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Since its inception four decades ago the two-process model introduced by Borbély has provided the
conceptual framework to explain sleep-wake regulation across many species, including humans. At its
core, high level notions of circadian and homeostatic processes are modelled with a low dimensional
description in the form of a one dimensional nonautonomous and nonsmooth flow, with the rate of
change of homeostatic sleep pressure switching at specific times. These events in time can be described
by an implicit map from one switching time to another and have given rise to an elegant mathematical
description of periodic orbits and their instabilities using the theory of iterated maps. In this paper
we show that an equivalent description can be obtained from a direct analysis of the underlying
nonsmooth flow. We further show how to construct the Lyapunov exponent of the nonsmooth flow
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and use this to uncover a more detailed picture of the Arnol’d tongue structure of the model.

Given the growing interest in studying networks of sleepers, where interactions may occur
continuously throughout the day-night cycle and not just at event times, we advocate for the future
use of techniques from nonsmooth dynamical systems in studying networks of the two-process model.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Sleep is necessary for humans to maintain a healthy mind
and functioning body. Sleep aids the development of the immune
system, [1] and is crucial for learning and memory [2]. Sleep
resets the pain perception system [3]. Poor or mistimed sleep is
associated with many health problems [4], including psychotic
disorders and depression [5], and increased risk of diabetes [6],
obesity [7], and cardiovascular disease [8]. The strong association
between sleep and health necessitates a good understanding of
sleep-wake regulation processes.

Mathematical models have been used as a powerful instru-
ment to explore biological mechanisms of sleep-wake regulation
for many years, for early models see Moore-Ede et al. [9]. Most
classical models have at least two oscillators capturing the need
for sleep after being awake for a period of time and the approx-
imately daily (circadian) rhythm of the so-called master clock in
the suprachiasmatic nucleus of the brain [10-12]. Others con-
sider the cyclic transitions between rapid eye movement and
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nonrapid eye movement sleep which, in humans, have an approx-
imately 90 min period and are therefore an example of ultradian
rhythms [13,14]. More recent models have developed a more
‘physiological’ approach proposing neuronal models that model
sleep-wake regulation through the interaction of a small number
of interacting populations of neurons [15,16]. However, the two-
process model captures many essential features of the dynamics
of these more complex models [17,18] and therefore remains
relevant [19].

The two-process model itself has had a major impact on the
field of sleep research, with over 4,500 citations at the time of
writing and providing the conceptual framework and a mecha-
nistic understanding for many laboratory and field studies. The
model has two interacting oscillators: a circadian oscillator (sleep
independent process) and a homeostatic oscillator (sleep de-
pendent process). The homeostatic sleep process represents a
regulatory process aimed at keeping physiological sleep need
within reasonable bounds. The homeostatic process is modelled
by a sleep pressure that increases monotonically during wake and
decreases monotonically during sleep. Switching from wake to
sleep and from sleep to wake occurs at upper and lower thresh-
olds respectively. The thresholds are modulated by a periodic
function representing the circadian oscillation, see Fig. 1. Nakao
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Fig. 1. A (1, 1) periodic orbit (one sleep-wake episode in one day) of the two-
process model with C(t) = sin(2xwt). The homeostatic sleep pressure (shown
in light brown) increases during wake and decreases during sleep. The upper
and lower thresholds are shown in black. Switching from wake (sleep) to
sleep (wake) takes place at the upper (lower) threshold crossing. Parameters:
7, =0.70, 7, = 0.5, Hj =0.75, H, = 0.2469, a* = 0.09478.

et al. [20,21] have described these switching events using a one-
dimensional map with a gap [22-24] (and linked this to a circle
map using periodicity of the circadian activity).

As first observed in [11], the two-process model exhibits
a wide range of different sleep patterns including those rep-
resenting a single sleep-wake episode in a day, (monophasic
sleep, characteristic of adult humans) and those with many sleep
episodes a day, (polyphasic sleep, characteristic of human babies
and small mammals). Using the circle map framework, Bailey
et al. performed a detailed analysis to understand the types of bi-
furcation that occur in the two-process model and the underlying
bifurcation structure that gives regions of existence of different
stable solutions representing different numbers of sleep episodes
a day [25].

Given the success of the two-process model at the level of
a single sleeper it is natural to use it as a starting point for
network studies relevant for understanding the behaviour of ado-
lescent social groups where sleep timing may be dictated by
social media interactions and for sleep-wake patterns of co-
habiting partners. Indeed, given the human social prevalence for
couple bed sharing [26], it is somewhat surprising that there
is very little modelling work in this latter context. However,
since sleeper-sleeper interactions may be continuous in time
the discrete map based approach for analysing the two-process
model does not lend itself well to such network studies. There
is therefore a need to develop analytical tools that are better
able to capture continuous interactions. We also note that there
is an increased recognition that sleep homeostasis and circadian
rhythmicity may not be so neatly separated into two distinct
processes, and that sleep homeostasis may depend on circadian
phase and vice versa [27]. Hence in future generations of models
of sleep regulation, a nonsmooth flow approach may be more
appropriate.

We note that for the original two-process model, the non-
smooth flow perspective is complementary to the map-based
perspective. The map-based approach makes explicit the con-
nection between the two-process model and other oscillatory
systems and leads naturally to understanding how the dynamics
are organised in terms of an Arnol'd tongue framework. How-
ever computations, and relating features in the maps to model
behaviour (e.g., the creation of gaps), requires consideration of
the nonsmooth flow.

In this paper, we therefore develop a nonsmooth flow per-
spective that continuously captures homeostatic and circadian
interactions. Since an essential first step in developing a new
analytical approach is that it should recover previous results,
our focus here is on a single sleeper. Throughout we therefore
compare our nonsmooth approach with the map-based approach.
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In Section 2 we introduce the two-process model and its
representation as a piecewise linear ordinary differential equation
system with switches, namely a type of nonsmooth flow. The
construction of continuous time periodic orbits is considered in
Section 3 where, with the use of saltation operators we show how
to augment standard Floquet theory to determine the stability of
periodic solutions. The equivalence to the map-based approach
for determining solution stability is demonstrated. In Section 4,
we show how to determine the Lyapunov exponent for the non-
smooth flow, and subsequently, in Section 5 make use of this to
probe some of the details of the Arnol’d tongue structure for the
two-process model. Finally, in Section 6 we discuss the natural
extensions of the work in this paper to the network level.

2. The two-process model

The two-process model is a fascinating and ostensibly simple
piecewise linear model which belongs to a wider class of “thresh-
old” systems, see [24]. The two-process model characterises the
timing and distribution of sleep and wake as the interaction of
circadian and homeostatic process evolution. The combination
of these two oscillatory processes as continuous flows may be
formulated as x = x(t), x = dx/dt and:

_X + 1 x> 0 and x(t) < H™(t) (wake)
X = ‘géu Tw (1)
s X < 0 and x(t) > H™(t) (sleep),
S

where
H*(t) = HF + a*C(1). (2)

Here, x represents the homeostatic sleep pressure and C(t) repre-
sents the circadian process. Switching from wake to sleep occurs
when ¥ > 0 and x(t) = H™(t). Switching from sleep to wake
occurs when x < 0 and x(t) = H™(t).

