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a b s t r a c t

Since its inception four decades ago the two-process model introduced by Borbély has provided the
conceptual framework to explain sleep–wake regulation across many species, including humans. At its
core, high level notions of circadian and homeostatic processes are modelled with a low dimensional
description in the form of a one dimensional nonautonomous and nonsmooth flow, with the rate of
change of homeostatic sleep pressure switching at specific times. These events in time can be described
by an implicit map from one switching time to another and have given rise to an elegant mathematical
description of periodic orbits and their instabilities using the theory of iterated maps. In this paper
we show that an equivalent description can be obtained from a direct analysis of the underlying
nonsmooth flow. We further show how to construct the Lyapunov exponent of the nonsmooth flow
and use this to uncover a more detailed picture of the Arnol’d tongue structure of the model.

Given the growing interest in studying networks of sleepers, where interactions may occur
continuously throughout the day–night cycle and not just at event times, we advocate for the future
use of techniques from nonsmooth dynamical systems in studying networks of the two-process model.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Sleep is necessary for humans to maintain a healthy mind
nd functioning body. Sleep aids the development of the immune
ystem, [1] and is crucial for learning and memory [2]. Sleep
esets the pain perception system [3]. Poor or mistimed sleep is
ssociated with many health problems [4], including psychotic
isorders and depression [5], and increased risk of diabetes [6],
besity [7], and cardiovascular disease [8]. The strong association
etween sleep and health necessitates a good understanding of
leep–wake regulation processes.
Mathematical models have been used as a powerful instru-

ent to explore biological mechanisms of sleep–wake regulation
or many years, for early models see Moore-Ede et al. [9]. Most
lassical models have at least two oscillators capturing the need
or sleep after being awake for a period of time and the approx-
mately daily (circadian) rhythm of the so-called master clock in
he suprachiasmatic nucleus of the brain [10–12]. Others con-
ider the cyclic transitions between rapid eye movement and
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nonrapid eye movement sleep which, in humans, have an approx-
imately 90 min period and are therefore an example of ultradian
rhythms [13,14]. More recent models have developed a more
‘physiological’ approach proposing neuronal models that model
sleep–wake regulation through the interaction of a small number
of interacting populations of neurons [15,16]. However, the two-
process model captures many essential features of the dynamics
of these more complex models [17,18] and therefore remains
relevant [19].

The two-process model itself has had a major impact on the
field of sleep research, with over 4,500 citations at the time of
writing and providing the conceptual framework and a mecha-
nistic understanding for many laboratory and field studies. The
model has two interacting oscillators: a circadian oscillator (sleep
independent process) and a homeostatic oscillator (sleep de-
pendent process). The homeostatic sleep process represents a
regulatory process aimed at keeping physiological sleep need
within reasonable bounds. The homeostatic process is modelled
by a sleep pressure that increases monotonically during wake and
decreases monotonically during sleep. Switching from wake to
sleep and from sleep to wake occurs at upper and lower thresh-
olds respectively. The thresholds are modulated by a periodic

function representing the circadian oscillation, see Fig. 1. Nakao

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. A (1, 1) periodic orbit (one sleep–wake episode in one day) of the two-
process model with C(t) = sin(2π t). The homeostatic sleep pressure (shown
n light brown) increases during wake and decreases during sleep. The upper
nd lower thresholds are shown in black. Switching from wake (sleep) to
leep (wake) takes place at the upper (lower) threshold crossing. Parameters:
w = 0.70, τs = 0.5, H+

0 = 0.75, H−

0 = 0.2469, a±
= 0.09478.

t al. [20,21] have described these switching events using a one-
imensional map with a gap [22–24] (and linked this to a circle
ap using periodicity of the circadian activity).
As first observed in [11], the two-process model exhibits
wide range of different sleep patterns including those rep-

esenting a single sleep–wake episode in a day, (monophasic
leep, characteristic of adult humans) and those with many sleep
pisodes a day, (polyphasic sleep, characteristic of human babies
nd small mammals). Using the circle map framework, Bailey
t al. performed a detailed analysis to understand the types of bi-
urcation that occur in the two-process model and the underlying
ifurcation structure that gives regions of existence of different
table solutions representing different numbers of sleep episodes
day [25].
Given the success of the two-process model at the level of
single sleeper it is natural to use it as a starting point for
etwork studies relevant for understanding the behaviour of ado-
escent social groups where sleep timing may be dictated by
ocial media interactions and for sleep–wake patterns of co-
abiting partners. Indeed, given the human social prevalence for
ouple bed sharing [26], it is somewhat surprising that there
s very little modelling work in this latter context. However,
ince sleeper–sleeper interactions may be continuous in time
he discrete map based approach for analysing the two-process
odel does not lend itself well to such network studies. There

s therefore a need to develop analytical tools that are better
ble to capture continuous interactions. We also note that there
s an increased recognition that sleep homeostasis and circadian
hythmicity may not be so neatly separated into two distinct
rocesses, and that sleep homeostasis may depend on circadian
hase and vice versa [27]. Hence in future generations of models
f sleep regulation, a nonsmooth flow approach may be more
ppropriate.
We note that for the original two-process model, the non-

mooth flow perspective is complementary to the map-based
erspective. The map-based approach makes explicit the con-
ection between the two-process model and other oscillatory
ystems and leads naturally to understanding how the dynamics
re organised in terms of an Arnol’d tongue framework. How-
ver computations, and relating features in the maps to model
ehaviour (e.g., the creation of gaps), requires consideration of
he nonsmooth flow.

In this paper, we therefore develop a nonsmooth flow per-
pective that continuously captures homeostatic and circadian
nteractions. Since an essential first step in developing a new
nalytical approach is that it should recover previous results,
ur focus here is on a single sleeper. Throughout we therefore
ompare our nonsmooth approach with the map-based approach.
2

In Section 2 we introduce the two-process model and its
epresentation as a piecewise linear ordinary differential equation
ystem with switches, namely a type of nonsmooth flow. The
onstruction of continuous time periodic orbits is considered in
ection 3 where, with the use of saltation operators we show how
o augment standard Floquet theory to determine the stability of
eriodic solutions. The equivalence to the map-based approach
or determining solution stability is demonstrated. In Section 4,
e show how to determine the Lyapunov exponent for the non-
mooth flow, and subsequently, in Section 5 make use of this to
robe some of the details of the Arnol’d tongue structure for the
wo-process model. Finally, in Section 6 we discuss the natural
xtensions of the work in this paper to the network level.

. The two-process model

The two-process model is a fascinating and ostensibly simple
iecewise linear model which belongs to a wider class of ‘‘thresh-
ld’’ systems, see [24]. The two-process model characterises the
iming and distribution of sleep and wake as the interaction of
ircadian and homeostatic process evolution. The combination
f these two oscillatory processes as continuous flows may be
ormulated as x = x(t), ẋ = dx/dt and:

˙ =

⎧⎪⎨⎪⎩
−

x
τw

+
1
τw

ẋ > 0 and x(t) < H+(t) (wake)

−
x
τs

ẋ < 0 and x(t) > H−(t) (sleep),
(1)

where

H±(t) = H±

0 + a±C(t). (2)

Here, x represents the homeostatic sleep pressure and C(t) repre-
sents the circadian process. Switching from wake to sleep occurs
when ẋ > 0 and x(t) = H+(t). Switching from sleep to wake
occurs when ẋ < 0 and x(t) = H−(t).

