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Supplementary Figures

Supplementary Figure 1. Limitation in efficiency, c∆k, from the difference in wavenumbers as a function of the cell length
2Lz for ∆k ≈ 193 m−1 corresponding to the 2π · 9.2 GHz splitting between the hyperfine ground states of 133Cs. The atoms
are assumed to be evenly distributed in the cell. c∆k & 0.97 for 2Lz . 1 cm.

Coherent Raman
Scattering

Supplementary Figure 2. Experimental data of the power spectral density (PSD) of the Raman scattered light measured
in the proof-of-principle experiment. These data were obtained for a pulse length of ∼ 16 µs. The electronic noise has been
removed from the data and the shot noise has been normalized to unity. The number of coherent Raman-scattered photons,
equally distributed in the Stokes and anti-Stokes lines, can be estimated by the comparing the height of the central peak
(dotted line) to the shot noise of light. For the proof of principle experiment, the number of coherently scattered photons in
the antiStokes sideband over the 16 µs of the pulse is estimated to be ∼ 1.2 photons.
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Supplementary Figure 3. (a) Simulation of the correlations 〈XY,Z〉e(s). The correlations are normalized to be unity for
s → ∞ where there are no correlations and 〈XY,Z〉e(s) → |〈XY 〉e|2 |〈Z〉e|2. The data from the simulation have been fitted
with an exponential model validating our assumption of an exponential decay of the correlations. The fit gives a decay rate of
Γ = 2π·0.75 MHz corresponding to Γ ∼ 1.3vthermal/w. (b) Sketch of the 62S1/2 and 62P3/2 hyperfine levels in 133Cs. A Λ-atom is

realized with |0〉 = |F = 4,mF = 4〉, |1〉 = |F = 3,mF = 3〉 as ground states in 62S1/2 and |e1〉 = |F ′ = 4,mF ′=4〉 as the excited

level in 62P3/2. To characterize the optical depth, we consider the transitions |0〉 → |e1〉 and |0〉 → |e2〉 = |F ′ = 5,mF ′ = 4〉
characterized by g̃1 and g̃2, respectively.
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Supplementary Figure 4. Schematic view of the readout realized in the hyperfine levels of 62S1/2 and 62P3/2 in 133Cs. We
imagine the single exitation to be stored in state |F = 3,mF = 3〉 while the macroscopically populated state is |F = 4,mF = 4〉.
Note that the classical drive also couples |F = 4,mF = 4〉 to |F ′ = 4,mF ′ = 4〉 and |F ′ = 5,mF ′ = 4〉, which can pump atoms
out of |F = 4,mF = 4〉. These couplings are however sufficiently suppressed by the large splitting of 2π · 9.2 GHz between the
ground states.
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Supplementary Figure 5. Sketch of the postselection procedure after a single step of entanglement swapping (middle
stations). The entanglement swaps creates entanglement between ensembles 1,2 and 3,4, respectively. Ensembles 1,2,3 and 4
are then read out and we condition on a single click at both stations. The phases φ and θ are ideally equal.

.

Supplementary Methods

Numerical simulation - Write. To justify our assumption of an exponential decay of the correlations ap-
pearing in 〈|θj(t)|2〉e and to qualitatively characterize the write efficiency, we perform a numerical simulation of a
gas of non-interacting atoms in a cell. We have based the simulation on the microcells filled with Cs-atoms, which
were used in the proof-of-principle experiment. These cells have dimensions of 300 µm × 300 µm × 1 cm. The cells
have been placed inside a cavity with a linewidth of κ1 ≈ 2π · 46 MHz and both the field from the quantum photon
and the classical drive are assumed to have approximately a Gaussian shape with a waist of 55 µm. The small beam
waist ensures that we can neglect cavity losses from the walls of the cell. An approximate Λ-atom can be realized in
the hyperfine states of Cs with state |0〉 = |F = 4,mF = 4〉 and state |1〉 = |F = 3,mF = 3〉 in the 62S1/2 ground
state manifold. The Doppler width of the atomic levels is Γd ∼ 2π · 225 MHz at a temperature of T = 293 K and we
assume a detuning of ∆ ∼ 4Γd from the excited level such that the effect of Doppler broadening is negligible.

Starting from Eq. (3) in the article and performing the integral over t′′′ as described in the Methods section in the

article, we can express 〈|θj(t)|2〉e as

〈|θj(t)|2〉e =
1

16

∫ t

0

dt′1

∫ t′1

0

dt′′1

∫ t

0

dt′2

∫ t′2

0

dt′′2e
−κ2/2(t−t′1)e−κ1/2(t′1−t

′′
1 )e−κ2/2(t−t′2)e−κ1/2(t′2−t

′′
2 )

×〈XY ∗j (t′′1)XYj(t
′′
2)Z∗j (t′′1)Zj(t

′′
2)〉e, (1)

where we have defined

Zj(t) =
ei(∆k)zj(t) − e−i(kc+kq)zj(t)

−γ/2 + i(∆ + kcv
(j)
z (t))

+
e−i(∆k)zj(t) − ei(kc+kq)zj(t)

−γ/2 + i(∆− kcv(j)
z (t))

, (2)

XYj(t) = Ωge
−2x2

j (t)−2y2
j (t)

w2 . (3)

