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ABSTRACT This work presents a free-breathing dynamic contrast-enhanced (DCE) MRI reconstruction
method called low-rank plus sparse (L+S) with joint sparsity. The proposed method improved dynamic
contrast performance by integrating an additional temporal Fast Fourier Transform (FFT) constraint into the
standard L+S decomposition method. In the proposed method, both temporal total variation (TV) sparsity
constraint and temporal FFT constraint are integrated into a standard L+S decomposition model, forming
L+S with joint sparsity. Temporal TV and Temporal FFT aim to suppress under-sampling artifacts and
improve dynamic contrast in DCE-MRI, respectively. A fast composite splitting algorithm (FCSA) is adopted
for solving the L+S model with multiple sparsity constraints, maintaining the reconstruction efficiency.
A computer simulation framework was developed to compare the performance of L+S with joint sparsity
and other reconstruction schemes. The performance of L+S with joint sparsity was tested using computer
simulation and several liver DCE-MRI datasets. The proposed L+S basedmethod achieved around four times
faster reconstruction speed than the GRASP method. With the support of an additional sparsity constraint,
the peak DCE signal in the proposed method was increased by more than 20% over that of a standard L+S
decomposition.

INDEX TERMS Compressed sensing, DCE-MRI, dynamic contrast, joint sparsity, parallel imaging, recon-
struction efficiency.

I. INTRODUCTION
Dynamic contrast-enhanced (DCE) MRI possesses an unpar-
alleled capacity for detecting tumors and other lesions [1],
[2], [3], [4]. Typically, multiple three-dimensional (3D)
MRI images are rapidly acquired with different contrast-
enhancement phases for monitoring fast signal-intensity
changes [5], [6], [7]. The demand for rapid imaging speed
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with high spatial and temporal resolutions is challenging for
MRI hardware, potentially limiting its clinical applications.

The general parallel imaging acceleration techniques,
including sensitivity encoding (SENSE) [8] and generalized
autocalibrating partially parallel acquisitions (GRAPPA) [9],
employ spatial information from multiple receiver coils with
sensitivity maps to reconstruct the under-sampled dataset.
The acceleration factor (AF) in parallel imaging is limited
by the degradation of the signal-to-noise ratio (SNR) [10].
Compressed sensing is another technique that has already
shown great potential to overcome the limitations of general
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acceleration techniques like AF, spatial and temporal resolu-
tions, etc. [11], [12]. Compressed sensing for dynamic MRI
imaging is implemented based on the fact that continuously
acquired image series express sparsity in the temporal domain
with appropriate sparsity transforms like temporal total
variation (TV) [13], [14], [15]. Golden angle radial sparse
parallel (GRASP) combines the temporal incoherence of
stack-of-stars golden angle radial sampling pattern and accel-
eration capability of parallel imaging and compressed sensing
for highly accelerated free-breathing DCE-MRI reconstruc-
tion [16]. Golden angle radial sampling enables a relatively
uniform coverage of k-space among subdivided time series.
It simultaneously induces sampling incoherence on the tem-
poral dimension [17], [18]. The non-linear conjugate gradi-
ent (NLCG) algorithm [19] can be employed to obtain the
optimal solution for the GRASP model. A variety of research
work has demonstrated the high performance of GRASP for
free-breathing imaging of body tissues like the abdomen and
prostate [16], [20], [21]. However, the repeated gridding/de-
gridding procedures in NLCG result in an excessively long
reconstruction period [22].

Besides the GRASP based techniques, combining com-
pressed sensing and low-rank completion is widely
adopted in reconstructing highly under-sampled dynamic
MRI [23], [23], [24], [25]. Low-rank plus sparse (L+S)
decomposition approach decomposes the time series fur-
ther into low-rank background components L and sparse
dynamic components S [26], [27]. A sparser representa-
tion of S is achieved in an appropriate transform domain,
offering higher temporal fidelity and better tissue contrast at
high AF [24]. The iterative shrinkage-thresholding algorithm
(ISTA) [28] provides a faster convergence speed in L+S
decomposition than NLCG in GRASP. Consequently, high
reconstruction efficiency has been achieved by standard L+S
decomposition.