The model contains six parameters. The parameters τs and
τw are time constants which determine the rate of change of
homeostatic sleep pressure during sleep and wake, respectively.
Originally, Borbély et al. [28,29] envisaged that the time constants
represented the decay of so-called ‘slow wave activity’, derived
from electroencephalogram measurements, and values were ex-
tracted from data. The thresholds were phenomenological and a
scaling chosen such that homeostatic sleep pressure asymptotes
to one during wake and to zero during sleep. The mean values
of the thresholds, H+

0 and H−

0 and the shape of the periodic
circadian function C(t) and its amplitude a± were chosen to
atch experimental data. The circadian function C(t) represents

he daily variation in wake propensity and was chosen so that the
odel replicates the observed functional relationship between
leep duration and sleep onset time. In the simplest case, C(t) is
often chosen to have a sinusoidal form, though more complicated
forms that include higher harmonics have also been used [29].
Throughout this paper we will choose C(t) to be one of sin(2π t)
r cos(2π t). Here, time is scaled so that solutions with period one
orresponds to solutions which have a period of one day. (See [30]
or further discussion on physiological relevance, restrictions and
erivation of the model parameters).
We define xw(t, tw0 ) as the homeostatic sleep pressure during

ake, which starts at t = tw0 on the lower threshold with the
nitial value xw(tw0 ), and xs(t, ts0) as the homeostatic sleep pressure
uring sleep, which starts at t = ts0 on the upper threshold with
he initial value xs(ts0). Then, from Eqs. (1), the explicit solutions
or xw(t, tw0 ) and xs(t, ts0) are

w(t, tw0 ) = 1 − [1 − xw(tw0 )]e−
t−tw0
τw , (3)

x (t, ts) = x (ts)e−
(t−ts0)

τs , (4)
s 0 s 0



M. Şaylı, A.C. Skeldon, R. Thul et al. Physica D 444 (2023) 133595

0

w
a
l
i
x
n

d
h
t
τ

a

2

p
d
d
e
a
t
t
(
T
t
h
o
T
h

T

E
t
(

b
t
t
t
o
r
o
F

3

o
s

Fig. 2. Illustrative examples of Tj mod 1 for j = d; u; s, with C(t) = sin(2π t), showing behaviour similar to [25]. Parameters: τw = 0.75, τs = 0.25, H+
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ith initial data determined self-consistently by xw(tw0 ) = H−(tw0 )
nd xs(ts0) = H+(ts0). We denote switching event times on the
ower threshold by T2i and those on the upper by T2i+1 where
∈ Z, T2i = inf{t | x(t) = H−(t); t ≥ T2i−1} and T2i+1 = inf{t |

(t) = H+(t); t ≥ T2i}. See Fig. 1 for an example of the use of this
otation.
We note that biological constraints require a monotonically

ecreasing xs and a monotonically increasing xw . Wake and sleep
omeostatic pressures asymptote to 1 and 0, respectively, and
herefore stay in the interval (0, 1). These restrictions yield τs > 0,
w > 0, and switching events always exist when
− < H−

0 < H+

0 < 1 − a+. (5)

.1. Circle maps of the two-process model

Nakao et al. [20,21] showed that the dynamics of the two-
rocess model can be studied using one dimensional maps with
iscontinuities. Using this observation, Bailey et al. [25] intro-
uced three different one dimensional maps in terms of switching
vent times to study periodic orbits and their bifurcations. These
re: (i)− the down map Td : R → R from upper to lower
hreshold, i.e. a map that takes a point (H+(t0), t0) on the upper
hreshold and maps it into the next point on the lower threshold.
ii)− the up map Tu : R → R from lower to upper threshold.
herefore, Td(t0) and Tu(t0) are the first times greater than t0 such
hat xs(Td(t0), t0) = H−(Td(t0)) and xw(Tu(t0), t0) = H+(Tu(t0))
old. (iii)− the map from upper threshold into itself (composition
f the down and up maps) Ts : R → R where Ts(t0) = Tu(Td(t0)).
he upper and lower thresholds are one day periodic (see Eq. (2)),
ence all three maps have the following property

j(t0 + 1) = Tj(t0) + 1, j = d, u, s. (6)

xamples of these maps are illustrated in Fig. 2. In panel (c)
he diagonal line helps to see fixed points of the map Ts(t0)
corresponding to periodic solutions).

The model has various types of periodic orbits and these can
e characterised as having p sleep–wake episodes in q days. Thus,
0 yields a (p, q) periodic orbit if T p

s (t0) = t0 + q where (T j
s(t0) −

0) ̸∈ N for j = 1, . . . , p − 1. If Ts has a (p, q) periodic solution,
he greatest common divisor of p and q will be 1 and the theory
f monotonic circle maps implies that the function Ts has rational
otation number q/p (cf.[25,31]). An example of a (1, 1) periodic
rbit is given in Fig. 1, and more general (p, q) periodic orbits in
ig. 3.

. Construction and stability of periodic orbits

Similar to [30], we show how to construct a (1, 1) periodic
rbit, with the extension to other (p, q) periodic orbits being
traightforward.
3

A (1, 1) periodic solution has period ∆ = 1 and contains one
ake episode and one sleep episode as illustrated in Fig. 1. To
uild this orbit let us consider a solution xw(t, t0) that starts from
he lower threshold at t = t0 with an initial value xw(t0) = x0.
ince the solution starts at the lower threshold we also have
−(t0) = x0. The solution will evolve according to Eq. (3) until it
its the upper threshold at t = T1 with a state value xw(T1) = x1.
e denote the duration of the wake episode by ∆1 = T1 − t0.
t the upper threshold H+(T1) = x1 holds and the sleep state
tarts. Then the solution xs(t, T1) will evolve according to Eq. (4)
ntil it hits the lower threshold at t = 1 + t0 with a state value
s(T1 + ∆2) = x2 where ∆2 = 1 − ∆1 denotes the duration
f the sleep episode. At the lower threshold H−(t) = x2 holds
nd a switch from sleep to awake occurs. Due to periodicity we
lso have that x2 = x0. To complete the procedure we need
o determine the unknowns (t0, x0, ∆1, x1, x2) by simultaneously
olving a system of five equations:

0 = H−

0 + a−C(t0); x1 = 1 − (1 − x0)e−∆1/τw ,

1 = H+

0 + a+C(t0 + ∆1); x2 = x1e−(1−∆1)/τs; x2 = x0.
(7)

qs. (7) are equivalent to conditions 2.30 in [30] for the specific
ase p = q = 1. In practice the unknowns can be found using
numerical routine for the simultaneous solution of a nonlin-
ar system (such as fsolve in Matlab), subject to the physical
onstraint that 0 < ∆1 < 1. In general, to build any (p, q)
eriodic orbit one needs to solve a system of equations with more
nknown parameters; for example to construct a (2, 3) periodic
rbit nine equations are required to determine nine unknowns.
e illustrate the shape of (1, 1) and (2, 3) periodic orbits in Fig. 4
here we denote the duration of wake and sleep episodes by
2i+1 and ∆2i, respectively, i ∈ Z.
Eqs. (7) give conditions for the existence of periodic solutions,

ut we are also interested in their stability. Since the constructed
eriodic orbits are solutions of a nonsmooth flow one needs to
pply Floquet theory with care. However, there is a growing body
f work on nonsmooth systems (existence, uniqueness, stability),
nd in particular piecewise linear systems, that can be used for
his purpose and here we will adapt the approach in [32,33] that
s suited to treating periodic solutions with an arbitrary number
f switching events. The approach makes use of saltation opera-
ors that are able to map perturbations to a periodic orbit through
switching event. Ultimately, we will see that this can also

e used to construct a Lyapunov exponent reminiscent of that
xpected for a smooth dynamical system albeit with a correction
erm to take into account the jumps encountered at switching
vents.