The model contains six parameters. The parameters t; and
T, are time constants which determine the rate of change of
homeostatic sleep pressure during sleep and wake, respectively.
Originally, Borbély et al. [28,29] envisaged that the time constants
represented the decay of so-called ‘slow wave activity’, derived
from electroencephalogram measurements, and values were ex-
tracted from data. The thresholds were phenomenological and a
scaling chosen such that homeostatic sleep pressure asymptotes
to one during wake and to zero during sleep. The mean values
of the thresholds, Ho+ and H; and the shape of the periodic
circadian function C(t) and its amplitude a* were chosen to
match experimental data. The circadian function C(t) represents
the daily variation in wake propensity and was chosen so that the
model replicates the observed functional relationship between
sleep duration and sleep onset time. In the simplest case, C(t) is
often chosen to have a sinusoidal form, though more complicated
forms that include higher harmonics have also been used [29].
Throughout this paper we will choose C(t) to be one of sin(27t)
or cos(2rrt). Here, time is scaled so that solutions with period one
corresponds to solutions which have a period of one day. (See [30]
for further discussion on physiological relevance, restrictions and
derivation of the model parameters).

We define x,,(t, t;’) as the homeostatic sleep pressure during
wake, which starts at t = t; on the lower threshold with the
initial value x,,(t}’), and x(t, t;) as the homeostatic sleep pressure
during sleep, which starts at t = t; on the upper threshold with
the initial value x,(3). Then, from Eqs. (1), the explicit solutions
for x,,(t, t;’) and x(t, ;) are

Xt ) =1 [1—x,(0)]e” 7, (3)

(t—tp)

xs(t, tg) = xs(t)e” = -, (4)
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Fig. 2. Illustrative examples of T mod 1 for j = d; u; s, with C(t) = sin(2wt), showing behaviour similar to [25]. Parameters: t,, = 0.75, 7, = 0.25, H; =

0.75, Hy, =0.1562, a* = 0.08675.

with initial data determined self-consistently by x,,(ty’) = H™(t;’)
and x,(t5) = HT(t]). We denote switching event times on the
lower threshold by T; and those on the upper by Ty, where
i€Z Ty = inf{t | x(t) = H(t); t > Tyi_1} and Tyi1q = inf{t |
x(t) = HT(t); t > Ty;}. See Fig. 1 for an example of the use of this
notation.

We note that biological constraints require a monotonically
decreasing x; and a monotonically increasing x,,. Wake and sleep
homeostatic pressures asymptote to 1 and 0, respectively, and
therefore stay in the interval (0, 1). These restrictions yield z; > 0,
T, > 0, and switching events always exist when

a7<HO_<HJ'<l—a+‘ (5)
2.1. Circle maps of the two-process model

Nakao et al. [20,21] showed that the dynamics of the two-
process model can be studied using one dimensional maps with
discontinuities. Using this observation, Bailey et al. [25] intro-
duced three different one dimensional maps in terms of switching
event times to study periodic orbits and their bifurcations. These
are: (i)— the down map T; : R — R from upper to lower
threshold, i.e. a map that takes a point (H"(ty), to) on the upper
threshold and maps it into the next point on the lower threshold.
(ii)— the up map T, : R — R from lower to upper threshold.
Therefore, T4(to) and T,(ty) are the first times greater than to such
that xs(Tu(to), to) = H™(Ta(to)) and x,,(Tu(to), to) = H*(Tu(to))
hold. (iii)— the map from upper threshold into itself (composition
of the down and up maps) T : R — R where T(ty) = Ty(Ta(to)).
The upper and lower thresholds are one day periodic (see Eq. (2)),
hence all three maps have the following property

Ti(to + 1) =Tj(to)+1, j=d, u,s. (6)

Examples of these maps are illustrated in Fig. 2. In panel (c)
the diagonal line helps to see fixed points of the map Ty(tg)
(corresponding to periodic solutions).

The model has various types of periodic orbits and these can
be characterised as having p sleep-wake episodes in q days. Thus,
to yields a (p, q) periodic orbit if T?(ty) = to + q where (T(ty) —
to) ¢ Nforj=1,...,p— 1. If T has a (p, q) periodic solution,
the greatest common divisor of p and g will be 1 and the theory
of monotonic circle maps implies that the function T has rational
rotation number q/p (cf.[25,31]). An example of a (1, 1) periodic
orbit is given in Fig. 1, and more general (p, q) periodic orbits in
Fig. 3.

3. Construction and stability of periodic orbits
Similar to [30], we show how to construct a (1, 1) periodic

orbit, with the extension to other (p, q) periodic orbits being
straightforward.

A (1, 1) periodic solution has period A = 1 and contains one
wake episode and one sleep episode as illustrated in Fig. 1. To
build this orbit let us consider a solution x,,(t, tp) that starts from
the lower threshold at t = to with an initial value x,,(tg) = xo.
Since the solution starts at the lower threshold we also have
H™(ty) = xo. The solution will evolve according to Eq. (3) until it
hits the upper threshold at t = T; with a state value x,,(T;) = ;.
We denote the duration of the wake episode by A1 = T; — tp.
At the upper threshold H*(T;) = x; holds and the sleep state
starts. Then the solution x,(t, T;) will evolve according to Eq. (4)
until it hits the lower threshold at t = 1 + ty, with a state value
xs(T1 + Ay) = x, where A, = 1 — A; denotes the duration
of the sleep episode. At the lower threshold H™(t) = x; holds
and a switch from sleep to awake occurs. Due to periodicity we
also have that x, = xp. To complete the procedure we need
to determine the unknowns (tq, Xo, A1, X1, X2) by simultaneously
solving a system of five equations:

XO = HO_ + aic(to); x‘] = 1 —_ (1 —Xo)efAl/Tm’

7
x1 = Hy +a*tC(ty + Av); @

Xy = x40/, X — xq.

Eqgs. (7) are equivalent to conditions 2.30 in [30] for the specific
case p = q = 1. In practice the unknowns can be found using
a numerical routine for the simultaneous solution of a nonlin-
ear system (such as fsolve in Matlab), subject to the physical
constraint that 0 < A; < 1. In general, to build any (p, q)
periodic orbit one needs to solve a system of equations with more
unknown parameters; for example to construct a (2, 3) periodic
orbit nine equations are required to determine nine unknowns.
We illustrate the shape of (1, 1) and (2, 3) periodic orbits in Fig. 4
where we denote the duration of wake and sleep episodes by
Asirq and Ay, respectively, i € Z.

Eqgs. (7) give conditions for the existence of periodic solutions,
but we are also interested in their stability. Since the constructed
periodic orbits are solutions of a nonsmooth flow one needs to
apply Floquet theory with care. However, there is a growing body
of work on nonsmooth systems (existence, uniqueness, stability),
and in particular piecewise linear systems, that can be used for
this purpose and here we will adapt the approach in [32,33] that
is suited to treating periodic solutions with an arbitrary number
of switching events. The approach makes use of saltation opera-
tors that are able to map perturbations to a periodic orbit through
a switching event. Ultimately, we will see that this can also
be used to construct a Lyapunov exponent reminiscent of that
expected for a smooth dynamical system albeit with a correction
term to take into account the jumps encountered at switching
events.