Besides the reconstruction efficiency, dynamic contrast
performance is crucial for clinical diagnosis. Both L+S
decomposition and GRASP based techniques typically
employ temporal TV as a sparsity transform to promote spar-
sity among multi-coil datasets [24], [29], [30]. Temporal TV
can suppress all temporal variations, including temporally
incoherent under-sampling artifacts. However, it also leads
to the temporal averaging effect, which degrades the ultimate
dynamic contrast of DCE-MRI.

In this work, we have integrated an additional sparsity
constraint, ‘‘temporal fast Fourier transform (FFT),’’ into
the standard L+S decomposition model with temporal TV,
named ‘‘L+S with joint sparsity,’’ to maintain the high recon-
struction efficiency, suppress under-sampling artifacts and
improve the dynamic contrast for DCE-MRI simultaneously.
A fast composite splitting algorithm (FCSA) is applied to
recover the desired image series from the L+S model with
two sparsity constraints (temporal TV and temporal FFT)
efficiently [31], [32]. We also developed a computer sim-
ulation framework to evaluate the performance of different
reconstruction schemes.

More details about this research can be found in the
author’s Ph.D. thesis [33].

II. METHODS
The proposed ‘‘L+S with joint sparsity’’ method is an
extension of L+S decomposition to include an additional
temporal FFT constraint and FCSA. The objective of the pro-
posed method is to deliver a new free-breathing DCE-MRI
reconstruction framework, as shown in Figure 1, provid-
ing higher reconstruction efficiency and improved dynamic
contrast simultaneously.

A. L+S WITH JOINT SPARSITY MODEL
The dynamic MRI dataset can be regarded as a superposi-
tion of low-rank background components which slowly vary
over time and sparse dynamic components which rapidly vary
along the temporal dimension. By combining compressed
sensing and low-rank completion, a reconstruction model,
‘‘k-t SLR,’’ is developed for dynamic MRI, while this model
is challenging to optimize [24], [34]. L+S decomposition
is developed based on both low-rank and sparse models to
express the dynamic MRI dataset more efficiently [24].

In L+S decomposition, the acquired time series of the
dynamic MRI dataset is converted into a space-time (y-t)
matrixM . Each column of M presents a temporal frame.
By applying singular value decomposition (SVD) and singu-
lar value thresholding (SVT) toM , a low-rank y-t matrix L is
extracted from theM . Lcontains a few non-zero singular val-
ues and presents the slowly varying background components.
The sparse y-t matrix S is obtained by subtracting the original
matrixM with the low-rank matrixL. Due to the compressed
background information, there are a few non-zero entries
in the sparse matrixS. Hence, S shows better sparsity than
the original matrix on y-t space, which benefits compressed
sensing reconstruction. The sparsity of S can be increased
further by applying an appropriate sparsity transform along
the matrix columns (temporal dimension) or using adaptive
dictionary patches [24], [35], [36]. With a sparser presen-
tation of S, fewer coefficients are required to be recovered,
which enables dynamic MRI reconstruction at higher AF.

A variety of dynamic MRI reconstruction frameworks,
including GRASP and L+S decomposition, adopted tem-
poral TV as the temporal sparsity transform. Temporal
TV applies a finite-differences operator along the temporal
dimension of the matrix, minimizing all the variations in the
temporal domain. Temporal TV has shown advanced per-
formance for suppressing the under-sampling artifacts [14],
[35], but it also suppresses the temporally varied dynamic
signal [16]. Temporal FFT is another sparsity transform that
can effectively reserve the dynamic contrast. Temporal FFT
converted the images series matrix from the y-t domain to the
temporal-frequency (y-f) domain by applying an FFT opera-
tor along the temporal dimension. In the y-f domain, DC and
a few low-frequency components typically occupy most of
the power and present the steady background and tissues
with relatively slow changes along the temporal dimension,
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FIGURE 1. L+S with joint sparsity reconstruction framework. 3D dynamic MRI datasets are typically
acquired by the stack-of-stars hybrid sampling pattern. One-dimensional (1D) FFT operator is
applied to decompose the 2D slices k-space from the 3D datasets. NUFFT is directly implemented
for the selected slice k-space dataset before the time frame subdivision to obtain the reference
images. Field maps are estimated from the reference images. Continuously acquired spokes are
sorted into multiple frames according to the temporal order. A further subdivision is implemented
on time frames to decompose low-rank components and sparse dynamic components in time
series. The L+S with joint sparsity Fig. Fig. 1. reconstruction with FCSA is then applied to recover the
image series by exploring the temporal sparsity among the dynamic sparse components.