Note that we have not made the assumption of kc ≈ kq ≈ k, as in our analytical calculations, since we have the
2π · 9.2 GHz splitting between the ground states, which corresponds to kq − kc = ∆k ≈ 193 m−1. With a cell length
of 2Lz = 1 cm the assumption 2∆kLz � 1 is close to being violated and we shall therefore not make this assumption.
The extra terms ∝ e±i∆kzj will approximately result in a factor of

c∆k =
〈cos (∆kzj)〉2

〈cos (∆kzj)
2〉
, (4)

which should be multiplied with the analytical expression for the write efficiency, which was obtained assuming
∆k = 0. Supplementary Figure 1 shows how c∆k depends on the length of the cell assuming that the atoms are
equally distributed in the entire cell. It is seen from Supplementary Figure 1 that as long as the length of the cell is
2Lz . 1 cm then c∆k & 0.97 for ∆k ≈ 193 m−1 and hence the frequency difference between the quantum and classical
fields does not significantly degrade the write efficiency. In all our numerical simulations, we, however, keep the terms
∝ e±i∆kzj for completeness.



4

The correlations appearing in 〈XY ∗j (t′′1)XYj(t
′′
2)Z∗j (t′′1)Zj(t

′′
2)〉e (see Eq. (1)) depend on the time difference |t′′1 − t′′2 |

and we therefore introduce the shorthand notation 〈XY ∗j (t′′1)XYj(t
′′
2)Z∗j (t′′1)Zj(t

′′
2)〉e = 〈XY,Z〉e(t′′1 − t′′2). We change

to the variables u = t′′1 + t′′2 and s = t′′1− t′′2 and by changing the order of integration, we can perform the integrals over
t, t′1, t

′
2 and u. To obtain the write efficiency ηwrite, we need to perform an additional integration over t (see Eq. (4)

in the article). We are therefore left with∫ tint

0

〈|θ(t)|2〉edt =

∫ tint

0

h(tint, κ1, κ2, s)〈XY,Z〉e(s)ds, (5)

where h(tint, κ1, κ2, s) is a function of s obtained by performing the integrals over t, t′1, t
′
2 and u. We can evaluate

the integral over s numerically by simulating the correlations 〈XY,Z〉e(s). Since the atoms do not interact with
each other, we independently simulate the motion of N = 5000 atoms through the cell and evaluate the correlations
of atoms at points separated in time by s. Finally, we average over many realizations. At room temperature, we
assume that the motion of the atoms is classical. Furthermore, we assume that the atoms are evenly distributed in
the cell and that their velocity distribution is described by the Maxwell Boltzmann distribution at a temperature
T = 293 K. We assume that the atoms are re-thermalized completely after every collision with the walls of the cell
but qualitatively similar results are obtained for a ballistic model without thermalization. For the ballistic model,
the Zj parts of the couplings in principle do not average down. This could lead to effects not averaged away by using
narrow filter cavities. However, we are far detuned compared to the Doppler width of the atoms and the cavity fields
are standing waves, which can be viewed as the superposition of two counter propagating waves. As a result, the
effect of the velocity fluctuations of the atoms cancel and the fluctuations in the Zj terms are greatly suppressed.
This is in contrast to what happens in ensemble based schemes with a laser coming from one side where Doppler
effects do not go away by working far off resonance [1]. Consequently, we expect similar results for the ballistic model
as for the model with complete thermalization. We have explicitly verified this by repeating our simulations with the
ballistic model, which lead to more or less identical results as for the model with thermalization (the two simulations
cannot be distinguished due to the noise from the random nature of the simulations). The result of a simulation with
thermalization is seen in Supplementary Figure 3a, which shows how the correlations decay as a function of s such
that for s → ∞, we have 〈XY,Z〉e(s) → |〈XY 〉e|2 |〈Z〉e|2. This enables us to introduce a maximal cutoff, smax, in
the numerical integral appearing in Eq. (5), above which, the correlations have effectively vanished. As a result, we
can semianalytically evaluate ηwrite for an arbitrary pulse length tint without additional numerical difficulty. Note
that Supplementary Figure 3a also shows that the exponential model of the decay of the correlations assumed in our
analytical calculations is a good approximation.

Based on our simulations of 〈XY,Z〉e(s), we have also estimated the power spectral density, PSD in the proof of
principle experiment. The PSD was measured (see Fig. 2 in the article and Supplementary Figure 2) by measuring the
Faraday rotation of light transmitted through the cell. In these measurements, the light is emitted by the scattering
between different mF states in an applied magnetic field. As a result, the signal is modulated at the Larmor precession
frequency. We therefore consider the modulated power spectral density

PSD(f) ∝ 1

t2int

∫ tint

0

dt

∫ tint

0

dt′〈XY,Z〉e(t− t′)e2iπf(t−t′) (6)

∝ 1

t2int

∫ tint

0

dt

∫ tint

0

dt′ |〈XY 〉e|2 |〈Z〉e|2 e2iπf(t−t′)

+
1

t2int

∫ tint

0

dt

∫ tint

0

dt′(〈XY,Z〉e(t− t′)− |〈XY 〉e|2 |〈Z〉e|2)e2iπf(t−t′) (7)

∝ δf,0 +
1

t2int

∫ tint

0

dt

∫ tint

0

dt′(〈XY,Z〉e(t− t′)− |〈XY 〉e|2 |〈Z〉e|2)e2iπf(t−t′) (8)

where f is the frequency and δf,0 is the Kronecker delta function. Note that we have assumed that the coherent

light-atom interaction gives a contribution of 1
t2int

∫ tint
0

dt
∫ tint

0
dt′ |〈XY 〉e|2 |〈Z〉e|2 e2iπf(t−t′) = δ(f) to the PSD. In the

proof-of-principle experiment, the atoms are subject to a magnetic field, which makes the atomic spins precess around
the mean spin direction with a Larmor frequency of 823.8 kHz. The Raman scattered part of the PSD is thus centered
around this frequency. However, the measured PSD also contains both the shot noise of the light and electronic noise
from the measurement equipment. Since we are only interested in the signal from the atomic interaction, this noise
is isolated by performing a second measurement at a higher Larmor frequency (2594 kHz) and subtract it from the
first measurement. The higher Larmor frequency is chosen such that the two atomic signals are well separated in
frequency. In the simulated PSD, we have fitted a Lorentzian to the broad feature centered at 823.8 kHz and shifted
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it to be centered at 2594 kHz. This has then been subtracted from the simulated data to include the substraction of
the two signals in the experiment.

