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Optimal asset management strategies for wind turbine blades help to reduce their operation and maintenance costs,
and ensure their reliability and safety. Structural health monitoring (SHM) can determine the health state of wind
turbine blades through implementing damage identification strategies. The main load-bearing structure spar of the
wind turbine blade is inside the structure, and hence difficult to inspect. Advanced SHM techniques, such as guided
wave monitoring, can be used to monitor the development of cracks in real-time and provide an early indication
of their existence. This paper presents a risk-based maintenance model based on the state information provided by
SHM. The model is based on Petri nets, and describes the blade degradation and guided wave monitoring processes,
inspection and maintenance works. Fatigue test data of composite components is processed to provide input for
the model. The reliability of guided wave monitoring is also assessed. The proposed model is able to predict
the condition state and expected number of repairs of composite components for wind turbine blades, which can
potentially help in making informed asset management decisions during wind turbine blade operation.

Keywords: Asset management, Wind turbine blades, Petri nets, Structural health monitoring, Ultrasonic guided wave
monitoring, Reliability of ultrasonic guided wave monitoring.

1. Introduction

To solve the environmental problems and energy
shortages we face today, more use of clean en-
ergy is required. Wind power is one of the po-
tential ways to generate clean energy. The Euro-
pean Wind Energy Association expects 320 GW
of wind energy capacity to be installed in the EU
in 2030, 254 GW of onshore wind and 66 GW of
offshore wind. That would be an increase of two-
thirds from the expected capacity installed in 2020

(192 GW) Corbetta et al. (2015). In the context
of rapid development of wind energy, develop-
ing robust asset management modelling tools to
minimise wind turbine operation and maintenance
costs, and assure their reliability and sustainability
is of paramount importance.
However, the impact of maintenance on the life

cycle of wind farms is complex and uncertain. The
choice of maintenance strategy affects the overall
efficiency, profitability, safety and sustainability
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of a wind farm Ren et al. (2021). Different tech-
niques have been used to find the optimal solu-
tion. Discrete Bayesian networks are used to con-
struct a general computational framework for risk-
based planning of inspections, maintenance and
structural health monitoring Ren et al. (2021). A
time-dependent stochastic process was employed
to optimise maintenance of offshore composite
wind turbine blades in Zhang et al. (2021); the
gamma process was used to calculate the prob-
ability of fatigue failure of blades. A partially-
observed Markov decision process was introduced
to devise optimal maintenance strategies in Byon
and Ding (2010), considering the feasibility of
maintenance and multi-state wind turbine deteri-
oration.
Petri nets (PN) are graphical and mathemat-

ical modelling tools that can be used not only
for visual communication but also for building
state equations and algebraic equations Murata
(1989). They have been used to model and manage
risk in a wide range of fields, including health-
care, civil engineering and aviation Naybour et al.
(2019); Netjasov and Janic (2008); Vagnoli et al.
(2021). Many researchers also use PN for wind
turbine maintenance and failure process simu-
lation. Müller Müller and Bertsche (2021) pre-
sented a close-to-reality maintenance optimisa-
tion model using high level PN; different detailed
points were considered, e.g. the joint use of main-
tenance capacities as well as aspects of spare
parts logistics or weather aspects. Santos Santos
et al. (2018) presented an age-dependent preven-
tive maintenance model with an imperfect repair
strategy. Le Le and Andrews (2016) proposed an
asset model for offshore wind turbine reliability
accounting for the degradation, inspection and
maintenance processes based on the PN method.
However, there have been a limited number of
models developed to predict the effects of sensor
degradation on condition-based monitoring.
Structural health monitoring (SHM) plays an

important role in the health management of wind
turbines. SHM can provide engineers with infor-
mation on the damage evolution status of key
parts of the wind turbines in real time, which
provides an important reference for maintenance

decisions. Nielsen Nielsen et al. (2021) presented
a case study demonstrating the methods used to
estimate the value of the information delivered by
an SHM system. The paper demonstrated how the
potential benefit of SHM highly depends on the
reliability of the utilised SHM system and how the
SHM observations are used for decision-making
on inspections and maintenance. Hughes Hughes
et al. (2021) formulated a risk-based decision-
making framework for SHM that incorporates
probabilistic risk assessment; a simple case study
was used to illustrate the proposed framework.
The above studies have proved the significance of
SHM for equipment health management, and the
importance of considering SHM in maintenance
simulation.
This paper describes an asset management

model for composite components of wind tur-
bine blades using a PN method based on fatigue
test data. First, Weibull distribution parameters
describing the degradation process of composite
components are obtained using a manual compu-
tation fitting method and numerical optimisation.
Second, PNs for inspection and condition-based
monitoring are constructed; probability group
transitions are used to indicate monitoring accu-
racy. Changes in the SHM system’s health condi-
tions were taken into account. Finally, compara-
tive results of the inspection and condition moni-
toring in terms of maintenance times are provided;
the effect of sensor degradation is also presented.
The manuscript is organised as follows. Sec. 2

introduces the basic concepts of the PN method.
Different PN models are developed for degrada-
tion, inspection, condition-based monitoring pro-
cesses in Sec. 3. In Sec. 4, results and discussion
are provided. Conclusions are presented in Sec. 5.

