gravity Phys. Rev. D 15 2047—68
[16] Howl R, Hackermuller L, Bruschi D E and Fuentes 1 2017 Gravity in the quantum lab Adv. Phys. X 3 1383184
[17] Kopeikin S M 2015 Optical cavity resonator in an expanding universe Gen. Relativ. Gravit. 47 5
[18] Kopeikin S M 2014 Einstein’s equivalence principle in cosmology 40th COSPAR Scientific Assembly, COSPAR Meeting vol
40arXiv:1311.4912
[19] Lock M P E and Fuentes I 2016 Relativistic quantum clocks arXiv:1609.09426
[20] Lock M P E and Fuentes I 2017 Dynamical Casimir effect in curved spacetime New J. Phys. 19 073005
[21] Regula B, Lee AR, Dragan A and Fuentes 1 2016 Generating entanglement between two-dimensional cavities in uniform acceleration
Phys. Rev. D 93 025034
[22] Braun D, Schneiter F and Fischer U R 2017 Intrinsic measurement errors for the speed of light in vacuum Class. Quantum Grav. 34
175009
[23] BornM 1909 Die Theorie des starren Elektrons in der Kinematik des Relativititsprinzips Ann. Phys., Lpz. 335 1-56
[24] Abraham M 1902 Prinzipien der Dynamik des Elektrons Ann. Phys., Lpz. 315 105-79
[25] Herglotz G 1903 Zur Elektronentheorie Nachr. Ges. Wiss. Géttingen, Math.-Phys. KI. 1903 357-82
[26] Schwarzschild K 1903 Zur Elektrodynamik: I. Zwei Formen des Princips der Action in der Elektronentheorie Nachr. Ges. Wiss.
Gottingen, Math.-Phys. KI. 1903 126-31
[27] Sommerfeld A 1904 Zur Elektronentheorie: I. Allgemeine Untersuchung des Feldes eines belibig bewegten Elektrons Nachr. Ges. Wiss.
Gottingen, Math.-Phys. K1. 1904 99-130
[28] Sommerfeld A 1904 Zur Elektronentheorie: II. Grundlagen fiir eine allgemeine Dynamik des Elektrons Nachr. Ges. Wiss. Gottingen,
Math.-Phys. K1. 1904 363—439
[29] Herglotz G 1910 Uber den vom Standpunkt des Relativitdtsprinzips aus als starr zu bezeichnenden Kérper Ann. Phys., Lpz. 336
393415
[30] Noether F 1910 Zur kinematik des starren korpers in der relativtheorie Ann. Phys., Lpz. 336 91944
[31] Dixon W G 1970 Dynamics of extended bodies in general relativity: I. Momentum and angular momentum Proc. R. Soc. A 314 499-527
[32] Ehlers]and Rudolph E 1977 Dynamics of extended bodies in general relativity center-of-mass description and quasirigidity Gen.
Relativ. Gravit. 8 197-217
[33] Natario J 2014 Relativistic elasticity of rigid rods and strings Gen. Relativ. Gravit. 46 1816
[34] Perlick V2000 Ray optics, Fermat’s Principle, and Applications to General Relativity vol 61 (Berlin: Springer)
[35] Straumann N 2012 General Relativity (Berlin: Springer)
[36] Rivera S 2012 Tensorial spacetime geometries carrying predictive, interpretable and quantizable matter dynamics Doctoral Thesis
Universitit Potsdam
[37] Audretsch]and Limmerzahl C 1991 Establishing the Riemannian structure of spacetime by means of light rays and free matter waves
J. Math. Phys. 322099-105
[38] Plebanski] 1960 Electromagnetic waves in gravitational fields Phys. Rev. 118 1396—408
[39] Manasse F K and Misner C W 1963 Fermi normal coordinates and some basic concepts in differential geometry J. Math. Phys. 4 73545
[40] NiW-T and Zimmermann M 1978 Inertial and gravitational effects in the proper reference frame of an accelerated, rotating observer
Phys. Rev.D 17 1473-6
[41] LiuM, Artyukhov V1, Lee H, Xu Fand Yakobson B12013 Carbyne from first principles: chain of c atoms, a nanorod or a nanorope ACS
Nano710075-82