To validate that the proof-of-principle experiment is probing the theory in the right limit of single photon Raman
scattering, we estimate the number of Raman photons scattered over the relevant pulse length. This number can be
found from the ratio of the height of the central peak in the PSD to the shot noise of light. In the experiment, the
balanced polarimetry measures the amplitude quadrature of the field in the polarisation axis perpendicular to the
drive field âsc. Neglecting proportionality factors irrelevant for this calculation, the PSD at a discrete frequency f is
given by: PSD(f) ∝ X̃ †(f)X̃ (f), where:

X̃ (f) ∝
∫ tms

0

[
âsc(t) + â†sc(t)

]
e2iπftdt = âsc(f) + [âsc(−f)]

†
. (9)

Here âsc(f) =
∫ tms

0
âsc(t)e2iπfdt and tms is the measurement time. It can then be shown that the PSD takes the form:

PSD(f) ∝ 1 + [âsc(−f)]
†

[âsc(−f)] + [âsc(f)]
†

[âsc(f)] . (10)

The unity term in the left-hand part of the above relationship is the photon shot noise contribution, present even
when there is no scattered field; the second and third terms represent the Raman-scattered number of photons in the
lower (Stokes line) and upper (anti-Stokes line) sideband respectively. In Supplementary Figure 2, the PSD recorded
with a pulse duration of tms ≈ 16 µs is plotted. The peak height at the Larmor frequency due to the Raman scattering
has equal contributions from the Stokes and the anti-Stokes lines. The number of coherently scattered photons during
the measurement pulse is the ratio of the peak height excluding the photon shot noise and the incoherent photons
(denoted with a dotted lines in Supplementary Figure 2) to the photon shot noise level, which corresponds to a
power of one photon per unit bandwidth as shown in Eq. (10). From Supplementary Figure 2, we find that for the
proof-of-principle experiment approximately 1.2 photons are coherently scattered in the Stokes line during the 16 µs
pulse. This corresponds to approximately 8 photons over a pulse duration of 106 µs that can lead to an efficient write
step according to our proposal. Although this is slightly higher than the single photon required for the protocol, we
expect the spectrum to be independent of intensity at these light levels.

In the above calculation, it is important to estimate the photon shot noise level. For this, the electronic noise,
as measured with no light at the detector, is removed from the recorded PSD and the spectrum is corrected for
the detector frequency response. The photon shot noise then corresponds to the level where the PSD levels off at
frequencies a few linewidths of the broad Lorentzian away from the Larmor frequency; at these frequencies the power
from the Raman scattered photons is negligible and the PSD is determined only by the photon shot noise. The
photon shot noise is also verified by performing balanced polarimeter detection of light that has not interacted with
the atomic ensemble and with power equal to the one as the drive light in the experiment. We note that the detector
response was characterized by such a measurement.

Number of photons. As mentioned in the main text, the purpose of the filter cavity is both to increase
the averaging time and to filter the quantum photon from the classical photons. We will now estimate the number
of classical photons, which needs to be filtered from the single quantum photon. In order to do this, we need to
characterize the ensemble, which we do by introducing the optical depth d.

To obtain an expression for the optical depth, we assume that we are working with the previously mentioned
Cs-cells. The relevant level structure is shown in Supplementary Figure 3b.

In the write process, the classical drive is applied on the transitions between the ground state |0〉 = |F = 4,mF = 4〉
and the excited states |e1〉 = |F ′ = 4,mF ′ = 4〉 and |e2〉 = |F ′ = 5,mF ′ = 4〉 characterized by g̃1 and g̃2, respectively.
The quantum photon is created on the transition |e1〉 → |1〉 = |F = 3,mF = 3〉 characterized by g. Note that with
this field configuration, the cell-cavity in principle also mediate the transition |F = 4,mF = 4〉 → |F = 4,mF = 3〉
in the write setup but this transition is suppressed by the 2π · 9.2 GHz splitting between the ground states, which
makes the corresponding photon non-resonant with the subsequent filter-cavity. This transition will, therefore, never
give a click in the detector. Since the interaction is only a perturbation to the system, we can therefore neglect this
transition in our numerical simulations. All atoms in the ensemble are initially pumped to the ground state |0〉 and, in
order to characterize the optical depth, we assume that the transition characterized by g is non-driven and ignore any
cavity (Purcell) enhancement of the corresponding decay. The cavity field thus only couples |0〉 → |e1〉 and |0〉 → |e2〉
with coupling constants g̃1 and g̃2, respectively (see Supplementary Figure 3b).