2. Basic Petri net concepts

PNs are directed bipartite graphical and mathe-
matical modelling tools, consisting of four simple
elements: places, transitions, arcs, and tokens. The
Petri net is described by circular nodes called
places and square nodes called transitions with a
number of arcs connecting places and transitions.
The state of a Petri net is described by the distribu-
tion of black dots called tokens on the places. The
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movement of tokens between places is based on
the firing rule. A transition is enabled if all of its
input positions are marked by a required number
of tokens. The transition fires after a delay time or
immediately. Firing removes a certain amount of
tokens from each input place and adds a certain
number of tokens to each output place.
To ease understanding, a simple example is

given in Fig. 1. The left side is the initial state. In
this paper, all places will be coloured and labelled
in black and all transitions in red. Place 1 will
be referred to as P1, transition 1 as T1 and so
on. In this PN, T1 has one input place, P1, and
two output places, P2 and P3. Since P1 is initially
marked, the transition is enabled and after a delay,
it will fire. After firing, one token is removed from
the input place and one/two tokens added to the
output places. The arc from T1 to P3 has a weight
of 2, so the output to P2 is two tokens. The state
after firing is shown on the right side.

Fig. 1. A simple PN model before and after transition
firing

To enhance the functionality of PN, other tran-
sitions can be used. A reset transition, when it
fires, will reset the marking of specific places to
the desired number of tokens Le (2014). A prob-
ability group, when it fires, will generate tokens
based on an arc’s probability weights. A proba-
bility group example is shown in Fig. 2. When T1
fires, the probability of the token moving to P1 and
P2 is 0.8 and 0.2, respectively. All the places of a
probability group will be surrounded by a dashed
ellipse. In terms of software implementation, a
bespoke research software has been developed in
Python.

3. Model description

In this section, the asset management model for
composite components of wind turbine blades is
presented. It consists of three modules: a failure

Fig. 2. A simple PN model containing a probability
group

model, a monitoring model (including inspection
and guided-wave monitoring), and a maintenance
model.

3.1. Failure modelling of composite
components

Modelling the degradation of composite compo-
nents is a very important input for risk-based
maintenance optimisation. This section presents
a PN degradation model for composite compo-
nents based on their damage accumulation data.
Places represent different degradation states, and
transitions govern the transition times between
different states (See Fig. 3). The transition follows
a Weibull distribution with scale parameter η and
shape parameter β.

Fig. 3. PN to describe the degradation process of com-
posite components

Delamination due to fatigue loading is one
of the most important mechanical failures of
laminated composite blades during their design
life Zhang et al. (2021); Wessels et al. (2010).
Delamination failure accumulation data for cross-
ply composites under fatigue conditions are used
to fit stochastic distributions, details of the data
can be found in Li et al. (2020). Generally,
the fatigue process of carbon fibre reinforced
resin matrix composites can be divided into three
stages: dominated by matrix cracks (stage I), dom-
inated by delamination damage (stage II), and
dominated by fibre fracture (stage III) Li et al.
(2020). Correspondingly, we can divide the entire
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life course of composite components into four
states, namely normal condition, degraded con-
dition, critical condition and functional failure.
Consequently, the time from normal condition
to degraded condition is the time elapsed during
stage I, and so on. It should be noted that as-
sumptions are made here to reduce the structural
investigation to the coupon scale due to the lack of
full-scale fatigue data. In Fig. 3, P1-P4 represent
the normal, degraded, critical, and failed states
respectively.
Approaches for estimating the Weibull param-

eters can be classified as manual or computa-
tional methods. Manual methods perform better
for small samples Datsiou and Overend (2018).
Fatigue test data for seven groups of CFRP cross-
ply laminates are available. It belongs to a small
sample, therefore, the manual method is adopted.
The median rank estimate calculated by Benard’s
equation approximation is used, shown in Eq. (1).