respectively. Temporal FFT can explore temporal sparsity by
gradually eliminating frequency components with negligible
magnitude. The DCE signal intensity is assumed to vary tem-
porally at low frequencies. A few low-frequency components
are sufficient to catch the relatively smooth variation of signal
intensity of blood vessels. These low-frequency components
are reserved by temporal FFT to maintain the dynamic con-
trast. However, the incoherent under-sampling artifacts are
distributed among the y-f domain, while the temporal FFT
cannot eliminate these artifacts as effectively as temporal TV.

Here, we have introduced an additional sparsity constraint
temporal FFT into the standard L+S decomposition model
to suppress under-sampling artifacts and recover dynamic
contrast simultaneously as:

argminL,S =
1
2
‖{E (L + S)− d}‖22 + λL ‖‖∗

+ λT ‖‖1 + λF ‖‖1 (1)

d is the acquired multi-coil k-space dataset with c coils
while it is highly under-sampled along the temporal dimen-
sion of the k-space (k-t space) in dynamicMRI.E is themulti-
coil encoding operator, which contains c coils sensitivity
maps [37] followed by under-sampled FFT or non-uniform
fast Fourier transform (NUFFT) operator. T is the temporal
TV sparsity transform which applies the finite-differences
operator along the columns of y-t matrix S.F is the tempo-
ral FFT transform which applies the FFT operator along the
columns of y-t matrix S.

∥∥ L ∥∥
∗
is the nuclear norm of L ,

which presents the sum of the singular values of the low-rank

matrix. The l1 norms ‖TS‖1and ‖FS‖1 present the sum of the
absolute value of the entries of S in the temporal TV transform
domain and temporal FFT transform domain, respectively.
λL , λF , and λT are penalty factors that trade off the data
consistency versus the complexity of the solution given by
the nuclear norm of L and l1 norms.

B. FAST COMPOSITE SPLITTING ALGORITHM
The standard L+S decomposition employs the SVD and
ISTA to solve the optimization problem and achieves high
computation efficiency [24]. Soft-thresholding is consecu-
tively implemented to process the temporal TV constraint to
obtain the optimal solution of the L+S decomposition model.
The number of gridding/de-gridding procedures is drastically
reduced, while the reconstruction efficiency of L+S decom-
position is much higher than the standard GRASP. Beck [28]
has developed an advanced ISTA algorithm named fast ISTA
(FISTA) to accelerate the convergence further. Besides the
basic framework of ISTA, FISTA contains a specific linear
combination procedure of the previous two iterative stages.
Hence, FISTA preserves the computation simplicity of ISTA
but with a better convergence rate.

However, both ISTA and FISTA cannot efficiently solve
the reconstruction model with multiple L1 regulariza-
tions. To solve the L+S with joint sparsity model, the
FCSA [31], [32], a combination of FISTA and compos-
ite splitting algorithm (CSA) [38], is employed in this
work. CSA is implemented to split the problem with joint
sparsity constraints into two sub-problems with a certain
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FIGURE 2. Operation for the kth iteration in L+S decomposition with joint
sparsity reconstruction algorithm. Rk , Sk and Lk present the input image
matrix, low-rank matrix, and sparse matrix in the kth iteration,
respectively. Lk is obtained by applying SVT to Rk−Sk−1. Two shrinkage
operators are implemented to the sparsity constraints in the T and F
domains to get STk and SFk , respectively. Sk is figured out by a linear
combination of STk and SFk . Image series Mk is then recovered as
Mk=Lk+Sk . Additional residual signal E∗(E(Lk+Sk )− d ) is then
subtracted to maintain the data consistency. The updated input Rk+1 for
the next iteration is obtained by a specific linear combination of the
current stage Mk and the previous stage Mk−1 which enforces faster
convergence.

constraint, while the FISTA is used to solve the optimal
model efficiently. A linear combination of the solutions of
two sub-problems is regarded as the solution for the entire
problem.