3.1. Stability using a nonsmooth flow approach: Floquet exponents
Saltation operators are used to capture the evolution of per-

turbations through switching events where either the solution or
the vector field (or both) has a discontinuity. Some application
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Fig. 3. Periodic solutions of the two-process model with C(t) = sin(2xt). (a) A (1,2) periodic orbit (one sleep-wake episode in two days). Parameters:

T, = 1.426, 7, = 0.6634, HO+ = 0.75, H; = 0.2469, and a* = 0.09478. (b) A (2, 1) periodic orbit (two sleep-wake episodes in one day). Parameters:
7, = 075, 1, = 0.25, Hf = 075, H, = 0.569, and a* = 0.04659. (c) A (2,3) periodic orbit (two sleep-wake episodes in three days). Parameters:
7, =0.75, 7, =0.25, H =0.75, H, = 0.08883, and a* = 0.03213.

@

0 06 12

Fig. 4. (p, q) Periodic orbits in the two-process model with C(t) = sin(2xzt). (a): A (1, 1)-periodic orbit. In order to construct this orbit explicitly, we need to
determine (to, Xo, A1, X1, X2) from Egs. (7). Here t; is the wake onset time with initial homeostatic sleep pressure Xy, A is the duration of the wake episode, x; is
the value of homeostatic sleep pressure at which switching from wake to sleep occurs, and x, is the homeostatic sleep pressure for which switching from sleep to
wake occurs. Parameters: 7,, = 0.75, 7, = 0.417, HJ = 0.65, H; =0.15, a* = 0.1. (b): A (2, 3)-periodic orbit, and to construct this we need to determine nine
unknowns (to, Xo, A1, X1, Az, X2, A3, X3, X4). Here we denote Ty =ty + Ay, To =T+ Ay, T3 =T, + A3, Ty =ty + 3, and A4 = T4 — T3. At the lower threshold,
switching from sleep to wake occurs at (ty, xo), (T2, X2), and (T4, x4). At the upper threshold, switching from wake to sleep occurs at (Tq, x1) and (T3, x3). Parameters:

1, =075, 7, =025 Hf =075, Hy =0.1, a* = 0.05.

of saltation matrices are reported by Miiller [34] to calculate
Lyapunov exponents of discontinuous systems, and Fredriksson
and Nordmark [35] in the normal form derivation for impact
oscillators. In recent years, they have been used to analyse both
node and network behaviour of piecewise linear or impacting
oscillatory systems [33,36,37]. Here, we use them to treat the
stability of nonsmooth periodic orbits of the two-process model
with an augmentation of the Floquet theory for smooth systems.
Consider a (p, q) periodic orbit x(t) of the system (1) and a
perturbed solution x(t) = x(t)+8x(t) for some small perturbation
8x(t). Then during a wake state when Ty < t < Ty (or in general
between Ty; < t < Tyiy1), 8x(t) evolves according to

d 1

—8X(t) = ——6x. 8
ar (t) - (8)
During a sleep state when Ty < t < T, (or in general between
Toiv1 < t < Tyiyo), 8X(t) evolves according to

d 8x(t) = Lsx (9)
dt B

In the Appendix, we show that the saltation rule to map a
perturbation through a switching event on the upper threshold of
the two-process model is given by Sx(T;H) = Ki(T2i41)0x(Ty 1),
where

. HT
atC(Taiy1) + %C(sz) +
. (10)

i

Tu

Ki(Taip1) =

atC(Tais1) + %C(TZHI) +

Similarly, the saltation rule on the lower threshold is 8x(T;) =
K>(T5;)6x(T; ), where

. - Hy —1
a C(Ty) + & C(To) + 2
Ky(Tyi) = L (11)

a=C(T) + = C(Ty) + 2

Ts

Note that the saltation operators K; and K, are well defined as
long as their denominators are not zero. These denominators
take the form H*(T) — x(T) for an event time T (remembering
x(T) = H*(T)) so that saltation is not defined whenever the event
occurs at a time when the flow is tangential to the threshold. Such
tangency points have particular significance and are discussed
further below.

In the absence of tangencies, for any (p, q)-periodic solution (p
sleep and p wake in g days, A = q), after one period of oscillation,
a perturbed trajectory evolves according to §x(q) = Méx(ty)
where

A a1

Ay _Ap-1 _4 _
M = Kz(sz)e s K](sz,ﬂe W, Kz(Tz)e s K](T] )e w
(12)

Here, A; is the time interval given by A; = Ti11 — T;. Hence, the
non-trivial Floquet exponent «, defined by e“4 = M, is given by

1 1
K=q[—((A1+A3+“'+A2p1)
w

1
+—(Ar+ A+ + A2p)>

Ts

p
+ > In[Ki(Tyo1)| + In [Ka(Ty)] | - (13)
j=1
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Fig. 5. (a) A bifurcation diagram for (1, 1) periodic orbits in the two-process model with C(t) = sin(2xt). When H; € (0.2102,0.381) stable (solid blue line)
and unstable (dotted red line) periodic solutions coexist. At H; = 0.2102 and H; = 0.381 these solutions coincide and annihilate each other via saddle-node
bifurcation of periodic orbits. Stable (b) and unstable (c) periodic orbits with Floquet exponents —0.8905 and 1.7508, respectively, when H; = 0.3035. Parameters:

7, = 0.75, 7, =0.25, Hf =0.75, a* = 0.04498.

The periodic orbit will be stable if the Floquet exponent « has
negative real part. For example, in Fig. 4, the (1, 1) and (2, 3)
periodic solutions have x = —2.73 and x = —1.253, respectively,
thus both solutions are stable.

A bifurcation diagram, showing the Floquet exponents of pe-
riodic orbits under variation of Hy is presented in Fig. 5. At
H, = 0.2102 and H, = 0.381 a saddle-node bifurcation of
(1, 1) periodic orbits is observed. Examples of stable and unstable
periodic orbits are also shown.

3.2. Stability using a map-based approach

In order to calculate the stability of periodic solutions using a
map-based approach we first write down implicit expressions for
the event times and then consider whether a perturbation to the
initial event time grows or decays.

3.2.1. An implicit determination of event times

The trajectories of the two-process model during wake and
sleep episodes can be constructed using Eqs. (3) and (4). More-
over, we can make further use of these to develop an implicit
relationship between consecutive event times. This effectively
gives rise to the map based approach considered in e.g. [20,25].
For a wake episode when Ty; < t < Ty;1, by setting x,,(t;’) =
X(Tzi) and Xy(Tait1, t5') = X(T2i11) in Eq. (3), we find

i1 + o IN[X(T2i1) — 1] = Toi + 7y In [x(To) — 1. (14)

Using the state values on the upper and lower thresholds, we can
rewrite this as

Toip1 + Tw In|Hy + a*C(Taiq) — 1]
= Ty + 7 In|Hy +aC(Ty) — 1]. (15)

It is clear from Eq. (15) that Ty;,1 cannot be explicitly solved in
terms of Ty;, but we can define an implicit function G(T5;, Tzirq) =
0 where

n H(;—{-G_C(Tz,‘)—l
Hf + atC(Tyip1) — 1|

G1(Tai, Toiy1) = Toip1 — Toi — T | (16)
Moreover, for a sleep episode when Ty 11 < t < Ty, from Eq. (4)
we have,

Tiy2 + T In [X(Tit2)] = Taip1 + w5 In [X(T2ipq)]. (17)

Using the state values on the upper and lower thresholds, we
obtain

Toit2 + T In[Hy + a” C(Taip2)| = Toip1 + T In |Hy + a™ C(Taipa)l.
(18)

We observe that Ty, also cannot be explicitly solved in terms of
T»i+1, however we can define an implicit function Gy(Tsit1, Tait2) =
0 where

Hy +atC(Tait1)
Hy +a C(Tois2) |

Complete solutions, including periodic orbits, can be found by the
simultaneous solution of G;(Ty;, Toir1) = 0 and Go(Tait1, Taiz2) =
0 For example, a (1, 1) periodic orbit is the solution of the two
equations G1(Tp, T;) = 0 and G,(Ty, To + 1) = 0, and see Fig. 1 for
a reminder of the event notation. For more general (p, q) orbits
the same process applies, though one must now solve 2p + 1
simultaneous equations (with one of these enforcing periodicity).
Next we will show how to use these implicit relations to assess
the stability of periodic orbits (that do not tangentially intersect
H).