.1. Stability using a nonsmooth flow approach: Floquet exponents

Saltation operators are used to capture the evolution of per-
urbations through switching events where either the solution or
he vector field (or both) has a discontinuity. Some application
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Fig. 3. Periodic solutions of the two-process model with C(t) = sin(2π t). (a) A (1, 2) periodic orbit (one sleep–wake episode in two days). Parameters:
w = 1.426, τs = 0.6634, H+

0 = 0.75, H−

0 = 0.2469, and a±
= 0.09478. (b) A (2, 1) periodic orbit (two sleep–wake episodes in one day). Parameters:

w = 0.75, τs = 0.25, H+

0 = 0.75, H−

0 = 0.569, and a±
= 0.04659. (c) A (2, 3) periodic orbit (two sleep–wake episodes in three days). Parameters:

w = 0.75, τs = 0.25, H+

0 = 0.75, H−

0 = 0.08883, and a±
= 0.03213.
Fig. 4. (p, q) Periodic orbits in the two-process model with C(t) = sin(2π t). (a): A (1, 1)-periodic orbit. In order to construct this orbit explicitly, we need to
etermine (t0, x0, ∆1, x1, x2) from Eqs. (7). Here t0 is the wake onset time with initial homeostatic sleep pressure x0 , ∆1 is the duration of the wake episode, x1 is
he value of homeostatic sleep pressure at which switching from wake to sleep occurs, and x2 is the homeostatic sleep pressure for which switching from sleep to
ake occurs. Parameters: τw = 0.75, τs = 0.417, H+

0 = 0.65, H−

0 = 0.15, a±
= 0.1. (b): A (2, 3)-periodic orbit, and to construct this we need to determine nine

nknowns (t0, x0, ∆1, x1, ∆2, x2, ∆3, x3, x4). Here we denote T1 = t0 + ∆1, T2 = T1 + ∆2, T3 = T2 + ∆3, T4 = t0 + 3, and ∆4 = T4 − T3 . At the lower threshold,
witching from sleep to wake occurs at (t0, x0), (T2, x2), and (T4, x4). At the upper threshold, switching from wake to sleep occurs at (T1, x1) and (T3, x3). Parameters:
w = 0.75, τs = 0.25, H+

0 = 0.75, H−

0 = 0.1, a±
= 0.05.
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f saltation matrices are reported by Müller [34] to calculate
yapunov exponents of discontinuous systems, and Fredriksson
nd Nordmark [35] in the normal form derivation for impact
scillators. In recent years, they have been used to analyse both
ode and network behaviour of piecewise linear or impacting
scillatory systems [33,36,37]. Here, we use them to treat the
tability of nonsmooth periodic orbits of the two-process model
ith an augmentation of the Floquet theory for smooth systems.
onsider a (p, q) periodic orbit x̄(t) of the system (1) and a
erturbed solution x̃(t) = x̄(t)+δx(t) for some small perturbation
x(t). Then during a wake state when T0 < t < T1 (or in general
etween T2i < t < T2i+1), δx(t) evolves according to
d
dt

δx(t) = −
1
τw

δx. (8)

During a sleep state when T1 < t < T2 (or in general between
T2i+1 < t < T2i+2), δx(t) evolves according to
d
dt

δx(t) = −
1
τs

δx. (9)

In the Appendix, we show that the saltation rule to map a
perturbation through a switching event on the upper threshold of
the two-process model is given by δx(T+

2i+1) = K1(T2i+1)δx(T−

2i+1),
here

1(T2i+1) =
a+Ċ(T2i+1) +

a+

τs
C(T2i+1) +

H+

0
τs

a+Ċ(T2i+1) +
a+

τw
C(T2i+1) +

H+

0 −1
τw

. (10)

imilarly, the saltation rule on the lower threshold is δx(T+

2i ) =

(T )δx(T−), where
2 2i 2i

4

2(T2i) =
a−Ċ(T2i) +

a−

τw
C(T2i) +

H−

0 −1
τw

a−Ċ(T2i) +
a−

τs
C(T2i) +

H−

0
τs

. (11)

ote that the saltation operators K1 and K2 are well defined as
ong as their denominators are not zero. These denominators
ake the form Ḣ±(T ) − ẋ(T ) for an event time T (remembering
(T ) = H±(T )) so that saltation is not defined whenever the event
ccurs at a time when the flow is tangential to the threshold. Such
angency points have particular significance and are discussed
urther below.

In the absence of tangencies, for any (p, q)-periodic solution (p
leep and p wake in q days, ∆ = q), after one period of oscillation,
perturbed trajectory evolves according to δx(q) = Mδx(t0)
here

= K2(T2p)e−
∆2p
τs K1(T2p−1)e−

∆2p−1
τw . . . K2(T2)e−

∆2
τs K1(T1)e−

∆1
τw .

(12)

ere, ∆i is the time interval given by ∆i = Ti+1 − Ti. Hence, the
non-trivial Floquet exponent κ , defined by eκ∆

= M , is given by

κ =
1
q

[
−

(
1
τw

(∆1 + ∆3 + · · · + ∆2p−1)

+
1
τs
(∆2 + ∆4 + · · · + ∆2p)

)

+

p∑
ln |K1(T2j−1)| + ln |K2(T2j)|

⎤⎦ . (13)

j=1
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he periodic orbit will be stable if the Floquet exponent κ has
egative real part. For example, in Fig. 4, the (1, 1) and (2, 3)
eriodic solutions have κ = −2.73 and κ = −1.253, respectively,
hus both solutions are stable.

A bifurcation diagram, showing the Floquet exponents of pe-
iodic orbits under variation of H−

0 is presented in Fig. 5. At
−

0 = 0.2102 and H−

0 = 0.381 a saddle–node bifurcation of
1, 1) periodic orbits is observed. Examples of stable and unstable
eriodic orbits are also shown.

.2. Stability using a map-based approach

In order to calculate the stability of periodic solutions using a
ap-based approach we first write down implicit expressions for

he event times and then consider whether a perturbation to the
nitial event time grows or decays.

.2.1. An implicit determination of event times
The trajectories of the two-process model during wake and

leep episodes can be constructed using Eqs. (3) and (4). More-
ver, we can make further use of these to develop an implicit
elationship between consecutive event times. This effectively
ives rise to the map based approach considered in e.g. [20,25].
or a wake episode when T2i ≤ t ≤ T2i+1, by setting xw(tw0 ) =

(T2i) and xw(T2i+1, tw0 ) = x(T2i+1) in Eq. (3), we find

2i+1 + τw ln |x(T2i+1) − 1| = T2i + τw ln |x(T2i) − 1|. (14)

sing the state values on the upper and lower thresholds, we can
ewrite this as

2i+1 + τw ln |H+

0 + a+C(T2i+1) − 1|

= T2i + τw ln |H−

0 + a−C(T2i) − 1|. (15)
 H

5

t is clear from Eq. (15) that T2i+1 cannot be explicitly solved in
erms of T2i, but we can define an implicit function G1(T2i, T2i+1) =

where

1(T2i, T2i+1) = T2i+1 − T2i − τw ln
⏐⏐⏐⏐ H−

0 + a−C(T2i) − 1
H+

0 + a+C(T2i+1) − 1

⏐⏐⏐⏐. (16)

oreover, for a sleep episode when T2i+1 ≤ t ≤ T2i+2, from Eq. (4)
we have,

T2i+2 + τs ln |x(T2i+2)| = T2i+1 + τs ln |x(T2i+1)|. (17)

sing the state values on the upper and lower thresholds, we
btain

2i+2 + τs ln |H−

0 + a−C(T2i+2)| = T2i+1 + τs ln |H+

0 + a+C(T2i+1)|.