Figure 2 and Table 1 summarized FCSA for solving the
L+S decomposition with joint sparsity model in the proposed
method. The input image series matrix M or R is firstly
decomposed by an SVD operator as M = U6VH . A soft-
thresholding operator 3 is integrated into the SVD operator
to build the SVT operator, applying soft-thresholding for all
the singular values as SVT (M) = U3(6)VH . The low-rank
matrix L is recovered based on the remained singular val-
ues, while the dynamic components matrix S is obtained as
S = M − L.
During the kth iteration, the SVT operator is implemented

on Rk−Sk−1 to obtain the new low-rank matrix Lk . Two tem-
poral sparsity transforms, nT and F , are applied to the sparse
components matrix. Another two soft-thresholding operators,
3λT and 3λT , are used to process the sparse matrix in the
temporal TV transform domain and temporal FFT transform
domain, respectively. Two output sparse matrices, STk and
SFk , are obtained asSTk = T−1(3λT (T (Rk − Lk−1))) and
SFk = F−1(3λF (F(Rk − Lk−1))). The new dynamic com-
ponents matrix solution is observed as a linear combination
of two sparse matrices where Sk = (STk + SFk) /2 [38].
Consecutively, the output image series Mk is figured out
by subtracting (Lk + Sk) with the residual aliasing artifacts
E∗(E(Lk + Sk ) − d). The input image series matrix for the
next iteration Rk+1 is generated by a linear combination of
the current stage output Mk and previous stage output Mk−1
to achieve fast convergence, followed with specific step sizes
tk and tk+1 [32].

C. COMPUTER SIMULATION FRAMEWORK
A computer simulation framework was developed to eval-
uate the performance of different reconstruction schemes,

TABLE 1. L+S with joint sparsity and FCSA for dynamic MRI
reconstruction.

as shown in Figure 3. A two-dimensional (2D) Shepp-logan
computer model with 384 × 384 voxels was designed with
dynamic contrast variation. The phantom model consists of
three background sections and six dynamic variation sections.
The gray level of three background regions was designed
as 1, 0.4, and 0.2, respectively, and the signal intensity of
these background sections was kept constant, forming the
steady background tissues in DCE-MRI. The gray level of
dynamic sections is initialized as 0 before the simulation.
A dynamic variation curve model was designed based on sev-
eral clinical DCE-MRI datasets [16], [29], [30]. The virtual
time duration of the curve model is 84 s, and its peak occurs
at 26.7 s. During Bloch equation simulation, the signal inten-
sity of three dynamic sections was varied with the dynamic
curve, simulating the tissues with contrast enhancement in the
DCE-MRI.

The Bloch equation simulation was performed using
MATLAB 2020b (MathWorks, Natick, MA). During the sim-
ulation, the dynamic variation period was uniformly digital-
ized into 588 discrete time steps with a time gap of 84 s /
588 ≈ 0.14 s. A golden angle radial sampling pattern
was applied to acquire phantom datasets. A radial spoke
is acquired continuously among these discrete time steps,
producing the under-sampled k-space series over the DCE
period. An additional fully-sampled k-space dataset is
acquired at each time step, forming reference k-space series.
Meanwhile, eight exponentially decayed field maps were
introduced to modify the signal intensity of the phantom
model point by point during simulation, forming eight virtual
coils (c=8).
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FIGURE 3. Flowchart of data acquisition during dynamic variation period. Eight field maps were integrated into
phantom before data acquisition forming multiple virtual coil channels. The simulation of data acquisition contains
a total of 588 steps between the pre-contrast phase and the venous phase. Two data acquisitions were executed at
each time point, producing a fully sampled reference DCE series and a continuous DCE phantom dataset,
respectively.

D. DATA ACQUISITION
T2 decay and B0 inhomogeneity are ignored during the com-
puter simulation. A certain radial spoke with 384 sample
points was acquired over 588 time steps in 84 s DCE period.
The ultimately under-sampled dataset contains eight virtual
coils, a total of 588 spokes with 384 readout points within
each spoke. An averaging image (without time frame sub-
division) was directly reconstructed by a multi-coil NUFFT
operator for the estimation of field maps.

In each time step, an additional fully sampled k-space
dataset was acquiredwith 384 readout points and 384×π /2=
602 spokes. Hence, a total of 602× 588 spokes were acquired
in reference datasets over the dynamic simulation period. The
ultimatematrix size for the reference series dataset was 384×
602 × 588 with eight virtual coils.
A free-breathing liver DCE-MRI dataset provided by

Feng [16] was used to evaluate the performance of differ-
ent reconstruction schemes. The liver dataset was acquired
on a healthy volunteer using a stack-of-stars golden angle
FLASH pulse sequence. The relevant imaging parameters
include TR/TE=3.52ms/1.41ms, FOV=380mm× 380mm,
eight coils, and 588 spokes with 384 readout points each.