Go(Tait1, Thiv2) = Thipz — Toip1 — w5 1n (19)
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3.2.2. An explicit determination of event time stability

Consider a (p, q) periodic orbit that starts from the lower
threshold at t = T,; and a perturbed trajectory that starts at
the perturbed time t = T,; + 6Ty The periodic and perturbed
solutions reach to the upper threshold at t = Ty; 1 and t = Ty 1+
8Tyiy1, respectively. A first order Taylor expansion of Eq. (16)
gives

G1(Tyi + 8Ty, Taig1 + 6Taip1)

— Gi(Top, Toiyn) + 27y 4 0
— U1l12i, 12i41 3T2,' 2i 8T2i+1
Then using G1(Ty + 8Tai, Toiy1 + 8Taiy1) = Gi(T2i, Tair1) = 0, we
obtain

8Tait1. (20)

4Gy
oTy;

8Toip1 = ——5¢—8Tai = S1(Tai, Tois1 )T, (21)
0T 41

where

S1(Tai, Taiv1)
(a7, C(Tai) +a~C(Toi) + Hy — 1)(Hy + " C(Tyi1) — 1)
(077, C(Toig1) + atC(Toig1) + Hy — 1) (Hy +a C(Ty) — 1)

0~ C(Ty) + & C(Tyi) + 2

1

_Dit1-Ni
- . at HF -1 € "
atC(Tair1) + - C(Taiv1) + =

(22)
Similarly, a first order expansion of Eq. (19) yields
Ga(Taiv1 + 8Tai1, Taira + 8Taiv2) = Ga(Tair1, Taita)

+ 29 st + 2% s
31 2i+1 0Toe 2i+2
(23)

Using the fact that Gy(Tairq + 8Taiv1, Taivz + 0Tair2) = Ga(Taita,
Tyi+2) = 0, we obtain
3G,
Ty
0D = — 82(;:1 8Tair1 = Sa(Taig1, T2i42)8Toit 1, (24)
0T2i42

where
S2(Taix1, Taig2)
(attC(Tair1) + atC(Tait1) + Hy Y(Hy + a~ C(Tait2))

(0 %C(Taiy2) + a~C(Taip2) + Hy XHG + a+C(Toiy1))

: + HF
atC(Tair1) + QTSC(TZI'H) + Tg _ Dit2—Tait
= e Ts

. _ H,
a~C(Taiv2) + - C(Taiv2) + %

(25)

Hence for a (p, q) periodic orbit we have 6T, = 16Ty where

= S2(Top—1, T2p)S1(Top—2, Top—1) . . . S2(T1, T2)S1(To, T1). (26)

Thus the periodic orbit is stable when || < 1. We note that
Eq. (25) is the same as that derived by explicit differentiation of
the map in [30]. Furthermore, as expected, for a given periodic
orbit, both the nonsmooth flow method leading to the Floquet ex-
ponent (13) and the expression for stability from the map-based
approach in (26) are equivalent. To clarify this last point a little
further see the intermezzo below which also includes a specific
example. In addition to periodic solutions, quasiperiodic solutions
and chaos may also be possible in the two-process model. It is
therefore instructive to construct the Lyapunov exponent.
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Intermezzo: equivalence between nonsmooth flow and map ap-
proaches

Here, we clarify how M in Eq. (12) and @ in Eq. (26) are
equivalent. Note that K; is a function of Ty (upper boundary
switching times) and prescribes how a perturbation to the orbit
is mapped across the upper switching boundary. Similarly K, is
a function of Ty; (lower boundary switching times). These factors,
included in (12), reflect the effect of a discontinuous change in
the vector field for the linear stability calculation of a periodic
orbit. The remaining exponential factors describe the (linearised)
evolution of a perturbed flow between events. Simply put, in
the nonsmooth flow perspective, M determines how an initial
perturbation to a periodic orbit changes over one period. In the
map based approach, linear stability is determined by computing
the evolution of perturbations in the event times. To achieve
this we used Eqgs. (21) and (24), which involve the multiplicative
factors S ,, which are themselves functions of event times. For
example, Sy is a function of (Ty;, Toiy1) as given by Eq. (22). The
exponential term in this equation corresponds to linear evolution
of a perturbation during the wake state in the nonsmooth flow
approach. The numerator of the coefficient in the equation is
a function of T,; and the denominator is a function of Ty 1.
Similarly, S; is a function of (T3t 1, T2i12) and explicitly given
by Eq. (25). The exponential term in this equation corresponds
to the linear evolution of a perturbation during the sleep state in
the nonsmooth flow approach. The numerator of the coefficient
in the equation is a function of T,;;1 and the denominator is a
function of T;,,. However, we compute saltation operators either
on an upper boundary (with switching time T, where we use
K1(Ti41)) or on a lower boundary (with switching time T,;, where
we use Ky(Ty;)). Therefore, their numerator and denominator are
either a function of Ty or Ty. As a result of this, although
both approaches have the same expression for the denominator
their numerators are swapped (S; and K, have same numerator,
and S; and K; have same numerator). To compute stability, we
multiply these terms over a period, and hence we conclude M
and u are equivalent. To see this more explicitly, consider, for
example, a (1, 1) periodic orbit with event times Ty, Ty, T,. Using
the nonsmooth flow approach one finds

_42 4
M = Kz(Tz)e s 1(1(T1)e w
Hy -1
Tw

a=C(Ty) + &C(Ty) +

a=C(Ty) + CC(Ty) + 2

T

x e e W, (27)
. ot HY -1
atC(Ty) + &-C(T1) +

Tw

. +
n @O+ T+ 4

Using the map based approach one finds
= S3(T1, T2)S1(To, T1)
. + Ht
atC(T) + TC(T) + -

a~C(Ty) + CC(Ty) + &

Hy —1

2y a7 C(To) + S C(To) + 22—
X e T L Y e Tw . (28)

. +_
a+C(Ty) + CC(Ty) + 2

Tw

From the periodicity of the orbit and of C(t), T, = To+ 1, C(T3) =
C(Ty + 1) = C(Tp) and C(Ty) = C(Ty + 1) = C(Tp), it can be seen
that (27) and (28) are equal. Similarly, this equivalence of M and
u can be established for any (p, q) periodic orbit.
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4. Lyapunov exponents

Lyapunov exponents quantify the exponential rates of conver-
gence or divergence of initially close orbits of an attractor in state
space and are useful to determine regions of parameter space
with different emergent behaviour. Periodic attractors have non-
positive exponents whereas chaotic attractors have at least one
positive Lyapunov exponent.