23


https://orcid.org/0000-0003-3452-6222
https://orcid.org/0000-0003-3452-6222
https://orcid.org/0000-0003-3452-6222
https://orcid.org/0000-0003-3452-6222
https://orcid.org/0000-0001-8598-2039
https://orcid.org/0000-0001-8598-2039
https://orcid.org/0000-0001-8598-2039
https://orcid.org/0000-0001-8598-2039
https://orcid.org/0000-0002-8241-8202
https://orcid.org/0000-0002-8241-8202
https://orcid.org/0000-0002-8241-8202
https://orcid.org/0000-0002-8241-8202
https://doi.org/10.1103/PhysRevD.75.102002
https://doi.org/10.1088/0305-4470/11/10/013
https://doi.org/10.1016/0375-9601(78)90792-2
https://doi.org/10.1016/0375-9601(78)90792-2
https://doi.org/10.1016/0375-9601(78)90792-2
https://doi.org/10.1088/0034-4885/63/9/201
https://doi.org/10.1088/0034-4885/63/9/201
https://doi.org/10.1088/0034-4885/63/9/201
https://doi.org/10.1103/PhysRevLett.110.171102
https://doi.org/10.1103/PhysRevLett.110.071105
https://doi.org/10.1103/PhysRevLett.110.071105
https://doi.org/10.1088/1367-2630/16/8/085003
https://doi.org/10.1103/PhysRevD.90.102005
https://doi.org/10.1103/PhysRevD.90.102005
https://doi.org/10.1088/1367-2630/aa78cb
https://doi.org/10.1088/1367-2630/aa78cb
https://doi.org/10.1103/PhysRevD.15.2047
https://doi.org/10.1103/PhysRevD.15.2047
https://doi.org/10.1103/PhysRevD.15.2047
https://doi.org/10.1080/23746149.2017.1383184
https://doi.org/10.1007/s10714-014-1845-5
http://arxiv.org/abs/1311.4912
http://arxiv.org/abs/1609.09426
https://doi.org/10.1088/1367-2630/aa7651
https://doi.org/10.1103/PhysRevD.93.025034
https://doi.org/10.1088/1361-6382/aa8058
https://doi.org/10.1088/1361-6382/aa8058
https://doi.org/10.1002/andp.19093351102
https://doi.org/10.1002/andp.19093351102
https://doi.org/10.1002/andp.19093351102
https://doi.org/10.1002/andp.19023150105
https://doi.org/10.1002/andp.19023150105
https://doi.org/10.1002/andp.19023150105
https://doi.org/10.1002/andp.19103360208
https://doi.org/10.1002/andp.19103360208
https://doi.org/10.1002/andp.19103360208
https://doi.org/10.1002/andp.19103360208
https://doi.org/10.1002/andp.19103360504
https://doi.org/10.1002/andp.19103360504
https://doi.org/10.1002/andp.19103360504
https://doi.org/10.1098/rspa.1970.0020
https://doi.org/10.1098/rspa.1970.0020
https://doi.org/10.1098/rspa.1970.0020
https://doi.org/10.1007/BF00763547
https://doi.org/10.1007/BF00763547
https://doi.org/10.1007/BF00763547
https://doi.org/10.1007/s10714-014-1816-x
https://doi.org/10.1063/1.529181
https://doi.org/10.1063/1.529181
https://doi.org/10.1063/1.529181
https://doi.org/10.1103/PhysRev.118.1396
https://doi.org/10.1103/PhysRev.118.1396
https://doi.org/10.1103/PhysRev.118.1396
https://doi.org/10.1063/1.1724316
https://doi.org/10.1063/1.1724316
https://doi.org/10.1063/1.1724316
https://doi.org/10.1103/PhysRevD.17.1473
https://doi.org/10.1103/PhysRevD.17.1473
https://doi.org/10.1103/PhysRevD.17.1473
https://doi.org/10.1021/nn404177r
https://doi.org/10.1021/nn404177r
https://doi.org/10.1021/nn404177r