E. IMAGE RECONSTRUCTION
The simulation and liver datasets were subdivided into
21 frames with a temporal resolution of 28 spokes/frame. The
corresponding AF is 21.5. These two datasets were recon-
structed with a matrix size of 384 × 384 × 21 by NUFFT,
GRASP, L+S decomposition, and L+S with joint spar-
sity, respectively. The optimization problem in GRASP was
solved using NLCG with 24 iterations. The iteration number

for both ISTA and FCSA was set as 20 and used to solve the
optimization problem in L+S decomposition and L+S with
joint sparsity, respectively. Furthermore, additional recon-
structions for these three schemeswere performed on the liver
dataset with a temporal resolution of 14 spokes/frame and 21
spokes/frame to test the robustness of L+S based techniques
for highly under-sampled reconstruction.

All the reconstructions were performed using MATLAB
2020b (MathWorks, Natick, MA) on an Intel Core i7-10700
PC with a 2.9 GHz processor. The reconstructions of three
schemes were repeated ten times to evaluate their reconstruc-
tion efficiency accurately.

F. RECONSTRUCTION PARAMETER DESIGN
The weighting factors of sparsity constraints directly deter-
mine the image quality of the reconstructed series. The regu-
larization parameters of Temporal TV λT in GRASP, L+S
decomposition, and L+S with joint sparsity were set the
same for a fair comparison. A variety of GRASP and L+S
decomposition reconstructions were executed with the dif-
ferent λT ranging from 0.1×Ms to 0.8×Ms (step size 0.05),
where Ms presents the maximum magnitude of the images
series directly reconstructed by the multi-coil NUFFT oper-
ator. According to the evaluation of image quality from two
experienced radiologists, an optimized value λT = 0.2×Ms
was implemented for all three reconstruction schemes. λL in
the proposed method followed the same setup as in the L+S
decomposition model.

Similar to the design of λT , different values of λF were
combined with the other two regularization parameters in
L+S with joint sparsity. An adequate value of λF was
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FIGURE 4. Three phase images corresponding to the reconstruction of the simulated phantom dataset with AF = 21.5 (588 radial spokes and temporal
resolution of 28 spokes/frame) using NUFFT, GRASP, L+S decomposition, and the proposed method (L+S with joint sparsity and FCSA). Signal intensity in
the selected region (labeled by circles) among all the frames was used to estimate the dynamic contrast performance in different reconstruction schemes.

designed for reconstruction with a specific temporal resolu-
tion by testing different values and comparing the image qual-
ity as well as dynamic contrast signal intensity (ultimately
selected by experienced radiologists). Besides the regulariza-
tion parameters, other reconstruction parameters in GRASP,
L+S decomposition, and L+S with joint sparsity were care-
fully followed by their initial setups [16], [24].

III. RESULTS AND DISCUSSION
A. DYNAMIC CONTRAST AND RECONSTRUCTION
EFFICIENCY
Figure 4 shows three contrast phases of the simulated Shepp-
logan phantom images reconstructed by GRASP, standard
L+S decomposition, and L+S with joint sparsity, respec-
tively. The gray level of all reconstruction results has been
normalized according to the mean value of steady back-
ground sections for comparing the dynamic contrast. All
three reconstruction schemes successfully removed under-
sampling artifacts. The dynamic contrast in the selected
region was visually degraded in three reconstruction schemes
compared to the reference image.