For a general dynamical system x = f(x), x € R", the spectrum
of the Lyapunov exponents, A;, is given for some different initial
conditions 8x;(tg), as:

Ai = lim ! IHM, i=1,...,n, (29)

tooo bt — 1t |[8xi(to)l]

where 8x(t) indicates evolution of the distance X(t)—X(t) between
X(t) and the perturbed trajectory X(t) with an initial condition
X(to) + 8x(tp). For smooth continuous dynamical systems, Lya-
punov exponents are generally computed by solving a variational
equation where the Jacobian of the system is evaluated along
an orbit. Indeed, algorithms for computing the Lyapunov expo-
nents of smooth continuous systems are well developed [38-40].
However, these classical algorithms cannot be directly applied to
compute Lyapunov exponents of nonsmooth dynamical systems.
As we have shown in Section 3.1, the evaluation of the variational
equation of a nonsmooth system requires careful consideration.
Here we develop the notion of Lyapunov exponent for the two-
process model, by re-visiting techniques originally applied in the
analysis of impacting systems [34,41].

Similar to the derivation of Eq. (12), for any arbitrary time
t, the overall deviation between two trajectories X(t) and Xx(t)
of the two-process model, assuming a common pattern of close
threshold crossings, can be written as

Ak-1

_=A) 4k k=1 _4
EX(f) =€ ™w Kz(Tk)e s K](Tk_1)e W, .K1(T1)e w (SX(lLo),

(30)

where Ki(t) and K(t) are saltation rules given by Eqgs. (10) and
(11), respectively. Here, Ay = Ty+1 — Ty. Thus using formula (29)
along with Eq. (30), we can formulate the Lyapunov exponent of
the two-process model as

1
A= lim ——
k—o00 Tk - TO
k . ;
% In 1_[I(M(T})e—E(A1+A3+“'+Ak71)e—E(A2+A4+'“+Ak)

j=1

1

=1 0

1
= — — (A1 + A3+ -+ A
B m Tk _T0 Tw( 1 3 k1)

k
1
+ —?(A2+A4+--~+Ak)+21n K. (Tl |, (31)
S j:1

where w = 1 ifjis odd and u = 2 if j is even. Here we
consider the trajectory x(t) to start from the lower threshold but
a similar formula can easily be obtained when it starts from the
upper threshold. We note that there are two contributions to A,
one from the smooth flow during sleep and wake episodes and
the other from the discontinuous nature of the switching mecha-
nism at threshold crossings. Note that the restriction to ‘common
pattern’ means that events are neither created or destroyed by
perturbation. This is violated in a nonsmooth grazing bifurcation
(and see Section 5). Nonetheless, even excluding this scenario
from the construction of the Lyapunov exponent still gives a test
for chaos (A > 0).

Physica D 444 (2023) 133595
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Fig. 6. Lyapunov exponent diagram in the (7,, t5) plane for the two-process
model with C(t) = sin(2xt) and a* = a. The (1, 1), (1,2) and (1, 3) periodic
orbits occupy large regions of parameter space. Tangencies on the lower
threshold occur above the line 7y = 7, (dashed green line). Tangencies on the
upper threshold occur to the right of the line 7, = 7,7 (dashed black). The
down map is non-monotonic above the line r; = 7, (dashed brown). The up
map is non-monotonic to the right of the line 7,, = 7, (dashed light blue).
There is no signature of chaos since A < 0 across the whole plane. The dotted
grey lines track out the locus of super-stable (1, 2) and (1, 3) cycles. Parameters:
H, =0.25, Hf =0.75, a = 0.09478.

The numerical determination of the Lyapunov exponent is
performed with a second order Runge-Kutta scheme for time-
stepping the two-process model with a small fixed step size
and a linear interpolation between states immediately above and
below the threshold to give a more accurate determination of
the event time. This event time is then used as the initial time
for the next forward evolution of the model, with initial data
constructed from extrapolation of the state just below thresh-
old to the event time, and the process repeated. We depict a
Lyapunov exponent diagram for the two-process model in the
(tw, Ts) parameter plane calculated in this fashion in Figs. 6 and
8 for two different parameter regimes. On Figs. 6 and 8 we also
add lines that denote structural changes in the map, namely lines
that mark transitions from a continuous circle map to a map
with at least one gap and lines that mark transitions from a
monotonic circle map to a nonmonotonic circle map. Specifically,
as recognised in [30] and generalised in [24], transitions to gaps
occur when either x,(t) is tangential to the upper threshold
or x(t) is tangential to the lower threshold. Whereas transi-
tions from monotonicity to nonmonotonicity occur when either
X, (t) is tangential to the lower threshold or x(t) is tangential
to the upper threshold. For the case that C(t) = sin(2xt) (or
C(t) = cos(2mt)) and a* = a it can be shown (using elementary
trigonometric identities) that the transition to maps with gaps

occur when 7, > 1} = ,/(1—H{ ) —a?/(2ar), and when

s > 17 = ./(Hy)? —a?/(2aw). Whereas the transition from
s 0

monotonicity to nonmonotonicity occur when 7, > 1, =

/(1 —=Hy)? —a?/(2arr) (non-monotonicity in the up-map), or

when 7, > r;r‘/(HJ)2 — a?/(2ar) (non-monotonicity in the
down-map).

We note that although the underlying circle map was non-
monotonic for some regions of the parameter space shown in
Figs. 6 and 8 no regions where A > 0, indicative of chaos, were
found. We can however easily identify lines in the colour plots
that track out local minima of the Lyapunov exponent, which are
the locus of super-stable cycles. Using Eq. (26) these are defined
by the condition u = 0.
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Fig. 7. An example of bistability in the two-process model at the point (z,,, 7;) = (0.887, 1.029) in Fig. 6. (a) A stable (1, 2) orbit with Lyapunov exponent A = —0.8166
obtained using initial data x(0) = 0.71. (b) A stable (1, 2) orbit with Lyapunov exponent A = —1.5531 obtained using initial data x(0) = 0.27.

Finally, we note that in [30], a symmetry

(¢, %3 T, HY  Hy L a, to) > (t41/2, 1=x,; 7y, 1=Hy , 1-H{", a, to+1/2)
(32)

was identified. This symmetry explains the approximate reflec-
tion symmetry about the diagonal line in Fig. 6. The symmetry
is not exact, for example in the neighbourhood of 7, = 7, = 1,
because there are small regions of bistability and although the
parameters T, Ty, ng , Hy and a respect the symmetry condi-
tion (32), the initial conditions used to calculate Fig. 6 did not. An
example of two co-existing stable (1, 2) orbits is shown in Fig. 7.

Although non-monotonicity of the map is a prerequisite for
chaos (say via a period-doubling cascade) and parameters for
non-monotonicity are easily identified in Fig. 6 for the two-
process model, with C(t) = sin(2x7t), we did not find any
signature of chaos (positive Lyapunov exponent). A similar obser-
vation was found for the choice C(t) = cos(2xt) made in Fig. 8
(using parameters from Fig. 2 in [42]).