(18)

e observe that T2i+2 also cannot be explicitly solved in terms of
2i+1, however we can define an implicit function G2(T2i+1, T2i+2) =

where

2(T2i+1, T2i+2) = T2i+2 − T2i+1 − τs ln
⏐⏐⏐⏐H+

0 + a+C(T2i+1)
H−

0 + a−C(T2i+2)

⏐⏐⏐⏐. (19)

omplete solutions, including periodic orbits, can be found by the
imultaneous solution of G1(T2i, T2i+1) = 0 and G2(T2i+1, T2i+2) =

For example, a (1, 1) periodic orbit is the solution of the two
quations G1(T0, T1) = 0 and G2(T1, T0 +1) = 0, and see Fig. 1 for
reminder of the event notation. For more general (p, q) orbits

he same process applies, though one must now solve 2p + 1
imultaneous equations (with one of these enforcing periodicity).
ext we will show how to use these implicit relations to assess
he stability of periodic orbits (that do not tangentially intersect
±).
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.2.2. An explicit determination of event time stability
Consider a (p, q) periodic orbit that starts from the lower

hreshold at t = T2i and a perturbed trajectory that starts at
the perturbed time t = T2i + δT2i. The periodic and perturbed
olutions reach to the upper threshold at t = T2i+1 and t = T2i+1+

δT2i+1, respectively. A first order Taylor expansion of Eq. (16)
gives

G1(T2i + δT2i, T2i+1 + δT2i+1)

= G1(T2i, T2i+1) +
∂G1

∂T2i
δT2i +

∂G1

∂T2i+1
δT2i+1. (20)

hen using G1(T2i + δT2i, T2i+1 + δT2i+1) = G1(T2i, T2i+1) = 0, we
btain

T2i+1 = −

∂G1
∂T2i
∂G1

∂T2i+1

δT2i ≡ S1(T2i, T2i+1)δT2i, (21)

here

1(T2i, T2i+1)

=
(a−τwĊ(T2i) + a−C(T2i) + H−

0 − 1)(H+

0 + a+C(T2i+1) − 1)
(a+τwĊ(T2i+1) + a+C(T2i+1) + H+

0 − 1)
(
H−

0 + a−C(T2i) − 1
)

=

⎡⎣ a−Ċ(T2i) +
a−

τw
C(T2i) +

H−

0 −1
τw

a+Ċ(T2i+1) +
a+

τw
C(T2i+1) +

H+

0 −1
τw

⎤⎦ e−
T2i+1−T2i

τw .

(22)

imilarly, a first order expansion of Eq. (19) yields

2(T2i+1 + δT2i+1, T2i+2 + δT2i+2) = G2(T2i+1, T2i+2)

+
∂G2

∂T2i+1
δT2i+1 +

∂G2

∂T2i+2
δT2i+2.

(23)

sing the fact that G2(T2i+1 + δT2i+1, T2i+2 + δT2i+2) = G2(T2i+1,

T2i+2) = 0, we obtain

δT2i+2 = −

∂G2
∂T2i+1
∂G2

∂T2i+2

δT2i+1 ≡ S2(T2i+1, T2i+2)δT2i+1, (24)

here

2(T2i+1, T2i+2)

=
(a+τsĊ(T2i+1) + a+C(T2i+1) + H+

0 )(H−

0 + a−C(T2i+2))
(a−τsĊ(T2i+2) + a−C(T2i+2) + H−

0 )(H+

0 + a+C(T2i+1))

=

⎡⎣a+Ċ(T2i+1) +
a+

τs
C(T2i+1) +

H+

0
τs

a−Ċ(T2i+2) +
a−

τs
C(T2i+2) +

H−

0
τs

⎤⎦ e−
T2i+2−T2i+1

τs .

(25)

ence for a (p, q) periodic orbit we have δT2p = µδT0 where

µ = S2(T2p−1, T2p)S1(T2p−2, T2p−1) . . . S2(T1, T2)S1(T0, T1). (26)

Thus the periodic orbit is stable when |µ| < 1. We note that
Eq. (25) is the same as that derived by explicit differentiation of
the map in [30]. Furthermore, as expected, for a given periodic
orbit, both the nonsmooth flow method leading to the Floquet ex-
ponent (13) and the expression for stability from the map-based
approach in (26) are equivalent. To clarify this last point a little
further see the intermezzo below which also includes a specific
example. In addition to periodic solutions, quasiperiodic solutions
and chaos may also be possible in the two-process model. It is
therefore instructive to construct the Lyapunov exponent.
6

Intermezzo: equivalence between nonsmooth flow and map ap-
proaches

Here, we clarify how M in Eq. (12) and µ in Eq. (26) are
equivalent. Note that K1 is a function of T2i+1 (upper boundary
switching times) and prescribes how a perturbation to the orbit
is mapped across the upper switching boundary. Similarly K2 is
a function of T2i (lower boundary switching times). These factors,
included in (12), reflect the effect of a discontinuous change in
the vector field for the linear stability calculation of a periodic
orbit. The remaining exponential factors describe the (linearised)
evolution of a perturbed flow between events. Simply put, in
the nonsmooth flow perspective, M determines how an initial
perturbation to a periodic orbit changes over one period. In the
map based approach, linear stability is determined by computing
the evolution of perturbations in the event times. To achieve
this we used Eqs. (21) and (24), which involve the multiplicative
factors S1,2, which are themselves functions of event times. For
example, S1 is a function of (T2i, T2i+1) as given by Eq. (22). The
exponential term in this equation corresponds to linear evolution
of a perturbation during the wake state in the nonsmooth flow
approach. The numerator of the coefficient in the equation is
a function of T2i and the denominator is a function of T2i+1.
Similarly, S2 is a function of (T2i+1, T2i+2) and explicitly given
by Eq. (25). The exponential term in this equation corresponds
to the linear evolution of a perturbation during the sleep state in
the nonsmooth flow approach. The numerator of the coefficient
in the equation is a function of T2i+1 and the denominator is a
function of T2i+2. However, we compute saltation operators either
on an upper boundary (with switching time T2i+1, where we use
K1(T2i+1)) or on a lower boundary (with switching time T2i, where
we use K2(T2i)). Therefore, their numerator and denominator are
either a function of T2i+1 or T2i. As a result of this, although
both approaches have the same expression for the denominator
their numerators are swapped (S1 and K2 have same numerator,
and S2 and K1 have same numerator). To compute stability, we
multiply these terms over a period, and hence we conclude M
and µ are equivalent. To see this more explicitly, consider, for
example, a (1, 1) periodic orbit with event times T0, T1, T2. Using
the nonsmooth flow approach one finds

M = K2(T2)e−
∆2
τs K1(T1)e−

∆1
τw

=
a−Ċ(T2) +

a−

τw
C(T2) +

H−

0 −1
τw

a−Ċ(T2) +
a−

τs
C(T2) +

H−

0
τs

× e−
∆2
τs

a+Ċ(T1) +
a+

τs
C(T1) +

H+

0
τs

a+Ċ(T1) +
a+

τw
C(T1) +

H+

0 −1
τw

e−
∆1
τw . (27)

Using the map based approach one finds

µ = S2(T1, T2)S1(T0, T1)

=
a+Ċ(T1) +

a+

τs
C(T1) +

H+

0
τs

a−Ċ(T2) +
a−

τs
C(T2) +

H−

0
τs

× e−
∆2
τs

a−Ċ(T0) +
a−

τw
C(T0) +

H−

0 −1
τw

a+Ċ(T1) +
a+

τw
C(T1) +

H+

0 −1
τw

e−
∆1
τw . (28)

From the periodicity of the orbit and of C(t), T2 = T0 +1, C(T2) =

C(T0 + 1) ≡ C(T0) and Ċ(T2) = Ċ(T0 + 1) ≡ Ċ(T0), it can be seen
that (27) and (28) are equal. Similarly, this equivalence of M and
µ can be established for any (p, q) periodic orbit.
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. Lyapunov exponents