The equations of motion for the cavity field, âcav, and the relevant atomic operators in a suitable rotating frame



6

are

˙̂acav = −(κ/2)âcav + i

N∑
j=1

[
g̃

(j)
1 (t)σ̂

(j)
e10 + g̃

(j)
2 (t)σ̂je20

]
(11)

˙̂σ
(j)
e10 = −(γ1/2− i∆1)σ̂

(j)
e10 + ig̃

(j)
1 (t)âcav (12)

˙̂σ
(j)
e20 = −(γ2/2− i∆2)σ̂

(j)
e20 + ig̃

(j)
2 (t)âcav, (13)

where σ
(j)
el0

= |el〉j〈0| (l = 1, 2) and we have assumed that σ
(j)
elel − σ

(j)
00 ≈ −1. For simplicity, we have assumed

the couplings (g̃) to be real. ∆1 = ω1 − ωcav (∆2 = ω2 − ωcav) is the detuning of |e1〉 (|e2〉), while γ1 (γ2) is the
corresponding decay rate. Here ω1 (ω2) is the frequency associated with the atomic level and ωcav is the frequency of

the cavity field. Formally integrating Eqs. (12)-(13), assuming that σ
(j)
e10 = σ

(j)
e20 = 0 at time t = 0, and inserting the

resulting expressions for σ
(j)
e10 and σ

(j)
e20 into Eq. (11) gives

˙̂acav = −(κ/2)âcav −
N∑
j=1

[
g̃

(j)
1 (t)

∫ t

0

e−(γ1−i∆1)(t−t′)g̃
(j)
1 (t)âcav(t′)dt′

+g̃
(j)
2 (t′)

∫ t

0

e−(γ2−i∆2)(t−t′)g̃
(j)
2 (t′)âcav(t′)dt′

]
, (14)

where we have explicitly written the time dependence of âcav inside the integrals. We evaluate the integrals in Eq. (14)
assuming that we can treat âcav(t′) as a constant in time and move it outside the integrals. Furthermore, we assume

that g̃
(j)
l (t′) = g̃

(j)
l,xy(t) sin(k(zj(0) + v

(j)
z (0)t′)) similar to the procedure described in the article. Note that k is the

wavenumber associated with the cavity field while zj(0) (v
(j)
z ) is the z-part of the position (velocity) of the j’th atom.

After evaluating the integrals, we obtain

˙̂acav = −(κ/2)âcav +
âcav

4

N∑
j=1

[∣∣∣g̃(j)
1,xy(t)

∣∣∣2 Zj(∆1, γ1, k) +
∣∣∣g̃(j)

2,xy(t)
∣∣∣2 Zj(∆2, γ2, k)

]
, (15)

where we have adiabatically eliminated the optical coherence and have rewritten Zj(t) defined in Eq. (2) to

Zj(∆, γ, k) =
e2ikzj(t) − 1

γ/2 + i(kvj(0)−∆)
− 1− e−2ikzj(t)

γ/2− i(kvj(0) + ∆)
, (16)

such that γ,∆, and k become variable parameters. We now perform an ensemble average of Eq. (15) assuming that the
atoms are evenly distributed in the cell and that their velocity distribution follows a Maxwell Boltzmann distribution,
as previously considered. Furthermore, we assume that the xy-dependence of the couplings are Gaussians similar to
Eqs. (15)-(16) in the Methods section in the article and that we are detuned far from the Doppler width of the atoms.
This results in

˙̂acav = −(κ/2)âcell −
âcellN

4

[
|g̃1|2 γ1

γ2
1/4 + ∆2

1

+
|g̃2|2 γ2

γ2
2/4 + ∆2

2

]
π

8

w2

L2
+ i[. . .], (17)

where the imaginary part is contained in [. . .]. The second term in Eq. (17) is identified as the single pass optical
depth, d̃, divided by the cavity round trip time, τ , where exp(−d̃) is the attenuation of the light field after passing
through the ensemble. Since d̃ depends on, e.g., the detuning, it is not a direct characterisation of the ensemble.
Instead, in analogy with Ref. [2], we characterise the ensemble by d, the hypothetical optical depth, which would
be obtained for resonant fields in the absence of Doppler broadening and hyperfine interaction, i.e., Eq. (17) with
∆1 = ∆2 = 0. Furthermore, we assume that γ1 = γ2 = γ such that the optical depth is

d =
Nτ

γ

(
|g̃1|2 + |g̃2|2

)
αxy (18)

where we have defined the factor αxy = π
8
w2

L2 . Note that Eq. (18) can be rewritten to the following well known formula
for the optical depth [3]

d = 6π
N

(2L)2
λ̃2

(
γ1,0 + γ2,0

γ

)
, (19)
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where 2L is the transverse size of the cell, λ̃ = λ/2π is the rescaled wavelength of the light, and γs,0 is the spontaneous
decay rate of level es back to |0〉 (s=1,2). The optical depth can also be related to the Faraday rotation angle, θF ,
which is typically measured in experiments and used to estimate the number of atoms, N in the ensemble [4, 5]. For
133Cs, the relation between θF and N is [5]

N =

∣∣∣∣32πL2θF∆2

a1(∆2)γλ2

∣∣∣∣ (20)

where a1(∆2) is the vector polarisability given by

a1(∆2) =
1

120

(
− 35

1−∆3′5′/∆2
− 21

1−∆4′5′/∆2
+ 176

)
, (21)

with ∆x′5′ denoting the hyperfine splitting between level F ′ = x and F ′ = 5. Combining Eq. (19) and Eq. (20) gives
the following relation between d and θF

d =

∣∣∣∣12∆2θF
a1(∆2)

γ1,0 + γ2,0

γ2

∣∣∣∣ (22)

For the cells used in the proof-of-principle experiment, the Faraday rotation angle has been measured to be 4.4o for
a detuning of ∆2 = 2π · 850 MHz. This translates into an optical depth of d ≈ 168.