5. Bifurcations of periodic solutions

In [25,30], using the circle map framework the bifurcation
structure of the two-process model was investigated. This led
to a bifurcation set consisting of an Arnol’d tongue-like struc-
ture. At small circadian amplitudes a, regions of existence of
periodic solutions were bounded by saddle-node bifurcations.
At higher amplitudes, in regions where the underlying circle
map was not continuous, periodic solutions could in addition be
created/destroyed by border collision bifurcations. In terms of
the flow, these border collisions were associated with periodic
orbits in which either x,,(t) was tangential to the upper threshold
or xs(t) was tangential with the lower threshold. Two types of
border collision could occur, termed Type I and Type II in [25],
as illustrated in Figs. 9 and 10. Type I border collisions yield
the creation/destruction of an unstable fixed point and occur
when a fixed point of the map coincides with the side of the
gap where the derivative of the map is infinite. This corresponds
to periodic orbits of the model such that the homeostatic sleep
pressure switches at a tangency point. Type II border collisions
result in creation/annihilation of either an unstable or a stable
fixed point and occur when a fixed point of the map coincides
with the side of the gap where the derivative is finite. This
corresponds to periodic orbits in the two process model such that
the homeostatic sleep pressure bypasses the tangency point and
switches at a later time.

Details of how to construct the saddle-node bifurcations from
the map-based approach and how to find Type I and Type II
grazing bifurcations are given in [30]. Here we demonstrate how
to calculate the saddle-node bifurcations from the nonsmooth

Fig. 8. Lyapunov exponent diagram in the (t,, 7;) plane for the two-process
model with C(t) = cos(2xt) and a* = a. The (1, 1) and (1, 2) periodic orbits
occupy large regions of parameter space. Tangential crossings of the lower
threshold occur above the line 7, = 7,~ (dashed green line). Tangential crossings
of the upper threshold occur to the right of the line 7,, = 7 (dashed black).

w
The down map is non-monotonic above the line 7, = ;" (dashed brown).

The up map is non-monotonic to the right of the line 7, = 7, (dashed light
blue). There is no signature of chaos since A < 0 across the whole plane. The
dotted grey lines track out the locus of super-stable (1, 1) cycles. Parameters:

— +
Hy =0.4, Hy =0.7, a=0.15.

flow. Using a method analogous to that used by [30], we also
demonstrate how to find grazing bifurcations. In addition, we use
our nonsmooth Lyapunov flow method to provide further insight
to the Arnol’d tongue-like bifurcation structure found in [25,30].

5.1. Saddle-node bifurcations

Here we use results from Section 3 to determine Arnol'd
tongue structures for the regions in parameter space where stable
and unstable (p, q) periodic orbits co-exist. At the tongue borders
the following two conditions must hold: (i) a (p, q) periodic so-
lution must exist, and (ii) the Floquet exponent of the orbit must
be zero (since stable and unstable periodic solutions intersect). To
illustrate this method we will construct saddle-node bifurcation
boundaries of (2, 3) periodic orbits. In order to construct a (2, 3)
periodic solution that starts from the lower threshold we need to
determine nine unknowns (to, Xo, A1, X1, Aa, X2, As, X3, X4) Where
(to, Xo) is the initial condition, A, A3 (A,, A4) are duration of
awake (sleep) episodes, x1, X3 (X2, X4) are state values at the upper
(lower) threshold crossing, and at the saddle-node bifurcation
points the orbit must have x = 0 (a zero Floquet exponent).
For example, using formula (13), the Floquet exponent of a (2, 3)
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Fig. 9. Type I grazing with C(t) = sin(2xt) and t,, = 0.75, 7, = 0.25, HJ = 0.75. (a) An example of a Type I grazing of a (1, 1) periodic solution where (to, xo) is the
initial value, A{(A;) the duration of awake (sleep) episodes, (Tq, x1) ((T2, x2)) are switching times and states on the upper (lower) threshold. The orbit tangentially
intersects with the upper threshold and at the tangency point a transition from wake to sleep state occurs. For Hy = 0.178 we find a = 0.0706 with Floquet
exponent x = 24.5159 (and hence the periodic orbit is unstable). (b) For the same parameter values we build the one dimensional map with gap. The unstable fixed
point of the map coincides with the side of the gap where the derivative of the map is infinite.

1 (b)
0.8 ] T, (to)
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Fig. 10. Type Il grazing with C(t) = sin(2xt) and 7,, = 0.75, 7, = 0.25, Hy = 0.75. (a) An example of a Type Il grazing (1, 1) periodic solution where (o, Xo) is
the initial value, Af, A1(Ay) the duration of awake (sleep) episodes, (T;, x1) (T2, x2)) are switching times and states on the upper (lower) threshold. (TS, X)) is the
tangency point on the upper threshold where the orbit passes through this point continuously without switching. For H;, = 0.4809 we find a = 0.1121 with Floquet

exponent = —0.27991 (and hence the periodic orbit is stable). (b) For the same parameter values we build the one dimensional map with gap. The stable fixed

point of the map coincides with the side of the gap where the derivative of map is finite.

periodic orbit is

K = ! |:— (l(A1 + A3) + l(Az + A4)>
3 w Ts

+ In [Kq(T1)K1(T3)Ko(T2)Ko (T4 ]

(33)

We will determine the saddle-node bifurcations of the (2, 3)
periodic orbit on the (H, , a) plane, treating H, as a bifurcation
parameter and computing a using the final condition x = 0.
Hence at each saddle-node bifurcation point we need to deter-
mine ten unknowns (ty, Xo, A1, X1, A2, X2, A3, X3, X4, ) by solving
the following ten equations simultaneously

X0 = Hy +aC(to); x1=1—(1—xp)e 41/™,
xi=Hy +aC(Ty);  x = xje22/™,

X, =Hy +aC(T); x3=1—(1—xp)e 4¥/™, (34)
X3 = Hi 4 aC(T3); x4 = x3e24/%,

X4 =Xo; Kk =0.

To build tongue borders of the (2, 3) periodic orbit, we may then
simply perform a numerical continuation that follows the solu-
tion path of a with variation in H;, . This method is readily adapted
to construct the saddle-node bifurcation (tongue border) for any
(p, q) periodic orbit. We note that a tongue border defined by
saddle-node bifurcations ceases to exist when the saddle-node
bifurcation collides with a type II border collision, as discussed
in [25].

The equivalent map-based approach used in [25] for comput-
ing saddle-node bifurcations requires simultaneously solving the
equations for a period-orbit, along with the condition that the
derivative of the map at the fixed point corresponding to the
periodic orbit has gradient 1, i.e., for the (2, 3) example given
above, solving Egs. (34) but replacing the condition x = 0 with
w=1.

5.2. Type I grazing bifurcation

The necessary conditions for a Type I grazing bifurcation at
the upper (lower) threshold of a (p,q) periodic orbit are: (i)
a (p, q) periodic solution must exist, and (ii) the homeostatic
sleep pressure on wake (sleep) state must switch to sleep (wake)
state at the tangency point. This corresponds to the denomi-
nators in (10) and (11) vanishing (so that saltation operators
are not defined at grazing events). To determine Type I grazing
bifurcations of a (p, q) periodic solution we (numerically) simul-
taneously solve the equations that are needed to build the orbit
and the equation that holds at the tangency point. For example,
to determine a Type I grazing bifurcations of a (1, 1) periodic
orbit we would simultaneously solve the five equations described
by Eq. (7) together with the further tangency condition at the
upper threshold, (1 —x;) /T, = aC(tp + A1), to determine the
six unknowns (tg, X9, A1, X1, X2, @). In the left panel of Fig. 9 we
illustrate a Type I grazing (1, 1) periodic orbit obtained in this
fashion. In the right panel of Fig. 9, we build the corresponding
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one dimensional map with a gap where an unstable fixed point of
the map coincides with the side of the gap where the derivative
of map is infinite. Utilising similar methods, we can determine
Type I grazing solutions of any (p, q) periodic orbit.