Lyapunov exponents quantify the exponential rates of conver-
ence or divergence of initially close orbits of an attractor in state
pace and are useful to determine regions of parameter space
ith different emergent behaviour. Periodic attractors have non-
ositive exponents whereas chaotic attractors have at least one
ositive Lyapunov exponent.
For a general dynamical system ẋ = f (x), x ∈ Rn, the spectrum

f the Lyapunov exponents, λi, is given for some different initial
onditions δxi(t0), as:

i = lim
t→∞

1
t − t0

ln
||δx(t)||
||δxi(t0)||

, i = 1, . . . , n, (29)

here δx(t) indicates evolution of the distance x̄(t)−x̃(t) between
x̄(t) and the perturbed trajectory x̃(t) with an initial condition
x̄(t0) + δx(t0). For smooth continuous dynamical systems, Lya-
punov exponents are generally computed by solving a variational
equation where the Jacobian of the system is evaluated along
an orbit. Indeed, algorithms for computing the Lyapunov expo-
nents of smooth continuous systems are well developed [38–40].
However, these classical algorithms cannot be directly applied to
compute Lyapunov exponents of nonsmooth dynamical systems.
As we have shown in Section 3.1, the evaluation of the variational
equation of a nonsmooth system requires careful consideration.
Here we develop the notion of Lyapunov exponent for the two-
process model, by re-visiting techniques originally applied in the
analysis of impacting systems [34,41].

Similar to the derivation of Eq. (12), for any arbitrary time
t , the overall deviation between two trajectories x̄(t) and x̃(t)
of the two-process model, assuming a common pattern of close
threshold crossings, can be written as

δx(t) = e−
(t−∆k)

τw K2(Tk)e−
∆k
τs K1(Tk−1)e−

∆k−1
τw . . . K1(T1)e−

∆1
τw δx(t0),

(30)

here K1(t) and K2(t) are saltation rules given by Eqs. (10) and
(11), respectively. Here, ∆k = Tk+1 − Tk. Thus using formula (29)
along with Eq. (30), we can formulate the Lyapunov exponent of
the two-process model as

λ = lim
k→∞

1
T k − T 0

× ln

⏐⏐⏐⏐⏐⏐
k∏

j=1

Kµ(Tj)e−
1

τw
(∆1+∆3+···+∆k−1)e−

1
τs (∆2+∆4+···+∆k)

⏐⏐⏐⏐⏐⏐
= lim

k→∞

1
T k − T 0

⎡⎣ −
1
τw

(∆1 + ∆3 + · · · + ∆k−1)

+ −
1
τs
(∆2 + ∆4 + · · · + ∆k) +

k∑
j=1

ln |Kµ(Tj)|

⎤⎦ , (31)

where µ = 1 if j is odd and µ = 2 if j is even. Here we
consider the trajectory x̄(t) to start from the lower threshold but
a similar formula can easily be obtained when it starts from the
upper threshold. We note that there are two contributions to λ,
one from the smooth flow during sleep and wake episodes and
the other from the discontinuous nature of the switching mecha-
nism at threshold crossings. Note that the restriction to ‘common
pattern’ means that events are neither created or destroyed by
perturbation. This is violated in a nonsmooth grazing bifurcation
(and see Section 5). Nonetheless, even excluding this scenario
from the construction of the Lyapunov exponent still gives a test
for chaos (λ > 0).
7

Fig. 6. Lyapunov exponent diagram in the (τw, τs) plane for the two-process
odel with C(t) = sin(2π t) and a±

= a. The (1, 1), (1, 2) and (1, 3) periodic
orbits occupy large regions of parameter space. Tangencies on the lower
threshold occur above the line τs = τ−

s (dashed green line). Tangencies on the
upper threshold occur to the right of the line τw = τ+

w (dashed black). The
own map is non-monotonic above the line τs = τ+

s (dashed brown). The up
ap is non-monotonic to the right of the line τw = τ−

w (dashed light blue).
here is no signature of chaos since λ ≤ 0 across the whole plane. The dotted
rey lines track out the locus of super-stable (1, 2) and (1, 3) cycles. Parameters:
−

0 = 0.25, H+

0 = 0.75, a = 0.09478.

The numerical determination of the Lyapunov exponent is
erformed with a second order Runge–Kutta scheme for time-
tepping the two-process model with a small fixed step size
nd a linear interpolation between states immediately above and
elow the threshold to give a more accurate determination of
he event time. This event time is then used as the initial time
or the next forward evolution of the model, with initial data
onstructed from extrapolation of the state just below thresh-
ld to the event time, and the process repeated. We depict a
yapunov exponent diagram for the two-process model in the
τw, τs) parameter plane calculated in this fashion in Figs. 6 and
for two different parameter regimes. On Figs. 6 and 8 we also
dd lines that denote structural changes in the map, namely lines
hat mark transitions from a continuous circle map to a map
ith at least one gap and lines that mark transitions from a
onotonic circle map to a nonmonotonic circle map. Specifically,
s recognised in [30] and generalised in [24], transitions to gaps
ccur when either xw(t) is tangential to the upper threshold
r xs(t) is tangential to the lower threshold. Whereas transi-
ions from monotonicity to nonmonotonicity occur when either
w(t) is tangential to the lower threshold or xs(t) is tangential
o the upper threshold. For the case that C(t) = sin(2π t) (or
(t) = cos(2π t)) and a±

= a it can be shown (using elementary
rigonometric identities) that the transition to maps with gaps
ccur when τw ≥ τ+

w ≡

√
(1 − H+

0 )2 − a2/(2aπ ), and when

s ≥ τ−
s ≡

√
(H−

0 )2 − a2/(2aπ ). Whereas the transition from
monotonicity to nonmonotonicity occur when τw ≥ τ−

w ≡

(1 − H−

0 )2 − a2/(2aπ ) (non-monotonicity in the up-map), or

hen τs ≥ τ+
s

√
(H+

0 )2 − a2/(2aπ ) (non-monotonicity in the
own-map).
We note that although the underlying circle map was non-

onotonic for some regions of the parameter space shown in
igs. 6 and 8 no regions where λ > 0, indicative of chaos, were
ound. We can however easily identify lines in the colour plots
hat track out local minima of the Lyapunov exponent, which are
he locus of super-stable cycles. Using Eq. (26) these are defined
y the condition µ = 0.
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Fig. 7. An example of bistability in the two-process model at the point (τw, τs) = (0.887, 1.029) in Fig. 6. (a) A stable (1, 2) orbit with Lyapunov exponent λ = −0.8166
btained using initial data x(0) = 0.71. (b) A stable (1, 2) orbit with Lyapunov exponent λ = −1.5531 obtained using initial data x(0) = 0.27.
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Finally, we note that in [30], a symmetry

t, xs; τs,H+

0 ,H−

0 , a, t0) ↦→ (t+1/2, 1−xw; τw, 1−H−

0 , 1−H+

0 , a, t0+1/2)

(32)

was identified. This symmetry explains the approximate reflec-
tion symmetry about the diagonal line in Fig. 6. The symmetry
is not exact, for example in the neighbourhood of τs = τw = 1,
ecause there are small regions of bistability and although the
arameters τs, τw,H+

0 , H−

0 and a respect the symmetry condi-
ion (32), the initial conditions used to calculate Fig. 6 did not. An
xample of two co-existing stable (1, 2) orbits is shown in Fig. 7.
Although non-monotonicity of the map is a prerequisite for

haos (say via a period-doubling cascade) and parameters for
on-monotonicity are easily identified in Fig. 6 for the two-
rocess model, with C(t) = sin(2π t), we did not find any
ignature of chaos (positive Lyapunov exponent). A similar obser-
ation was found for the choice C(t) = cos(2π t) made in Fig. 8
using parameters from Fig. 2 in [42]).