Having defined the optical depth, we can now estimate the number of classical photons that need to be filtered from
the quantum photon. The field at the detector (see Fig. 1b in the article) is described by the operator â in Eq. (2) in
the article. Assuming a length, tint, of the write pulse, we estimate the average number of quantum photons, Nquant

at the detector as

Nquant = 〈â†â · tint〉 =
1

16
κ2

2κ1N〈|θj |2〉e, (23)

where we have used that 〈|θj |2〉e is independent of time as shown in Eq. (18) in the Methods section in the article.

Note that 〈|θj |2〉e ∝ |g|2 |Ω|2 and we estimate the number of classical photons contained in the write pulse as Nclas ∼
|Ω|2 tintκ1/(4 |g̃|2) = |Ω|2 tintκ1/(4β |g|2), where β = |µg̃|2 / |µg|2 is the ratio between the Clebsch-Gordan coefficients
(µ) of the transitions characterized by g̃ and g (see Supplementary Figure 3b). From Eq. (23), we then get

Nclas ∼
Nquant

N

4

|g|4 〈|θj |2〉eβκ2
2

. (24)

The number of classical photons that needs to be filtered is finally estimated by setting Nquant = 1. Using Eqs. (18)-
(19), we can express Nclas in terms of the optical depth and the finesse of the cell-cavity, defined as F = 2π/(τκ1),

where τ is the cavity roundtrip time. Furthermore, we assume that 〈|θj |2〉e ≈ |〈θj〉e|2 such that the number of classical
photons can be estimated as

Nclas ∼
8πβ2

2L
2∆2

3βλ̃2γ(γ1 + γ2)

1

dF2
, (25)

where we have expanded the expression for |〈θj〉e|2 (see Eq. (17) in the Methods section in the article) in the limit of

large detuning. β2 =
|µg1|2+|µg2|2

|µg|2
is the ratio between the Clebsch-Gordon coefficients of the transitions characterized

by g̃1, g̃2 and g in Supplementary Figure 3b. For the experimental Cs-cells and a detuning of ∆ = 2π · 898 MHz, we

find that Nclas ∼ 7.4·1011

dF2 . With d = 168 and F = 100 this gives Nclas ∼ 4.4 · 105. Since the quantum and classical
field differ both in polarisation and frequency, this level of filtering is expected to be easily achieved using using a
combination of both polarisation filtering and the filter-cavity.

Readout. Here, we give the expressions for the second order correction to the readout efficiency and present
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the details of the simulations. For the second order term ηread,2 we find

ηread,2 = 2κ1Real

(∫ τread

0

dt

∫ t

0

dt′
∫ t′

0

dt′′
√
N B̄∗

2 |D|
eReal(Ā+C̄)t

(
e

1
2

√
D∗t − e− 1

2

√
D∗t
)
eC̄(t

′−t′′)e−
1
2 (Ā+C̄)(t′−t′′)

×

(
e

1
2

√
Dt
(
e
−1
2

√
D(t′−t′′)−e

−1
2

√
D(t′+t′′)

)([(
Ā−C̄+

√
D
)
N〈δBj(t′)δBj(t′′)〉e+2B̄N〈δCj(t′)δBj(t′′)〉e

]√N B̄√
D

)

+e
1
2

√
D(t+t′′−t′)

([(
Ā−C̄+

√
D
)
N〈δBj(t′)δCj(t′′)〉e+2B̄

√
N〈δCj(t′)δCj(t′′)〉e

]Ā−C̄+
√
D

2
√
D

)

+e
1
2

√
D(t−t′′−t′)

([(
Ā−C̄+

√
D
)
N〈δBj(t′)δCj(t′′)〉e+2B̄

√
N〈δCj(t′)δCj(t′′)〉e

]−Ā+C̄+
√
D

2
√
D

)

+e−
1
2

√
Dt
(
e

1
2

√
D(t′−t′′)−e 1

2

√
D(t′+t′′)

)([(
Ā−C̄−

√
D
)
N〈δBj(t′)δBj(t′′)〉e+2B̄N〈δCj(t′)δBj(t′′)〉e

]√N B̄√
D

)

+e
1
2

√
D(t′+t′′−t)

([(
Ā−C̄−

√
D
)
N〈δBj(t′)δCj(t′′)〉e+2B̄

√
N〈δCj(t′)δCj(t′′)〉e

]Ā−C̄−√D
2
√
D

)

+e
1
2

√
D(t′−t′′−t)

([(
Ā−C̄−

√
D
)
N〈δBj(t′)δCj(t′′)〉e+2B̄

√
N〈δCj(t′)δCj(t′′)〉e

]−Ā+C̄−
√
D

2
√
D

)))
. (26)

Here we have neglected the contributions from the fluctuations contained in δA(t) and B0 since they are suppressed

by a factor of at least dF/N compared to the terms above. In deriving Eq. (26), we have used that â
(2)
cell consists of

sums of the form

1

N

N−1∑
l=1

N∑
j=1

N∑
j′=1

e−2iπ/N(j−j′)lδXj(t
′)δXj′(t

′′), (27)

where Xj could e.g. denote Bj . For ηread,2, we calculate 〈â(0)
cellâ

(2)
cell〉 and the average of Eq. (27) is approximatively

N〈δXj(t
′)δXj(t

′′)〉e because 〈δXj(t
′)δXj′(t

′′)〉e = 0, if j 6= j′, since the motion of different atoms are uncorrelated
and we have assumed that N−1 ≈ N . All correlations appearing in Eq. (26) are thus single atom correlations and the
index j is kept to indicate this. The correlations contained in ηread,2 can be treated analytically, in a similar fashion

as the correlations in 〈|θj(t)|2〉e for the write process, but we have instead simulated the correlations numerically for
the previously mentioned Cs-cells.