10P Publishing

New J. Phys. 20 (2018) 053046 D Riitzel etal

[42] Tenev T Gand Horstemeyer M F 2018 The mechanics of spacetime—a solid mechanics perspective on the theory of general relativity
Int. J. Mod. Phys. D 27 1850083

[43] Gordon W 1923 Zur Lichtfortpflanzung nach der relativititstheorie Ann. Phys., Lpz. 377 421-56

[44] Hartmann T, Soffel M, Ruder H and Schneider M 1992 Ausbreitung Elektromagnetischer Signale in Gravitationsfeldern und Medium bei
Geodiitischen Raumverfahren (Miinchen: Verlag der Bayerischen Akademie der Wissenschaften in Kommission bei der C.H. Beck)

[45] ZubkovM A and Volovik G E 2015 Emergent gravity in graphene J. Phys.: Conf. Ser. 607 012020

[46] Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W and Ludlow A D 2013 An atomic
clock with 10~ "® instability Science 341 1215-8

[47] Ushijima I, Takamoto M, Das M, Ohkubo T and Katori H 2015 Cryogenic optical lattice clocks Nat. Photon. 9 185-9

[48] Chou CW, Hume D B, Rosenband T and Wineland D J 2010 Optical clocks and relativity Science 329 1630-3

[49] Misner CW, Thorne K S and Wheeler ] A 1973 Gravitation (London: Macmillan)

[50] Schméle 2017 Development of a micromechanical proof-of-principle experiment for measuring the gravitational force of milligram
masses PhD Thesis Faculty of Physics, University of Vienna

[51] Schméle J, Mathias D, Hans H and Markus A 2016 A micromechanical proof-of-principle experiment for measuring the gravitational
force of milligram masses Class. Quantum Grav. 33 125031

[52] Herglotz G 1911 Uber die Mechanik des deformierbaren Kérpers vom Standpunkte der Relativititstheorie Ann. Phys., Lpz. 341
493-533

[53] Srivastava V, Jones H and Greenwood G W 2006 The creep of thin beams under small bending moments Proc. R. Soc. A 462 286375

24


https://doi.org/10.1142/S0218271818500839
https://doi.org/10.1002/andp.19233772202
https://doi.org/10.1002/andp.19233772202
https://doi.org/10.1002/andp.19233772202
https://doi.org/10.1088/1742-6596/607/1/012020
https://doi.org/10.1126/science.1240420
https://doi.org/10.1126/science.1240420
https://doi.org/10.1126/science.1240420
https://doi.org/10.1038/nphoton.2015.5
https://doi.org/10.1038/nphoton.2015.5
https://doi.org/10.1038/nphoton.2015.5
https://doi.org/10.1126/science.1192720
https://doi.org/10.1126/science.1192720
https://doi.org/10.1126/science.1192720
https://doi.org/10.1088/0264-9381/33/12/125031
https://doi.org/10.1002/andp.19113411303
https://doi.org/10.1002/andp.19113411303
https://doi.org/10.1002/andp.19113411303
https://doi.org/10.1002/andp.19113411303
https://doi.org/10.1098/rspa.2006.1702
https://doi.org/10.1098/rspa.2006.1702
https://doi.org/10.1098/rspa.2006.1702

	1. Introduction
	2. A rigid one-dimensional resonator in a curved spacetime
	3. Resonance frequencies
	4. Born rigid optical resonators
	5. Deformable optical resonators
	6. Deformable dielectric optical resonators
	7. Example: uniform acceleration
	8. Example: plunge into a black hole
	9. Example: an oscillating mass
	10. Conclusions and outlook
	Acknowledgments
	Appendix A.
	Appendix B.
	Appendix C.
	Appendix D.
	References