. Bifurcations of periodic solutions

In [25,30], using the circle map framework the bifurcation
tructure of the two-process model was investigated. This led
o a bifurcation set consisting of an Arnol’d tongue-like struc-
ure. At small circadian amplitudes a, regions of existence of
eriodic solutions were bounded by saddle–node bifurcations.
t higher amplitudes, in regions where the underlying circle
ap was not continuous, periodic solutions could in addition be
reated/destroyed by border collision bifurcations. In terms of
he flow, these border collisions were associated with periodic
rbits in which either xw(t) was tangential to the upper threshold
r xs(t) was tangential with the lower threshold. Two types of
order collision could occur, termed Type I and Type II in [25],
s illustrated in Figs. 9 and 10. Type I border collisions yield
he creation/destruction of an unstable fixed point and occur
hen a fixed point of the map coincides with the side of the
ap where the derivative of the map is infinite. This corresponds
o periodic orbits of the model such that the homeostatic sleep
ressure switches at a tangency point. Type II border collisions
esult in creation/annihilation of either an unstable or a stable
ixed point and occur when a fixed point of the map coincides
ith the side of the gap where the derivative is finite. This
orresponds to periodic orbits in the two process model such that
he homeostatic sleep pressure bypasses the tangency point and
witches at a later time.
Details of how to construct the saddle–node bifurcations from

he map-based approach and how to find Type I and Type II
razing bifurcations are given in [30]. Here we demonstrate how
o calculate the saddle–node bifurcations from the nonsmooth
8

Fig. 8. Lyapunov exponent diagram in the (τw, τs) plane for the two-process
odel with C(t) = cos(2π t) and a±

= a. The (1, 1) and (1, 2) periodic orbits
ccupy large regions of parameter space. Tangential crossings of the lower
hreshold occur above the line τs = τ−

s (dashed green line). Tangential crossings
f the upper threshold occur to the right of the line τw = τ+

w (dashed black).
he down map is non-monotonic above the line τs = τ+

s (dashed brown).
he up map is non-monotonic to the right of the line τw = τ−

w (dashed light
lue). There is no signature of chaos since λ ≤ 0 across the whole plane. The
otted grey lines track out the locus of super-stable (1, 1) cycles. Parameters:
−

0 = 0.4, H+

0 = 0.7, a = 0.15.

low. Using a method analogous to that used by [30], we also
emonstrate how to find grazing bifurcations. In addition, we use
ur nonsmooth Lyapunov flow method to provide further insight
o the Arnol’d tongue-like bifurcation structure found in [25,30].

.1. Saddle–node bifurcations

Here we use results from Section 3 to determine Arnol’d
ongue structures for the regions in parameter space where stable
nd unstable (p, q) periodic orbits co-exist. At the tongue borders
he following two conditions must hold: (i) a (p, q) periodic so-
ution must exist, and (ii) the Floquet exponent of the orbit must
e zero (since stable and unstable periodic solutions intersect). To
llustrate this method we will construct saddle–node bifurcation
oundaries of (2, 3) periodic orbits. In order to construct a (2, 3)
eriodic solution that starts from the lower threshold we need to
etermine nine unknowns (t0, x0, ∆1, x1, ∆2, x2, ∆3, x3, x4) where
t0, x0) is the initial condition, ∆1, ∆3 (∆2, ∆4) are duration of
wake (sleep) episodes, x1, x3 (x2, x4) are state values at the upper
lower) threshold crossing, and at the saddle–node bifurcation
oints the orbit must have κ = 0 (a zero Floquet exponent).
or example, using formula (13), the Floquet exponent of a (2, 3)
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Fig. 9. Type I grazing with C(t) = sin(2π t) and τw = 0.75, τs = 0.25, H+

0 = 0.75. (a) An example of a Type I grazing of a (1, 1) periodic solution where (t0, x0) is the
nitial value, ∆1(∆2) the duration of awake (sleep) episodes, (T1, x1) ((T2, x2)) are switching times and states on the upper (lower) threshold. The orbit tangentially
ntersects with the upper threshold and at the tangency point a transition from wake to sleep state occurs. For H−

0 = 0.178 we find a = 0.0706 with Floquet
xponent κ = 24.5159 (and hence the periodic orbit is unstable). (b) For the same parameter values we build the one dimensional map with gap. The unstable fixed
oint of the map coincides with the side of the gap where the derivative of the map is infinite.
Fig. 10. Type II grazing with C(t) = sin(2π t) and τw = 0.75, τs = 0.25, H+

0 = 0.75. (a) An example of a Type II grazing (1, 1) periodic solution where (t0, x0) is
he initial value, ∆t

1, ∆̄1(∆2) the duration of awake (sleep) episodes, (T1, x1) ((T2, x2)) are switching times and states on the upper (lower) threshold. (T t
1, x

t
1) is the

angency point on the upper threshold where the orbit passes through this point continuously without switching. For H−

0 = 0.4809 we find a = 0.1121 with Floquet
xponent = −0.27991 (and hence the periodic orbit is stable). (b) For the same parameter values we build the one dimensional map with gap. The stable fixed
oint of the map coincides with the side of the gap where the derivative of map is finite.
eriodic orbit is

=
1
3

[
−

(
1
τw

(∆1 + ∆3) +
1
τs
(∆2 + ∆4)

)
+ ln |K1(T1)K1(T3)K2(T2)K2(T4)|] .

(33)

e will determine the saddle–node bifurcations of the (2, 3)
periodic orbit on the (H−

0 , a) plane, treating H−

0 as a bifurcation
parameter and computing a using the final condition κ = 0.
Hence at each saddle–node bifurcation point we need to deter-
mine ten unknowns (t0, x0, ∆1, x1, ∆2, x2, ∆3, x3, x4, a) by solving
the following ten equations simultaneously

x0 = H−

0 + aC(t0); x1 = 1 − (1 − x0)e−∆1/τw ,

x1 = H+

0 + aC(T1); x2 = x1e−∆2/τs ,

x2 = H−

0 + aC(T2); x3 = 1 − (1 − x2)e−∆3/τw ,

x3 = H+

0 + aC(T3); x4 = x3e−∆4/τs ,

x4 = x0; κ = 0.

(34)

To build tongue borders of the (2, 3) periodic orbit, we may then
simply perform a numerical continuation that follows the solu-
tion path of awith variation in H−

0 . This method is readily adapted
to construct the saddle–node bifurcation (tongue border) for any
(p, q) periodic orbit. We note that a tongue border defined by
saddle–node bifurcations ceases to exist when the saddle–node
bifurcation collides with a type II border collision, as discussed
in [25].
9

The equivalent map-based approach used in [25] for comput-
ing saddle–node bifurcations requires simultaneously solving the
equations for a period-orbit, along with the condition that the
derivative of the map at the fixed point corresponding to the
periodic orbit has gradient 1, i.e., for the (2, 3) example given
above, solving Eqs. (34) but replacing the condition κ = 0 with
µ = 1.

5.2. Type I grazing bifurcation

The necessary conditions for a Type I grazing bifurcation at
the upper (lower) threshold of a (p, q) periodic orbit are: (i)
a (p, q) periodic solution must exist, and (ii) the homeostatic
sleep pressure on wake (sleep) state must switch to sleep (wake)
state at the tangency point. This corresponds to the denomi-
nators in (10) and (11) vanishing (so that saltation operators
are not defined at grazing events). To determine Type I grazing
bifurcations of a (p, q) periodic solution we (numerically) simul-
taneously solve the equations that are needed to build the orbit
and the equation that holds at the tangency point. For example,
to determine a Type I grazing bifurcations of a (1, 1) periodic
orbit we would simultaneously solve the five equations described
by Eq. (7) together with the further tangency condition at the
upper threshold, (1 − x1) /τw = aĊ(t0 + ∆1), to determine the
six unknowns (t0, x0, ∆1, x1, x2, a). In the left panel of Fig. 9 we
illustrate a Type I grazing (1, 1) periodic orbit obtained in this
fashion. In the right panel of Fig. 9, we build the corresponding
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ne dimensional map with a gap where an unstable fixed point of
he map coincides with the side of the gap where the derivative
f map is infinite. Utilising similar methods, we can determine
ype I grazing solutions of any (p, q) periodic orbit.