Numerical simulation - Read. The simulations are performed in the same way as for the write process.
An extra difficulty is, however, that we consider the coupling between the light fields and the extra levels in 133Cs.
We assume that the readout process has the level structure shown in Supplementary Figure 4.

The couplings to the extra levels result in extra coupling terms in the expressions for A,Bj and Cj , which we
include, but the expression for ηread,2 is still the same as given in Eq. (26). Note, however, that a cavity detuning of
the quantum field (appearing in the expression for A) on the order of κ1 is needed to compensate the phases resulting
from some of these additional couplings. The starting point of our numerical simulations is therefore Eq. (26), where
we can change the order of integration and introduce the variables u = t′ + t′′ and s = t′ − t′′ since the correlations
only depend on the time difference |t′ − t′′|. Performing the integrals over t and u analytically, allows us to write

ηread,2 =

∫ τread

0

(h1(τread, s)〈δB, δB〉e(s) + h2(τread, s)〈δB, δC〉e(s)

+h3(τread, s)〈δC, δB〉e(s) + h4(τread, s)〈δC, δC〉e(s))ds, (28)

where h1(τread, s), h2(τread, s), h3(τread, s) and h4(τread, s) are functions of s and τread, which are obtained
from the integration over t and u. We have once again introduced the short notation for the correlations
〈δBj(t′)δCj(t′′)〉e = 〈δB, δC〉e(s). Note that 〈δB, δC〉e(s) → 0 for s →∞ similar to the situation in the write process,
i.e., the coupling of an atom at time t is uncorrelated from its initial coupling if t is large. We can therefore introduce
a cutoff smax in the integral in Eq. (28) such that we can evaluate ηread,2 for an arbitrary length of the readout
pulse τread without additional numerical difficulty. We then numerically evaluate ηread,2 from Eq. (28) by simulating
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the decay of the correlations similar to the simulation of the write process. From the numerical simulation, we find
that the term 〈δCjδCj〉e dominates ηread,2. This term describes loss of the excitation due to spontaneous emission to
modes not confined by the cavity.

Errors. Here, we give the detailed expression for the probability (p1) to read out incoherent photons to first
order. The incoherent photons are being readout from assymetric modes described by the operators

Ŝl =
1√
N

N∑
j=1

e2iπ(j−1)l/N σ̂
(j)
01 , (29)

where l = {1, 2, . . . , N −1}. Note that the symmetric Dicke mode is described by Ŝ0. From the pertubative expansion
of âcell, we find that the assymetric modes gives a first order contribution of

â
(1)
cell(t) =

√
ε

∫ t

0

dt′
e

1
2 (Ā+C̄)(t−t′)

2
√
D

eC̄t
′ 1√
N

N−1∑
l=1

N∑
j=1

e−2iπ(j−1)l/N
(

(
e

1
2

√
D(t−t′) − e− 1

2

√
D(t−t′)

) ((
Ā − C̄

)
δBj(t′) + 2B̄δCj(t′)

)
Ŝl

+
(
e

1
2

√
D(t−t′) + e−

1
2

√
D(t−t′)

)√
DδBj(t′)Ŝl

)
. (30)

The probability to read out the incoherent photons is then

p1 =
κ2

2κ1

4

∫ τread

0

dt

∫ t

0

dt′
∫ t

0

dt′′e−κ2/2(2t−t′−t′′)〈(â(1)
cell(t

′))†â
(1)
cell(t

′′)〉. (31)

We can numerically evaluate the correlations contained in Eq. (31) in a similar fashion as the correlations in ηread,2,
i.e., we simulate the experimental Cs-cells. Thereby, we get the results presented in Fig. 3b in the article.

DLCZ error analysis. In order to fully characterize the performance of a DLCZ repeater based on the
room temperature cells, we investigate how the errors from incoherent photons propagate in the repeater. First,
we consider the state being produced in the entanglement generation step (see above). We define the following
parameters:

• ηwrite : The write efficiency, which basically is the probability to have a Dicke state in the ensemble conditioned
on a quantum photon being emitted. If we are not in the right state we are dominated by the intitial state and
thus with probability 1− ηwrite, we assume the atomic state to be |00 . . . 0〉.

• pe : The excitation probability, which depends on the driving strength.

• Pd : The dark count probability of a detector. We estimate this as Pd ∼ rdarktint where rdark is the dark count
rate and tint is the length of the driving pulse.

• ηd : The detection efficiency, which is determined by the total efficiency of the detector, the outcoupling losses
and the transmission losses from the cavity to the detector.

