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Parameter tuning is a challenging and time-consuming task, crucial to obtaining improved
metaheuristic performance. There is growing interest in cross-domain search methods,
which consider a range of optimisation problems rather than being specialised for a single
domain. Metaheuristics and hyper-heuristics are typically used as high-level cross-domain
search methods, utilising problem-specific low-level heuristics for each problem domain to
modify a solution. Such methods have a number of parameters to control their behaviour,
whose initial settings can influence their search behaviour significantly. Previous methods
in the literature either fix these parameters based on previous experience, or set them
specifically for particular problem instances. There is a lack of extensive research investi-
gating the tuning of these parameters systematically. In this paper, F-Race is deployed as
an automated cross-domain parameter tuning approach. The parameters of a steady-
state memetic algorithm and the low-level heuristics used by this algorithm are tuned
across nine single-objective problem domains, using different training strategies and bud-
gets to investigate whether F-Race is capable of effectively tuning parameters for cross-
domain search. The empirical results show that the proposed methods manage to find good
parameter settings, outperforming many methods from the literature, with different con-
figurations identified as the best depending upon the training approach used.
� 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In the context of the single-objective problems addressed in the present paper, combinatorial optimisation can be defined
as the process of attempting to find the best solution among all possible solutions for a problem, based on some objective
value defining the quality of a solution [1]. Many real-world combinatorial optimisation problems are very complex and
their search spaces too large to be exhaustively explored. Metaheuristics are commonly used to solve such complex prob-
lems, aiming to find a near optimal solution within a reasonable amount of time. A metaheuristic is defined by [2] as:

‘‘a high-level problem-independent algorithmic framework that provides a set of guidelines or strategies to develop
heuristic optimisation algorithms. A problem-specific implementation of a heuristic optimisation algorithm according
to the guidelines expressed in a metaheuristic framework is also referred to as a metaheuristic.”.
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According to this definition, the term ‘metaheuristic’ has been used to define two different concepts. The first one is the high-
level framework that is a set of strategies used in the development of optimisation algorithms [3]. The metaheuristic frame-
work is problem domain independent and can be applied across different problem domains. For example, iterated local
search has been applied to a range of optimisation problems, including the quadratic assignment problem [4] and bin pack-
ing problems [5] among others. The second usage of metaheuristic denotes the specific implementation of a heuristic opti-
misation algorithm within a general framework. A metaheuristic implementation is problem domain specific. For example,
the implementation of iterated local search for vehicle routing can not be used for solving the graph coloring problem. Meta-
heuristics (i.e., their implementations) are custom tailored to a specific problem domain, so modifying a metaheuristic to
solve another problem domain requires significant expert intervention.

Almost all heuristic optimisation methods come with parameters that need to be set, with overall performance highly
sensitive to the values of these parameters [6]. Determining the best parameter setting of a search method, i.e. parameter
tuning, is a challenging task and crucial for improved metaheuristic performance [7]. There are a number of different com-
mon approaches to parameter tuning. Some researchers tune the metaheuristic implemented for a particular domain for
each problem instance considered. Others sample a set of training problem instances from a domain, tune the metaheuristic,
and apply it with the best parameter settings to a set of ‘unseen’ problem instances from that domain. To this extent, most
parameter tuning studies in the scientific literature focus on a single domain and set the algorithm parameters specifically
for that domain, sometimes even for a single problem instance. Additionally, a wide range of automated parameter tuning
methods have been deployed in the literature, such as F-Race [8], REVAC [9], irace [10] and CRS-Tuning [11].

An emerging research area is the design of general-purpose problem-independent search methodologies which perform
well over a range of different problems, known as ‘cross-domain search’ methods. A key goal is to increase the level of gen-
erality of search methodologies, so that they are applicable to various problems without modification, while still delivering
good overall performance [12]. The definition of the term ‘hyper-heuristic’ was proposed by [13] as ‘‘a search method or
learning mechanism for selecting or generating heuristics to solve computational search problems”. Hyper-heuristics have
been succesfully deployed to solve a wide range of optimisation problems such as project scheduling [14,15], the traveling
salesman problem [16] and search-based software testing [17]. The HyFlex framework was developed to support the design
and comparison of cross-domain methods, and was utilised in the first Cross-domain Heuristic Search Challenge
(CHeSC2011) [18]. HyFlex is a framework which contains all of the problem-specific components of a number of optimisa-
tion problems, including low-level heuristics, solution representation and initialisation routines, and an evaluation function.
The high-level search method implemented within HyFlex can be a metaheuristic or a hyper-heuristic, using the available
low-level heuristics within the framework to modify a solution during the search.