F̂ (ti) =
i− 0.3

n+ 0.4
(1)

where n is the total number of different degrada-
tion states, i is the sequence of certain degradation
state.
The Weibull distribution from P1 to P2, from

P1 to P3, from P1 to P4 can be fitted directly from
the data. In Fig. 3, the blue dotted line indicates
that its distribution parameters can be obtained
directly by fitting, but cannot be directly applied
to PN. The state change indicated by the dotted
line also does not exist in the actual PN. However,
transition rates between each of the four states
are required by the PN model, for example, the
transition time from P2 to P3. T1, T2 and T3
are called convolution transitions, as introduced
in Andrews (2013). The parameters of a convo-
lution transition can be calculated by numerical
integration. An optimisation scheme is adopted to
estimate the parameters here Le (2014). The main
idea is to take the minimum difference between
the total transition time from P1 to P2, P2 to P3
and the transition time directly from P1 to P3 as
the objective function to find the optimal solution
within a given range of η and β. See Le (2014)
for more details. The Weibull distribution param-

eters for the different convolution transitions are
shown in Table 1. We have based the parameter
values on Caous et al. (2018), using a relationship
between the service life of the wind turbine and
the loading period. In the lab conditions, it is
unrealistic to perform a loading cycle on the actual
size of the turbine, therefore the tests are carried
out at a coupon level. Then the fatigue test data
described above are normalized to 1.

Table 1. Transition parameters of
Weibull distributions for degradation
transition.

Type Parameters

T1 η = 0.4935, β = 2.9000
T2 η = 0.1595, β = 2.1283
T3 η = 0.3838, β = 2.0020

3.2. Model for condition-based
monitoring and inspection process

Periodic inspections and condition-based moni-
toring (CBM) are commonly used by wind farm
owners and operators. PNs are developed for those
two processes in this section.

3.2.1. Inspection process

The inspection process is straightforward. Most
wind farms perform scheduled inspections on a
regular basis. Some defects can be detected by
visual inspection, such as corrosion and leak-
age, or surface cracks in faulty blades. Fig. 4
illustrates the PN modelling inspection process
of the composite components. P1 to P4 repre-
sent the true degradation states (normal condition,
degraded condition, critical condition and func-
tional failure) of composite components. T1 to
T3 represent transitions between each state. The
transitions follow a Weibull distribution with pa-
rameters obtained from fatigue experimental data
(see Sec. 3.1). T8 models periodic inspection and
fires at regular intervals. After T8 fires, P9, P10,
P11 and P12 will each receive one token. If the
current state of the composite component is in a
degraded condition, then T5 will fire immediately.
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One token will be generated in P6 or P14, with the
probability relating to P14 representing the prob-
ability of an error in the inspection process. The
marking of P14 therefore indicates the number of
false inspections (as do P13, P15, and P16). The
error of inspection is set to 90%. The false in-
spection is when the inspection fails to determine
the level of degradation. If the token is moved
to P6, T13 will be fired after a delay. T13, T14,
and T15 represent the maintenance action. If any
of them are fired, the composite component will
return to normal condition, that is, the tokens in
P1 to P4 will be reset to the initial state. After
the simulation, the markings of P17 to P19 are
equal to the number of occurrences of each repair
action; the markings of P5 indicate the number of
times the inspection detected a normal condition;
the markings of P13 to P16 represent the number
of inspection failures. More details about mainte-
nance will be introduced in Sec. 3.3. The inhibitor
arcs Le (2014) from P1 to T9, P2 to T10, P3 to
T11, and P4 to T12 allow T9, T10, T11 and T12
to empty P9, P10, P11 and P12 if the component
is not at a corresponding level of degradation. The
inhibitor arcs from P6 to T2, P7 to T3 are used to
prevent further degradation when maintenance is
underway.

Fig. 4. PN to describe the inspection process of com-
posite components

However, inspections have their limitations. All
blade parts are load-bearing, but the spar structure
is typically responsible for the largest part of the
resistance to aerodynamic loads. The spar struc-

ture is located inside the blade and its damage
status cannot be obtained by visual inspection.
The SHM method described in the next section
will functionally supplement inspection.

3.2.2. Ultrasonic guided wave monitoring and
its reliability

SHM can determine the health state of wind tur-
bine blades by implementing damage identifica-
tion strategies. Different established SHM tech-
niques are employed for monitoring wind tur-
bine blades, including acoustic emission Liu et al.
(2020), vibration analysis Liu (2013), strain moni-
toring Khadka et al. (2021), and ultrasonic guided
wave monitoring Wang et al. (2018); Wu et al.
(2022). The use of ultrasonic guided waves to
identify damage has become a popular method
due to its robustness and fast execution, as well as
the advantage of being able to inspect large areas
and detect minor structural defects. Fig. 5 shows
the PN modelling the CBM process (in this paper,
ultrasonic guided wave monitoring) of the com-
posite components. The parameters and functions
of P1 to P4 and T1 to T3 are the same as for the
inspection PN model. The visual inspection and
SHM are most likely to identify different types of
degradation since they act on different parts of the
blades, and therefore the degradation parameters
could be different. In this paper, we assume that
the component damage behaviour detected by in-
spection and CBM is the same. The effect of this
assumption will be considered in future research.
Ultrasonic guided wave monitoring technology