To second order in the excitation probability, the state of the two ensembles following a single click in a detector
at the central station is described by the density matrix

ρsuccess =

[[
p2
e(1− ηwrite)2(2ηd − 2η2

d)(1− Pd)2 + 2p2
e(1− ηwrite)2(1− ηd)2Pd(1− Pd)

+2(1− pe)2Pd(1− Pd) + 4pe(1− ηwrite)(1− pe)(1− ηd)Pd(1− Pd)

+4p2
e(1− ηwrite)2(ηd − η2

d)(1− Pd)2 + 4p2
e(1− ηwrite)2(1− ηd)2Pd(1− Pd)

]
|00〉〈00|

+
[
p2
eη

2
write(2ηd − 2η2

d)(1− Pd)2 + 2p2
eη

2
write(1− ηd)2Pd(1− Pd)

]
|11〉〈11|

+
[
p2
eηwrite(1− ηwrite)(2ηd − 2η2

d)(1− Pd)2 + 2p2
eηwrite(1− ηwrite)(1− ηd)2Pd(1− Pd)

+2peηwrite(1− pe)(1− ηd)Pd(1− Pd) + 4p2
eηwrite(1− ηwrite)(ηd − η2

d)(1− Pd)2
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+4p2
eηwrite(1− ηwrite)(1− ηd)2Pd(1− Pd)

]
(|01〉〈01|+ |10〉〈10|)

+
[
2p2
eη

2
write(ηd − η2

d)(1− Pd)2 + 2p2
eη

2
write(1− ηd)2Pd(1− Pd)

]
(|20〉〈20|+ |02〉〈02|)

+2peηwrite(1− pe)ηd(1− Pd)2|Ψ〉〈Ψ|

]
1

N
, (32)

where we have defined |0〉 = |00 . . . 0〉, |1〉 = |Dicke〉, |2〉 = 1√
N

∑N
i,j=1 |1〉i|1〉j〈0|i〈0|j |00 . . . 0〉 and |Ψ〉 = 1√

2
(|01〉 +

|10〉). N = Psuccess is a normalization constant, which gives the success probability of the operation. Note that we
have assumed number resolving detectors. It is seen from Eq. (32) that we can write ρsuccess = a0|Ψ〉〈Ψ|+b0|00〉〈00|+
c0(|01〉〈01|+ |10〉〈10|) + d0|11〉〈11|+ e0(|02〉〈02|+ |20〉〈20|).

We now consider the entanglement swapping of two states of the form ρsuccess using the setup shown in Supple-
mentary Figure 5. In the swap, an ensemble from each entangled pair is read out and the corresponding photons are
combined on a balanced beam splitter. With probability a2

0, we are swapping two states of the form |Ψ〉 and the state
after a successful swap is

ρa20 =

[
1

4

[
2ηdr(1− ηdr)(1− Pdr)

2 + 2(1− ηdr)
2Pdr(1− Pdr)

]
|00〉〈00|

+
1

4

[
2Pdr(1− Pdr)

]
|11〉〈11|

+
1

4

[
2(1− ηdr)Pdr(1− Pdr)

]
(|01〉〈01|+ |10〉〈10|)

+
1

2
ηdr(1− Pdr)

2|Ψ〉〈Ψ|

]
1

N ′
, (33)

where we have introduced the total readout detection efficiency ηdr, which is determined by the readout efficiency,
the outcoupling losses and the efficiency of the detectors. In contrast to the detection efficiency in the entanglement
generation, the readout detection efficiency does not include fiber losses since the entanglement swap is a local
process. N ′ is a normalization constant. Furthermore, we have defined the readout dark count rate Pdr, which
contains the probability of reading out incoherent photons from the ensembles and the detector dark counts, i.e.
Pdr = rdarkτread + ηdrp1. Here rdarkτread is the dark count rate of the detectors and p1 is the probability to emit
incoherent photons. As previously described, p1 is mainly determined by the inefficiency of the optical pumping in
the initialization of the ensembles and the memory time of the ensemble. We will neglect the limited memory time
and simply assume a fixed value of p1 from the inefficiency of the optical pumping. From Eq. (33), we can express
ρa20 as

ρa20 =
1

N ′

[
1

4
α|00〉〈00|+ 1

4
(β − ηdr(1− Pdr)

2)(|01〉〈01|+ |10〉〈10|)

+
1

4
λ|11〉〈11|+ 1

2
ηdr(1− Pdr)

2|Ψ〉〈Ψ|

]
, (34)

with α, β, and λ given by Eq. (33). Considering all the combinations from swapping two states of the form ρsuccess,
we find that the output state can be written as

ρswap,1 =
1

N ′′

[[a2
0

4
α+ b20λ+ c20α+ b0a0β + c0a0α+ 2b0c0β + 2b0e0β̃ + 2c0e0α̃+ e2

0γ̃ + a0e0α̃
]
|00〉〈00|

+
[a2

0

4
(β − ηdr(1− Pdr)

2) +
a0b0

2
λ+ a0c0β +

a0d0

2
α+ b0c0λ+ b0d0β + c20β + c0d0α

+
a0e0

2
β̃ + d0e0α̃

]
(|01〉〈01|+ |10〉〈10|)

+
[a2

0

4
λ+ c20λ+ d2

0α+ c0a0λ+ d0a0β + 2c0d0β
]
|11〉〈11|

+
[a0e0

2
β + b0e0λ+ c0e0β + 2e2

0β̃
]
(|02〉〈02|+ |20〉〈20|)
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+
[a0e0

2
λ+ c0e0λ+ d0e0β

]
(|12〉〈12|+ |21〉〈21|)

+e2
0λ|22〉〈22|

+
a2

0

2
ηdr(1− Pdr)|Ψ〉〈Ψ|

]
, (35)

where we have defined

α̃ = 3ηdr(1− ηdr)
2(1− Pdr)

2 + 2(1− ηdr)
3Pdr(1− Pdr) (36)

β̃ = 2ηdr(1− ηdr)(1− Pdr)
2 + 2(1− ηdr)

2Pdr(1− Pdr) (37)