Figure 5 and Table 2 present the average reconstruction
time and corresponding dynamic performance of the three
schemes in the phantom dataset. With the support of FCSA,
a slight increase of 3% computation cost was caused by an

FIGURE 5. Dynamic signal variation for the phantom using ground truth,
fully sampled reference, GRASP, L+S, and L+S with joint sparsity. Using
the ground truth and fully sampled reference as the benchmark, our
proposed L+S with joint sparsity method demonstrated much better
dynamic contrast compared with GRASP and standard L+S.

additional sparsity constraint in the proposed method com-
pared to standard L+S decomposition. Both two L+S based
frameworks achieved similar reconstruction efficiency by
using only about 25% of computation time for GRASP. There
was no obvious dynamic degradation obtained in the fully
sampled reference series. The peak of the dynamic signal was
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TABLE 2. Reconstruction time, RMSE, peak DCE signal, and mean DCE signal of the three reconstruction schemes in the simulated phantom data.
Reconstruction efficiency has been significantly improved in the proposed method due to L+S reconstruction, while joint sparsity improved dynamic
contrast in the proposed method.

degraded by only 3.3% in reference, proving the dynamic
robustness of fully sampling. The peak of the dynamic sig-
nal was degraded by 17.6% and 20.3% for GRASP and
the standard L+S method compared to the reference. The
best dynamic contrast was achieved by the proposed recon-
struction scheme. The peak of the dynamic signal was only
degraded by 12.4% in the proposed method, which is much
lower than the standard L+S decomposition. Using the refer-
ence series as the standard, we have calculated the root mean
square error (RMSE) of three reconstruction schemes in the
arterial phase. The degradation of the dynamic signal caused
the largest RMSE value in the standard L+S model. Using
the dynamic curve model as the benchmark, the Euclidean
distance of the proposed method is only 0.182, which is much
smaller than the 0.256 for GRASP and 0.306 for the standard
L+S method, suggesting that our method can capture the
dynamic arterial signals much better.

Figure 6 shows a comparison of different reconstruc-
tion schemes in the three representative contrast phases in
a free-breathing liver DCE-MRI dataset. Two L+S based
techniques present a better background structure of the
liver. A better dynamic contrast of tissues (labeled by solid
arrows) was observed in GRASP and the proposed method.
Dynamic blurring was observed in standard L+S reconstruc-
tion (labeled by dashed arrows) due to the degradation of
dynamic contrast. The reconstruction period for the liver
dataset was typically larger than that for the simulated phan-
tom dataset. The average reconstruction time for GRASP,
L+S decomposition, and L+S with joint sparsity is 705 s,
182 s, and 185 s, respectively. Two L+S based reconstruction
schemes still achieved around four times faster reconstruction
speed than the GRASP method. The extension of the recon-
struction period in the proposed method is still negligible
compared with standard L+S decomposition.

Figure 7 shows the dynamic signal variation in the selected
arterial region in GRASP, L+S decomposition, and L+S
with joint sparsity for the liver DCE-MRI dataset. The peak
dynamic signal in the liver dataset in the proposed method
demonstrated an increase in peak dynamic DCE signal by

24.8% and 33% than that of GRASP and standard L+Smeth-
ods, respectively. Clear improvement of dynamic contrast
was achieved by utilizing joint sparsity constraints in the
proposed method.

Figure 8 demonstrates a further comparison of three recon-
struction schemes in the venous phase at different AF=22,
29, and 43 in the liver DCE-MRI dataset. Blurring artifacts
degrade the tissue contrast in GRASP at AF=43. The detail of
abdomen tissues is not degraded significantly in L+S decom-
position and L+Swith joint sparsity. The L+S based schemes
show the robustness for highly under-sampled dataset recon-
struction.

B. PERFORMANCE ANALYSIS
The stack-of-stars golden angle radial sampling satisfies
well the requirement for temporal compressed sensing [39].
A continuous data acquisition model can cover the whole
dynamic variation period. Then the acquired spokes are sub-
divided into multiple time frames according to the tempo-
ral acquisition order. The sub-sampling patterns among time
frames are completely different, which induces incoherent
streaking artifacts among the time series. In radial sampling,
the k-space center is acquired repeatedly, while the image
contrast of radial sampling corresponds to the average over
the acquisition window. This temporal averaging effect offers
intrinsic motion robustness but degrades the dynamic contrast
to some extent.

Temporal TV is a robust sparsity transform and is widely
adopted in dynamic reconstruction frameworks, including
GRASP and L+S decomposition. However, temporal TV
aims to minimize all the variations along the temporal dimen-
sion. Additional temporal averaging was induced by tempo-
ral TV, leading to unexpected dynamic contrast degradation.
With the same penalty factor design, L+S decomposition
experienced more dynamic degradation. The temporal aver-
aging effect is directly related to the penalty factor design
of Temporal TV. With the increase of penalty factor, both
GRASP and L+S decomposition can achieve better artifact
suppression but with worse dynamic contrast.
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FIGURE 6. A comparison of different reconstruction schemes in the three representative phases in a liver DCE-MRI dataset at AF = 22 and
28 spokes/frame. Both the proposed method and the standard L+S method provide better background structures than GRASP. Our L+S with joint
sparsity followed by Fig. Fig. 1. FCSA demonstrated better dynamic contrast (solid arrow and dashed arrow). Arterial signal intensity in the selected region
(labeled by circles) among all the frames was used to estimate the dynamic contrast performance in different reconstruction schemes.