.3. Type II grazing bifurcation

The necessary conditions for a Type II grazing bifurcation at
he upper (lower) threshold of a (p, q) periodic solution are: (i)
a (p, q) periodic solution must exist, and (ii) the homeostatic
sleep pressure on wake (sleep) state must continuously passes
through the tangency point without switching. Similar to the
description in Section 5.2, in order to determine Type II grazing
bifurcations of a (p, q) periodic solution we simultaneously solve
the equations needed to build the orbit and the equation that
holds at the tangency point.

To shed light on this method we show how to determine a
Type II grazing bifurcation of a (1, 1) periodic orbit. For an orbit
starting from the lower threshold we determine the unknowns
(t0, x0, ∆t

1, x
t
1, ∆̄1, x1, x2, a), by simultaneously solving

x0 = H−

0 + aC(t0); xt1 = 1 − (1 − x0)e−∆t
1/τw ,

xt1 = H+

0 + aC(T t
1);

(
1 − xt1

)
/τw = aĊ(T t

1),

x1 = 1 − (1 − xt1)e
−∆̄1/τw ; x1 = H+

0 + aC(T1),

x2 = x1e−∆2/τs; x2 = x0.

(35)

We recognise the collection of equations above as essentially
those given in (7) subject to two further constraints defining the
tangency condition at (∆t

1, x
t
1). In the left panel of Fig. 10 we

depict a Type II grazing of a (1, 1) periodic solution obtained
in this fashion. In the right panel of Fig. 10, we illustrate the
corresponding one dimensional map with gap where a stable
fixed point of the map coincides with the side of the gap where
the derivative of map is finite. Similarly, we can use this approach
to determine Type II grazing solutions of any (p, q) periodic orbit.

Note that the saltation approach cannot be used to deter-
mine the stability of a grazing orbit, since saltation factors are
not defined at tangencies (their denominators vanish). Nonethe-
less determining the stability of solutions close to the points in
parameter space where grazes occur is not problematic.

5.4. Arnol’d tongue structure

The saddle–node and grazing bifurcations described above can
combine to give a bifurcation set consisting of Arnol’d tongues, of
the type illustrated in Fig. 11. In this figure, the tongue borders
and the Lyapunov exponent are calculated from the nonsmooth
flow (not the associated map). We note that for the (1, 1) and
(2, 1) tongues shown, Type I and Type II grazing bifurcations
occur due to a tangency at the upper threshold only. However,
for the (2, 3) tongue Type I (Type II) grazing bifurcations occur
due to a tangency at the lower (upper) threshold.

To further explain the bifurcation of periodic solutions we
also label some regions inside and outside of the (1, 1) tongue
boundaries in Fig. 11. Inside the region (c) a stable and unstable
periodic orbit coexist. While moving from region (c) to (b) and (c)
to (e) along the solid black curve, periodic orbits are annihilated
via a saddle–node bifurcation (as illustrated in Fig. 5). Moving
from region (c) to (d) along the white dashed curve, Type II
grazing bifurcations occur due to a tangency with the upper
threshold and unstable periodic solutions are lost. Moving from
region (c) to (d) along the grey dashed curve, Type I grazing
bifurcations occur due to a tangency with the upper threshold and
unstable periodic solutions are lost. Moving from region (d) to (e)
along the solid white curve, Type II grazing bifurcations occur as a
10
Fig. 11. Arnol’d tongue structure for the two-process model with C(t) =

in(2π t) in the (H−

0 , a) parameter plane. Bifurcation curves for the largest
tongues are shown on top of the colour coded Lyapunov exponent λ, and a
good correspondence is observed at predicted tongue boundaries (where λ = 0).
Tangencies on the upper threshold occur above the dashed black line which is
given by a = (1− H+

0 )/(
√
4π2τ 2

w + 1). Tangencies on the lower threshold occur
above the dashed green line given by a = H−

0 /
√
4π2τ 2

s + 1. The up map is non-
monotonic above the dashed light blue line a = (1−H−

0 )/
√
4π2τ 2

w + 1. The down
map is non-monotonic above the dashed brown line a = H+

0 /
√
4π2τ 2

s + 1. For
small circadian amplitude, a the boundaries of Arnol’d tongues are determined
by saddle–node bifurcations only and are shown with solid black curves. With
increasing a the right branch of each tongue comes to an end, and the extension
of these, defined by a grazing bifurcation, are shown with solid white curves.
Inside each tongue, Type I and Type II grazing bifurcations form a U-shaped
region. Type I grazing bifurcations occur at the left boundary of a U-shaped
region (dashed grey and magenta curves) and Type II grazing bifurcations occur
at the right boundary (dashed and solid white curves). Grazing bifurcations
that occur due to a tangency on the upper threshold are depicted in white
and grey and those emerging due to a tangency on the lower threshold are
shown in magenta. Solid black curves show saddle–node bifurcations. Dashed
white (grey) curves demonstrate Type II (Type I) grazing bifurcations due to a
tangency with the upper threshold where unstable periodic solutions are lost.
Solid white curves depict Type II grazing bifurcations due to a tangency with
the upper threshold where stable periodic solutions are lost. Inside the region
(c) the model supports both stable and unstable periodic orbits. In region (d)
only stable solutions occur. In region (d), the dashed blue curve shows the
parameters that yield a (1, 1) super-stable cycle. The model does not have any
(1, 1) periodic solutions in region (b) and (e). We refer to Fig. 8 in [25] for
a similar bifurcation diagram built from a purely map based approach. Other
parameters: τw = 0.75, τs = 0.25, H+

0 = 0.75.

esult of a tangency with the upper threshold and stable periodic
olutions are lost. Hence, inside the region (d) only stable periodic
rbits exist, and in regions (b) and (e) there is no (1, 1) periodic
olution.
The particular bifurcation set shown in Fig. 11 is similar to

hat shown in Figure 8 of [25] but with two important additions.
irstly the bifurcation set has been shaded according to the value
f the Lyapunov exponent. Secondly, the parameter regime has
een extended from a ∈ [0, 0.2] to a ∈ [0, 0.4]. Shading according

to the value of the Lyapunov exponent highlights regions of
super-stable orbits. For further clarity, lines in parameter space
where super-stable orbits exist have been drawn in dashed blue.
Note that the maps for parameters supporting super-stable solu-
tions are relatively flat, so that all initial conditions quickly evolve
to the fixed point. As shown in [25], stable, periodic orbits exist
for all values in the (H−

0 , a) parameter space. Moving across the
tongue boundaries shown in Fig. 11 leads to other stable periodic
orbits and the bifurcations of these orbits follow a structure that
can be described by a Farey sequence, as discussed by Bailey
et al. [25].
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. Discussion and future work