γ̃ = 4ηdr(1− ηdr)
3(1− Pdr)

2 + 2(1− ηdr)
4Pdr(1− Pdr), (38)

and N ′′ = Pswap,1 is a normalization constant, which gives the success probability of the swap operation. It is seen
that we can write

ρswap,1 = a1|Ψ〉〈Ψ|+ b1|00〉〈00|+ c1(|01〉〈01|+ |10〉〈10|) + d1|11〉〈11|+ e1(|02〉〈02|+ |20〉〈20|)
+f1(|12〉〈12|+ |21〉〈21|) + g1|22〉〈22| (39)

with constants a1, b1, c1, d1, e1, f1 and g1 determined by Eq. (35).
The vacuum part of the swapped state grows exponentially with the number of swaps in the DLCZ protocol [6] and

it is therefore necessary to perform a final postselection where two entangled states are combined (see Supplementary
Figure 5).

We assume two parties named Alice and Bob who share two entangled pairs such that Alice has ensemble 1 and 3
and Bob has ensemble 2 and 4. Ensemble 1 and 2 are entangled and so is ensemble 3 and 4. The intial state is then

ρintial =
(
a|Ψ〉〈Ψ|+ b|00〉〈00|+ c(|01〉〈01|+ |10〉〈10|) + d|11〉〈11|

+e(|02〉〈02|+ |20〉〈20|) + f(|12〉〈12|+ |21〉〈21|) + g|22〉〈22|
)

1,2

⊗
(
a|Ψ〉〈Ψ|+ b|00〉〈00|+ c(|01〉〈01|+ |10〉〈10|) + d|11〉〈11|

+e(|02〉〈02|+ |20〉〈20|) + f(|12〉〈12|+ |21〉〈21|) + g|22〉〈22|
)

3,4
(40)

All ensembles are now readout in, e.g., a cryptography scheme and a success is conditioned on both Alice and Bob
recording a single click. The total success probability is

Pps =
a2

2
(αpsβps + γ2

ps) + b2α2
ps + 2c2αpsβps + d2β2

ps + 2c2γ2
ps + 2abαpsγps

+2ac(αpsβps + γ2
ps) + 2adβpsγps + 4bcαpsγps + 4cdβpsγps + 2bdγ2

ps

+2ae(αpsβ̃ps + γpsβps) + 2af(γpsβ̃ps + β2
ps) + 2agβpsβ̃ps + 4beαpsβps

+4bfγpsβps + 2bgβ2
ps + 4ce(γpsβps + αpsβ̃ps) + 4cf(β2

ps + γpsβ̃ps) + 4cgβpsβ̃ps + 4deγpsβ̃ps

+4dfβpsβ̃ps + 2dgβ̃2
ps + 2e2(αpsγ̃ps + β2

ps) + 4egβpsγ̃ps + 4fgβ̃psγ̃ps + g2γ̃2
ps

+4fe(γpsγ̃ps + β̃psβps) + 2f2(γ̃psβps + β̃2), (41)

where we have defined

αps = 2Pdr(1− Pdr) (42)

βps = 2ηdr(1− ηdr)(1− Pdr)
2 + 2(1− ηdr)

2Pdr(1− Pdr) (43)

γps = ηdr(1− Pdr)
2 + 2(1− ηdr)Pdr(1− Pdr) (44)

β̃ps = 3ηdr(1− ηdr)
2(1− Pdr)

2 + 2(1− ηdr)
3Pdr(1− Pdr) (45)

γ̃ps = 4ηdr(1− ηdr)
3(1− Pdr)

2 + 2(1− ηdr)
4Pdr(1− Pdr). (46)

The postselected fidelity of the state is

Fps =
a2

4 η
2
readη

2
dr(1− Pdr)

4(1 + cos(φ− θ)) + a2

4 (γ2
ps − η2

readη
2
dr(1− Pdr)

4) + c2γ2
ps + acγ2

ps

Pps
, (47)
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where the phases φ, θ can be different due to variations in the path lengths of the photons being read out. In the
ideal case, we have φ = θ for which the fidelity is maximal.

The rate of a DLCZ repeater based on the room temperature cells can be estimated as [6]

r ≈
(

2

3

)n+1

P0Pswap,1Pswap,2 . . . Pswap,nPps
2nc

L
(48)

where n is the number of swap levels in the repeater and L is the distance. Note, however, that the scalability of the
room temperature cells enables spatially multiplexing, which both increases the rate of the repeater and decreases the
necessary memory time of the ensembles [6]. Assuming that 2M ensembles are used at each repeater station, the rate
will increase by a factor of M . We have considered a basic repeater segment consisting of only a single swap without
multiplexing in order to estimate the rate and fidelity of a distributed pair. We assume that the distance to distribute
entanglement over is L = 80 km and that the losses in the fibers are given by the attenuation length at telecom wave-
lengths, which is ∼20 km. Furthermore, we assume SPD efficiencies of 95% and dark count rates of 1 Hz. This reflects
what is possible with current superconducting detectors [7, 8]. We then perform an optimization in all the parameters
characterizing the cells, e.g. the excitation probability, the write time and the readout time. We include experimental
imperfections such as outcoupling losses of around 10% and intracavity losses of 2%. As a result we find that a pair
with fidelity ∼ 80% can be distributed with a rate of ∼ 0.2 Hz. We have assumed that ε ≈ 0.5% and have neglected
effects from finite memory time of the atoms. Furthermore, we have assumed that φ = θ (see Supplementary Figure 5).
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