5.3. Type Il grazing bifurcation

The necessary conditions for a Type II grazing bifurcation at
the upper (lower) threshold of a (p, q) periodic solution are: (i)
a (p, q) periodic solution must exist, and (ii) the homeostatic
sleep pressure on wake (sleep) state must continuously passes
through the tangency point without switching. Similar to the
description in Section 5.2, in order to determine Type II grazing
bifurcations of a (p, q) periodic solution we simultaneously solve
the equations needed to build the orbit and the equation that
holds at the tangency point.

To shed light on this method we show how to determine a
Type II grazing bifurcation of a (1, 1) periodic orbit. For an orbit
starting from the lower threshold we determine the unknowns
(to, X0, A%, X}, A1, X1, X2, a), by simultaneously solving

Xo = Hy + aC(to); X§ =1-(1 _Xo)e—Atl/zw’
X =Hf +ac(Tl);  (1-x) /7, = al(TD),

X1 =1—(1—-x)e /%, x =H} +aC(Ty),
—Ay/Ts.

(35)

Xy = X1€ X2 = Xo.

We recognise the collection of equations above as essentially
those given in (7) subject to two further constraints defining the
tangency condition at (A%, x}). In the left panel of Fig. 10 we
depict a Type II grazing of a (1, 1) periodic solution obtained
in this fashion. In the right panel of Fig. 10, we illustrate the
corresponding one dimensional map with gap where a stable
fixed point of the map coincides with the side of the gap where
the derivative of map is finite. Similarly, we can use this approach
to determine Type II grazing solutions of any (p, q) periodic orbit.
Note that the saltation approach cannot be used to deter-
mine the stability of a grazing orbit, since saltation factors are
not defined at tangencies (their denominators vanish). Nonethe-
less determining the stability of solutions close to the points in
parameter space where grazes occur is not problematic.

5.4. Arnol’d tongue structure

The saddle-node and grazing bifurcations described above can
combine to give a bifurcation set consisting of Arnol’d tongues, of
the type illustrated in Fig. 11. In this figure, the tongue borders
and the Lyapunov exponent are calculated from the nonsmooth
flow (not the associated map). We note that for the (1, 1) and
(2, 1) tongues shown, Type I and Type II grazing bifurcations
occur due to a tangency at the upper threshold only. However,
for the (2, 3) tongue Type I (Type II) grazing bifurcations occur
due to a tangency at the lower (upper) threshold.

To further explain the bifurcation of periodic solutions we
also label some regions inside and outside of the (1, 1) tongue
boundaries in Fig. 11. Inside the region (c) a stable and unstable
periodic orbit coexist. While moving from region (c) to (b) and (c)
to (e) along the solid black curve, periodic orbits are annihilated
via a saddle-node bifurcation (as illustrated in Fig. 5). Moving
from region (c) to (d) along the white dashed curve, Type II
grazing bifurcations occur due to a tangency with the upper
threshold and unstable periodic solutions are lost. Moving from
region (c) to (d) along the grey dashed curve, Type I grazing
bifurcations occur due to a tangency with the upper threshold and
unstable periodic solutions are lost. Moving from region (d) to (e)
along the solid white curve, Type Il grazing bifurcations occur as a
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Fig. 11. Arnol'd tongue structure for the two-process model with C(t) =
sin(2wt) in the (Hy,a) parameter plane. Bifurcation curves for the largest
tongues are shown on top of the colour coded Lyapunov exponent A, and a
good correspondence is observed at predicted tongue boundaries (where A = 0).
Tangencies on the upper threshold occur above the dashed black line which is
given by a = (1 — H0+)/(‘/4712r§ + 1). Tangencies on the lower threshold occur

above the dashed green line given by a = H;, /,/4w2t2 + 1. The up map is non-
monotonic above the dashed light blue line a = (1—Hy )/\/4m 272 + 1. The down

map is non-monotonic above the dashed brown line a = Hy /,/47 272 + 1. For
small circadian amplitude, a the boundaries of Arnol'd tongues are determined
by saddle-node bifurcations only and are shown with solid black curves. With
increasing a the right branch of each tongue comes to an end, and the extension
of these, defined by a grazing bifurcation, are shown with solid white curves.
Inside each tongue, Type I and Type II grazing bifurcations form a U-shaped
region. Type [ grazing bifurcations occur at the left boundary of a U-shaped
region (dashed grey and magenta curves) and Type II grazing bifurcations occur
at the right boundary (dashed and solid white curves). Grazing bifurcations
that occur due to a tangency on the upper threshold are depicted in white
and grey and those emerging due to a tangency on the lower threshold are
shown in magenta. Solid black curves show saddle-node bifurcations. Dashed
white (grey) curves demonstrate Type II (Type I) grazing bifurcations due to a
tangency with the upper threshold where unstable periodic solutions are lost.
Solid white curves depict Type II grazing bifurcations due to a tangency with
the upper threshold where stable periodic solutions are lost. Inside the region
(c) the model supports both stable and unstable periodic orbits. In region (d)
only stable solutions occur. In region (d), the dashed blue curve shows the
parameters that yield a (1, 1) super-stable cycle. The model does not have any
(1, 1) periodic solutions in region (b) and (e). We refer to Fig. 8 in [25] for
a similar bifurcation diagram built from a purely map based approach. Other
parameters: 7, = 0.75, 7, = 0.25, Hj = 0.75.

result of a tangency with the upper threshold and stable periodic
solutions are lost. Hence, inside the region (d) only stable periodic
orbits exist, and in regions (b) and (e) there is no (1, 1) periodic
solution.

The particular bifurcation set shown in Fig. 11 is similar to
that shown in Figure 8 of [25] but with two important additions.
Firstly the bifurcation set has been shaded according to the value
of the Lyapunov exponent. Secondly, the parameter regime has
been extended from a € [0, 0.2] to a € [0, 0.4]. Shading according
to the value of the Lyapunov exponent highlights regions of
super-stable orbits. For further clarity, lines in parameter space
where super-stable orbits exist have been drawn in dashed blue.
Note that the maps for parameters supporting super-stable solu-
tions are relatively flat, so that all initial conditions quickly evolve
to the fixed point. As shown in [25], stable, periodic orbits exist
for all values in the (H, , a) parameter space. Moving across the
tongue boundaries shown in Fig. 11 leads to other stable periodic
orbits and the bifurcations of these orbits follow a structure that
can be described by a Farey sequence, as discussed by Bailey
et al. [25].
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6. Discussion and future work

Sleep is fundamental for the maintenance of mental health,
body functioning and cognitive performance, but many aspects
of the sleep-wake mechanism still need further investigation, and
mathematical modelling has a significant role to play [17,43]. The
two-process sleep model of Borbély remains to this day one of the
dominant mathematical models for studying circadian and home-
ostatic processes underlying sleep-wake regulation. Its properties
have recently been re-examined using an event based approach
by Bailey et al. [25], emphasising the interesting dynamics that
can arise in maps with gaps. Here, we have shown that a direct
analysis of the underlying nonsmooth flow, from which the event
based description arises, is also possible.