Sleep is fundamental for the maintenance of mental health,
ody functioning and cognitive performance, but many aspects
f the sleep–wake mechanism still need further investigation, and
athematical modelling has a significant role to play [17,43]. The

wo-process sleep model of Borbély remains to this day one of the
ominant mathematical models for studying circadian and home-
static processes underlying sleep–wake regulation. Its properties
ave recently been re-examined using an event based approach
y Bailey et al. [25], emphasising the interesting dynamics that
an arise in maps with gaps. Here, we have shown that a direct
nalysis of the underlying nonsmooth flow, from which the event
ased description arises, is also possible.
Viewing the two-process model as a nonsmooth flow allows

or a simple numerical implementation using standard meth-
ds for the numerical solution of ordinary differential equations,
ugmented to detect and adjust for threshold crossings. This cir-
umvents the computational task to construct a one-dimensional
ap, as originally done by Bailey et al. [25]. Moreover, the vari-
tional equation for determining the Lyapunov exponent (of the
onsmooth flow) is easily formulated and can be naturally com-
uted alongside the numerical evolution of trajectories. Doing so
as allowed us to give more detail to the Arnol’d tongue structure
riginally reported in [25]. Although chaos was not observed
n this example, it is possible to find it in related models. In
articular, one variant of the two-process model, first introduced
n [44], has straight line trajectories between the upper and lower
ircadian processes, and when the lower circadian process is a
onstant function, as in the ‘threshold’ system of [24], we have
ound large regions of parameter space that support chaos using
he method of Section 4. We have also highlighted the usefulness
f saltation operators for treating the stability and bifurcation
f (p, q) orbits in the two-process model, again circumventing
he need for a map based approach. Other advantages of the
onsmooth perspective become more apparent when considering
he use of the two-process model at the network level, and this is
he main reason that we have developed the approach presented
ere.
Interestingly, at about the time that Borbély developed the

wo-process model, Petrillo and Glass developed a similar model
or the synchronisation of respiration to a mechanical ventilator.
his two-factor model also has activity that increases until it hits
n upper periodically-modulated threshold and then decreases
ntil it hits a lower periodically-modulated threshold [45]. More-
ver, they show that nonsmooth two-factor models arise natu-
ally in the study of the periodically forced van der Pol oscillator
odel (at least in some singular limit). The techniques developed
ere have equal applicability to these two-factor models and
rovide the applied mathematics community with another set of
ools for their analysis.

Perhaps surprisingly, networks of sleepers and their collective
ynamics have received very little attention in the mathematical
iology community, although it is a topic of major interest in
edicine and psychology, and see e.g. [26,46–48]. This is highly

elevant to a society where a large number of adults share a
ed with a partner. The potential implications for sleep quality,
arital quality, and physical health are many and varied [43,47–
9]. Indeed, the evidence that the individual sleeping behaviour
f one partner influences the other’s sleep is clear and perhaps
nsurprising [46,49,50,50–53]. Therefore, exploring mathemati-
al models of human sleep in the context of a dyad of co-habiting
dults is an important topic, and one that can naturally build on
he success of the two-process model albeit in a network setting.
o do this one requires the specification of interaction between
wo sleepers. One natural way to do this would be to consider a
11
direct state dependent interaction between sleepers or possibly
an indirect state dependent modulation of the circadian process
of one sleeper upon another. In either case the interaction would
almost certainly be a continuous one during the time of bed
sharing such that a network event based description would not be
as general as one provided for by a network nonsmooth flow. In
future work we will develop and analyse networks of interacting
two process models using the nonsmooth approach developed
here combined with tools from network science.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

This work was supported by the Engineering and Physical
Sciences Research Council, UK [grant number EP/V04866X/1].

Appendix. Saltation operator

Here we derive the saltation rule at event time t = T1 on the
upper threshold. A similar calculation can be done at any event
time t = T2i+1 (t = T2i), i ∈ Z, on the upper (lower) threshold.
We introduce indicator functions h1(x(t), t) = x(t) − H+(t) and
h2(x(t), t) = x(t) − H−(t) such that switching events occur when
h1(x(t), t) = 0 and h2(x(t), t) = 0 on the upper and lower thresh-
old, respectively. Hence the unperturbed (perturbed) trajectory
intersects with upper threshold at t = T1 (T̃1 = T1 + δT1) that
is prescribed by h1(x̄(T1), T1) = 0 (h1(x̃(T̃1), T̃1) = 0). Here we
ssume δT1 > 0, however for the case δT1 < 0 a similar argument
olds. A Taylor expansion up to the first order terms yields

1(x̃(T̃1), T̃1) = h1(x̃(T1 + δT1), T1 + δT1)

≃ h1(x̃(T1) + ˙̃x(T1)δT1, T1 + δT1)

≃ h1(x̄(T1) + δx(T1) + ˙̄x(T−

1 )δT1, T1 + δT1)

≃ h1(x̄(T1), T1) + ▽xh1(x̄(T1), T1)
[
δx(T1) + ˙̄x(T−

1 )δT1
]

+ ▽th1(x̄(T1), T1)δT1.

(A.1)

sing this along with the property h1(x̃(T̃1), T̃1) = 0 = h1(x̄(T1), T1)
e obtain

▽x h1(x̄(T1), T1)
[
δx(T1) + ˙̄x(T−

1 )δT1
]
+ ▽th1(x̄(T1), T1)δT1 = 0.

(A.2)

oreover we have

▽x h1(x, t) = 1 and ▽t h1(x, t) = −a+Ċ(t). (A.3)

hen by combining Eq. (A.2) and (A.3) we obtain

x(T1) + ˙̄x(T−

1 )δT1 − a+Ċ(t)δT1 = 0. (A.4)

ence by solving Eq. (A.4) for δT1 we find

T1 = −
δx(t)

˙̄x(t) − a+Ċ(t)

⏐⏐⏐⏐
t=T−

1

= −
δx(T−

1 )
(1 − x(T−

1 ))/τw − a+Ċ(T−

1 )
.

(A.5)
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Fig. A.12. An illustration of the evolution of a perturbation at the upper
switching threshold. The solid red line is the trajectory of an unperturbed orbit,
with the event at time T1 . The solid blue line is the perturbed trajectory with
n event at time T1 + δT1 where δT1 > 0. The approximation of x̃(T+

1 ) is given
y the blue dotted line.

e can approximate x̃(T+

1 ) by pulling back the perturbed solution
n amount of time δt starting from x̃(T̃+

1 ) and therefore we have
hat

x(T+

1 ) ≃ x̃(T+

1 + δT1) − ˙̃x(T+

1 + δT1)δT1 − x̄(T+

1 )

≃ x̄(T+

1 ) + δx(T−

1 ) + ˙̄x(T−

1 )δT1 − ˙̄x(T+

1 )δT1 − x̄(T+

1 )

= δx(T−

1 ) +
[
˙̄x(T−

1 ) − ˙̄x(T+

1 )
]
δT1

= δx(T−

1 ) +

[
1 − x(T−

1 )
τw

+
x(T+

1 )
τs

]
δT1,

(A.6)

here we used the approximations ˙̄x(T−

1 ) = ˙̃x(T−

1 ) and ˙̄x(T+

1 ) =

˙̃(T̃+

1 ). An illustration of the evolution of a perturbation across the
witching at time T1 is given in Fig. A.12. We refer the interested
eader to [32,35] that treats a similar situation for impacting
ystems. As a result, using Eq. (A.5) and (A.6) we obtain

x(T+

1 ) =

⎡⎢⎢⎣1 −

(
1 − x̄(T−

1 )
τw

)
−

(
−

x̄(T+

1 )
τs

)
1 − x̄(T−

1 )
τw

− a+Ċ(T−

1 )

⎤⎥⎥⎦ δx(T−

1 )

≡ K1(T1)δx(T−

1 ),

(A.7)

here K1(T1) denotes the saltation rule and is given by

K1(T1) =
a+Ċ(T1) +

a+

τs
C(T1) +

H+

0
τs

a+Ċ(T1) +
a+

τw
C(T1) +

H+

0 −1
τw

. (A.8)

y following a similar method, the saltation rule K2(T2) at t = T2
n the lower threshold can be computed as

2(T2) =
a−Ċ(T2) +

a−

τw
C(T2) +

H−

0 −1
τw

a−Ċ(T2) +
a−

τs
C(T2) +

H−

0
τs

. (A.9)

e note that the saltation rule at any t = T2i+1 on the upper
threshold is prescribed by K1(T2i+1) and that of at any t = T2i on
the lower threshold prescribed by K2(T2i).
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