FIGURE 7. Dynamic signal variation in the arterial region for the liver
DCE-MRI dataset by using GRASP, L+S, and L+S with joint sparsity.
Improved dynamic contrast was achieved by our proposed L+S with joint
sparsity. Significant improvement of peak dynamic signal was observed in
the proposed L+S with joint sparsity.

To recover the dynamic contrast from temporal blurring,
temporal FFT has been proposed in combination with tem-
poral TV to explore the temporal sparsity among subdi-
vided time series. The proposed L+S with joint sparsity can
still suppress the streaking artifacts effectively by temporal

TV. In the temporal FFT transform domain, the frequency
components with negligible magnitude are gradually filtered
out during the iterative reconstruction. The remaining fre-
quency components are sufficient to recover the dynamic
variation accurately, enabling improved dynamic contrast.
Compared with GRASP and L+S decomposition, signifi-
cant improvement in dynamic contrast was obtained in the
proposed method in reconstructing different datasets, show-
ing the robustness of temporal FFT for recovering dynamic
contrast.

Besides the dynamic contrast, reconstruction efficiency is
crucial for online clinical applications. The reconstruction
efficiency of GRASP is relatively low due to the repeated
gridding/de-gridding procedures in NLCG. Compared with
GRASP, L+S decomposition shows a little bit worse dynamic
contrast but much better reconstruction efficiency. The num-
ber of gridding/de-gridding procedures is reduced signif-
icantly by ISTA. In the proposed method, the additional
sparsity constraint leads to an increase in computation com-
plexity. The FCSA decomposes the optimization problem
with joint sparsity constraints into multiple sub-problems
with a single sparsity constraint to reduce the computation
complexity. The linear combination of the output of sub-
problems can recover the image series more effectively. With
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FIGURE 8. A comparison of the reconstructed images of GRASP, L+S decomposition, and L+S with joint sparsity at different temporal
resolutions in the venous phase of the liver DCE-MRI dataset. A total of 21, 28, and 42 frames were reconstructed at different
temporal resolutions, respectively. In the zoomed view of the liver section, blurring artifacts and degradation of tissue contrast were
observed in GRASP. Less blurring artifacts and degradation were observed in L+S with joint sparsity. The penalty factor for the three
reconstruction schemes was set the same among all the reconstructions.

the support of FCSA, the computation cost from the temporal
FFT is negligible. Both standard L+S decomposition and the
proposed L+S based methods achieved around four times
faster reconstruction speed than the GRASP method.

The performance of DCE-MRI reconstruction is typically
evaluated visually by experienced radiologists. There are no
standard evaluation criteria for quantifying the performance
of different reconstruction schemes. Hence, a computer sim-
ulation framework was developed here. The benefit of com-
puter simulation is that the ground truth, like dynamic signal
variation, can be simulated and obtained. The dynamic per-
formance of the proposed method and other reconstruction
schemes can be compared and evaluated by the parameters
like Euclidean distance and magnitude of the dynamic sig-
nal. The minimum degradation of peak dynamic signal and
Euclidean distance were obtained in the proposed method,
demonstrating the feasibility of the proposed computer
simulation framework for evaluating the dynamic contrast
quantitatively.

IV. CONCLUSION
L+S with joint sparsity demonstrates the use of combining
the L+S model with joint sparsity constraints for improved

dynamic contrast, high temporal resolution, and computa-
tionally efficient free-breathingDCE-MRI. The improvement
of dynamic contrast provides better image quality and tissue
contrast which benefits the clinical diagnosis. The use of the
FCSA algorithm minimized the computation cost caused by
the additional sparsity constraint. The proposed reconstruc-
tion framework can be accelerated further by combining some
computer acceleration techniques like parallel computing and
enabling a wide range of online clinical applications.
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