can monitor the health of composite parts in real
time after the monitoring system is installed on
a wind turbine blade. It is more efficient than
the inspection process. However, due to changes
in the operating environment and the effects of
ageing, the sensor itself undergoes a degradation
process that degrades its performance over time.
There is a need to consider the false alarm rate of
the monitoring system Liu et al. (2019); Falcetelli
et al. (2021). P5 to P7 and T4 to T5 (same as
P11 to P13, T9 to T10, P17 to P19, T14 to T15,
P23 to P25, and T19 to T20) represent the degra-
dation process of the monitoring system. Three
states of the monitoring system are considered,
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namely normal, degraded, and critical. As the
degradation progresses, the monitoring accuracy
decreases, that is to say, the false alarm rate in-
creases. Changes in monitoring accuracy will be
indicated by probability groups. It is assumed that
the degradation of sensors can be characterized
by Weibull distributions and that the degradation
parameters are known in advance. Weibull param-
eters can be estimated by maximum likelihood es-
timation and many other existing methods, as long
as historical failure/degradation data are known.
In this study, the transition T4 and T5 follow a
Weibull distribution with ηT4=28.0, βT4=6.5 as
well as ηT5=28.0, βT5=5.5. The detection accu-
racy of the monitoring system for normal, degra-
dation, and critical conditions is 95%, 70%, and
10%, respectively. T6 to T8 (same as T11 to T13,
T16 to T18 and T21 to T23) represent real time
monitoring. They fire periodically at a very short
interval. In this study, the interval is set to 0.02.
T24 to T32 represent the maintenance action.

Fig. 5. PN to describe the ultrasonic guided wave
monitoring of composite components

3.3. Maintenance model

Corrective and preventive maintenance are con-
sidered in this work. In the modelling process
of this paper, it is assumed that after the com-

posite components are repaired, their functions
will be fully restored. Probability groups enable
maintenance policies to be based on the condi-
tion revealed by inspection or CBM-monitored
conditions rather than the true conditions, in line
with the actual situation. The inspection process
and CBM correspond to corrective and preventive
maintenance, respectively. T13 to T15 in Fig. 4
represent corrective maintenance strategies. T24
to T32 represent preventive maintenance strate-
gies. Different failure states correspond to differ-
ent maintenance actions. In this paper, a degraded
condition refers to the observation of damage
above wear and tear, requiring minor repairs (Type
I). A critical condition is when significant damage
is observed, requiring major repairs (Type II). A
functional failure means a failure occurs, and then
an exchange is required (Type III).

4. Results and discussion

Based on the above model parameters, the number
of simulations was set to 1,000,000, and some
level of convergence has been reached in terms of
the number of different repair actions reaching a
constant or stable value. We performed the Petri
nets modelling on a multicore server with Intel
Xeon E5-1620 v4 Processor (3.50 GHz) and 32
GB of installed RAM. A single simulation took
about 0.0076 seconds. This section first presents
a comparison of the number of repairs per unit
time based on the inspection process and CBM,
shown in Fig. 6. Inspection interval is set to 0.15.
But, the inspection interval used here is not the
optimal value, and future research will use nu-
merical optimization methods to get the optimal
value. Compared with the system monitored by
inspection, the system monitored by CBM has a
higher number of repairs for type I, but a lower
number for type II and type III. CBM is monitored
more frequently than inspection, and can notify
engineers more quickly to complete repairs before
failure conditions deteriorate further. The mainte-
nance cost of Type I will be significantly less than
that of Type II and Type III.
The perfect CBM system and degraded CBM

system are compared in Fig. 7. It is observed that
a perfect CBM system can completely prevent
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Fig. 6. Inspection and CBM comparison of the num-
ber of different maintenance types per unit time

the system from deteriorating to the worst case
and greatly reduce the repair times of Type II.
However, a perfect monitoring system is not prac-
tical. The results show the need to consider sensor
degradation in the maintenance simulation.

Fig. 7. CBM with/without sensor degradation com-
parison of the number of different maintenance types
per unit time

5. Conclusions

An asset management PN model for composite
components of wind turbine blades integrating
SHM data is presented in this paper. This incorpo-
rates a stochastic degradation model of compos-
ite components based on experimental data. An
inspection process and CBM are both considered
in the PN models. It has been demonstrated that
compared with the inspection process, the CBM
system can more efficiently monitor changes in

system status, notifying of the need for engi-
neering maintenance in a timely manner. It can
therefore effectively curb significant deterioration
of the system and reduce the need for high-cost
maintenance. Consideration of imperfect SHM
systems has proven to be critical. The monitoring
accuracy varies with the state of the SHM, and the
monitoring accuracy has a great influence on the
numerical results. Future research will extend this
work by including detailed maintenance strategies
and the reliability of the SHM system.
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