Viewing the two-process model as a nonsmooth flow allows
for a simple numerical implementation using standard meth-
ods for the numerical solution of ordinary differential equations,
augmented to detect and adjust for threshold crossings. This cir-
cumvents the computational task to construct a one-dimensional
map, as originally done by Bailey et al. [25]. Moreover, the vari-
ational equation for determining the Lyapunov exponent (of the
nonsmooth flow) is easily formulated and can be naturally com-
puted alongside the numerical evolution of trajectories. Doing so
has allowed us to give more detail to the Arnol’d tongue structure
originally reported in [25]. Although chaos was not observed
in this example, it is possible to find it in related models. In
particular, one variant of the two-process model, first introduced
in [44], has straight line trajectories between the upper and lower
circadian processes, and when the lower circadian process is a
constant function, as in the ‘threshold’ system of [24], we have
found large regions of parameter space that support chaos using
the method of Section 4. We have also highlighted the usefulness
of saltation operators for treating the stability and bifurcation
of (p, q) orbits in the two-process model, again circumventing
the need for a map based approach. Other advantages of the
nonsmooth perspective become more apparent when considering
the use of the two-process model at the network level, and this is
the main reason that we have developed the approach presented
here.

Interestingly, at about the time that Borbély developed the
two-process model, Petrillo and Glass developed a similar model
for the synchronisation of respiration to a mechanical ventilator.
This two-factor model also has activity that increases until it hits
an upper periodically-modulated threshold and then decreases
until it hits a lower periodically-modulated threshold [45]. More-
over, they show that nonsmooth two-factor models arise natu-
rally in the study of the periodically forced van der Pol oscillator
model (at least in some singular limit). The techniques developed
here have equal applicability to these two-factor models and
provide the applied mathematics community with another set of
tools for their analysis.

Perhaps surprisingly, networks of sleepers and their collective
dynamics have received very little attention in the mathematical
biology community, although it is a topic of major interest in
medicine and psychology, and see e.g. [26,46-48]. This is highly
relevant to a society where a large number of adults share a
bed with a partner. The potential implications for sleep quality,
marital quality, and physical health are many and varied [43,47-
49]. Indeed, the evidence that the individual sleeping behaviour
of one partner influences the other’s sleep is clear and perhaps
unsurprising [46,49,50,50-53]. Therefore, exploring mathemati-
cal models of human sleep in the context of a dyad of co-habiting
adults is an important topic, and one that can naturally build on
the success of the two-process model albeit in a network setting.
To do this one requires the specification of interaction between
two sleepers. One natural way to do this would be to consider a
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direct state dependent interaction between sleepers or possibly
an indirect state dependent modulation of the circadian process
of one sleeper upon another. In either case the interaction would
almost certainly be a continuous one during the time of bed
sharing such that a network event based description would not be
as general as one provided for by a network nonsmooth flow. In
future work we will develop and analyse networks of interacting
two process models using the nonsmooth approach developed
here combined with tools from network science.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability
No data was used for the research described in the article.
Acknowledgements

This work was supported by the Engineering and Physical
Sciences Research Council, UK [grant number EP/V04866X/1].

Appendix. Saltation operator

Here we derive the saltation rule at event time t = T; on the
upper threshold. A similar calculation can be done at any event
time t = Tyi4q (t = Ty),1 € Z, on the upper (lower) threshold.
We introduce indicator functions hi(x(t), t) = x(t) — H*(t) and
hy(x(t), t) = x(t) — H~(t) such that switching events occur when
hi(x(t), t) = 0 and hy(x(t), t) = O on the upper and lower thresh-
old, respectively. Hence the unperturbed (perturbed) trajectory
intersects with upper threshold at t = T; (T; = Ty + 6T;) that
is prescribed by hi(x(T;), T;) = 0 (hy(X(T;), T;) = 0). Here we
assume 8T; > 0, however for the case §T; < 0 a similar argument
holds. A Taylor expansion up to the first order terms yields

hi(X(T1), Try) = hy(X(Ty + 8T1), Ty + 8T4)
~ hy(X(Ty) + X(T1)8T1, Ty + 8Ty)
~ hy(X(Ty) + 8x(T1) 4+ X(T; )Ty, Ty + 8Ty)
~ hy(X(T1), T1) + Vxhi(X(T1), Ty) [8x(T1) + X(T} )3T |
+ vehi(X(Ty), T1)8Th.

Using this along with the property h(X(Ty),
we obtain

T hi(X(T1), Ty) [8X(T1) + X(T} )8T1 ] + veha(X(T1), T1)8T; = 0.

(A.2)
Moreover we have
vxhix, )=1 and v, hi(x,t) = —a*C(t). (A.3)
Then by combining Eq. (A.2) and (A.3) we obtain
8X(T1) + X(T; )8T; — a*C(t)8T; = 0. (A4)
Hence by solving Eq. (A.4) for §T; we find
Ty = -+ 0) . =— xI) .

X(t) = a*tC(t) le=r; (1 =x(T{))/ 7w — a+tC(T;)
(A.5)
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Fig. A.12. An illustration of the evolution of a perturbation at the upper
switching threshold. The solid red line is the trajectory of an unperturbed orbit,
with the event at time Ty. The solid blue line is the perturbed trajectory with
an event at time Ty + §T; where §T; > 0. The approximation of X(T;") is given
by the blue dotted line.

We can approximate )~<(T1Jr ) by pulling b~ack the perturbed solution
an amount of time §t starting from )?(Tfr ) and therefore we have
that

SX(T;H) ~ X(T;" + 8Ty) — X(T;" 4 8T4)8Ty — X(T;")

X(T;) + 8x(Ty ) + X(T; )8Ty — X(T;1)8Ty — X(T;")
Sx(T;) + [X(T;) — X(T}")] 8Ty

—X(T}) N x(Tr)] 5T,

Tw Ts

12

12

(A.6)

Sx(T; ) + [1

where we used the approximations )Lc(Tf ) = X(T; ) and );c(T1+ ) =
)?(Tf ). An illustration of the evolution of a perturbation across the
switching at time T; is given in Fig. A.12. We refer the interested
reader to [32,35] that treats a similar situation for impacting
systems. As a result, using Eq. (A.5) and (A.6) we obtain

(1 —&(T{)) B (_&(T{r))
Sx(T) = [1— Tw % Sx

— (T)
1—Xx(T . A7
X( 1)_a+C(T]_) ( )
Tw
= Kl(T1 )8X(T1_),
where K;(T;) denotes the saltation rule and is given by
p + HY
a"C(Th) + - C(T) +
Ki(T1) = — . P (A8)
a+C(T1) + g—wC(ﬂ) + Orw

By following a similar method, the saltation rule K»(T;) at t = T

on the lower threshold can be computed as

Hy -1

- - ;"j . (A9)
a—C(Ty) + “r—SC(Tz) + T—‘s’

We note that the saltation rule at any t = T, on the upper

threshold is prescribed by K;(T»i+1) and that of at any t = T; on
the lower threshold prescribed by K;(Ty;).

a C(Ty) + £C(Ty) +
Ky(Tz) = -
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