We classify the parameters of meta/hyper-heuristics implemented in HyFlex as either ‘algorithm parameters’ or ‘heuristic
parameters’.Algorithmparameterscontrol thebehaviourof thehigher level searchstrategy,whileheuristicparametersdetermine
the extent of the changes that the corresponding low-level heuristicsmake to a solution. Previous studies employ a number of dif-
ferentways tomanage theseparameters. For theheuristic parameters, a considerablenumberofapproachesusearbitrary ‘default’
values,while some simply randomly choose values for these parameters. The general practice is to adapt the parameters to a new
instanceorproblemdomain.Therehasbeenvery limitedresearcheffortdedicatedtotuningthoseparameterseffectively forcross-
domain heuristic search. It is widely recognised that parameter tuning is crucial for improved metaheuristic performance when
solving a single problem. However, the value and importance of cross-domain parameter tuning are yet to be extensively inves-
tigated. To the best of our knowledge, there are only a few studies which utilised parameter tuning for cross-domain approaches,
and only to a limited extent. For example, [19] tuned their algorithm parameters with F-Race, but no parameter tuning experi-
mentswereperformed for heuristic parameters. In this case, nodetailwasprovided regarding the tuningprocess except the resul-
tant tuned values. A CHeSC2011 competitor, NAHH [20], utilised the irace method for parameter tuning. However, as the
parameter tuning experiments were performed for each problem domain independently, their approach cannot be considered
as truly ‘cross-domain’ in the same sense as we propose in this paper. Although algorithm parameters were tuned by REVAC by
[21,9], the lower level heuristic parameters were controlled during the search rather than tuned.

In our previous study [22], a steady-state memetic algorithm (SSMA) was used to solve instances from nine problem
domains using HyFlex, with both the algorithm and heuristic parameters of the SSMA tuned via a design of experiments
approach (the Taguchi method). Here, an automated parameter tuning method, F-Race [8], is deployed as a cross-domain
parameter tuning approach. In order to investigate the suitability of F-Race for cross-domain parameter tuning, a number
of training strategies considering different instances and run times are tested and compared. The performance of different
SSMAs using the parameters found by F-Race with different training strategies and the Taguchi method from [22] are com-
pared to the SSMA of [23] and the competing algorithms from the original CHeSC competition.

The structure of this paper is as follows: Section 2 provides a background covering HyFlex, including the selection hyper-
heuristics developed with this framework and their corresponding parameters. Section 3 describes the methodologies that
are used in this paper. The experimental design and computational results are presented in Section 4 and Section 5 respec-
tively. Section 6 offers a conclusion and potential directions for future work.

2. Cross-domain heuristic search and the HyFlex framework

In cross-domain heuristic search, the aim is to design generally applicable search methodologies that perform well not
only across instances of a single problem, but also across different problem domains [24]. The HyFlex framework was
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introduced to support and stimulate the development and comparison of more general purpose search methods, able to gen-
eralise well over a variety of problem domains and instances. Originally developed to support an international competition
(CHeSC2011), this framework provides problem-specific algorithm components so that algorithm designers can focus on
developing general-purpose heuristic optimisation algorithms without requiring problem domain expertise [18]. The first
version of the framework provided four problem domains (boolean satisfiability (SAT), one dimensional bin packing (BP),
personnel scheduling (PS) and permutation flowshop (PFS)), with two additional problem domains made available shortly
after CHeSC2011 (traveling salesman problem (TSP) and vehicle routing problem (VRP)). Subsequently, [25] implemented
three further problem domains in HyFlex (0–1 Knapsack (0–1 KP), Max-Cut (CUT), and Quadratic Assignment (QAP)), taking
the total number of problem domains available within this framework to nine.

There are four types of low-level heuristics (move operators) in HyFlex: mutation, ruin-recreate, crossover and local
search. For the mutation, ruin-recreate and local search heuristics, there are parameters. The intensity of mutation (IoM)
parameter is used in mutation and ruin-recreate heuristics to determine the extent of changes that the corresponding oper-
ator will make to the input solution. The depth of search (DoS) parameter determines the extent to which local search heuris-
tics are applied. These parameters are used to control the behaviour of a low-level heuristic and take values in the interval
[0,1]. The effect of a parameter value is problem and heuristic dependant, with the problem domain designer required to give
an appropriate meaning to these parameters [26]. For example, the depth of search parameter in the SAT domain controls the
number of iterations that the local search heuristic will complete, whereas in the PS domain it is used to determine the
search time for the local search operator. The intensity of mutation parameter in PFS controls the number of randomly
selected elements in the permutation to shuffle, whereas in the BP domain it decides the number of bins to remove pieces
from.

Although the underlying details of the behaviour controlled by these parameters do not need to be known by the high-
level algorithm designer, these parameters require effective parameter tuning or control to ensure high-quality algorithm
performance. In this paper, we use F-Race with a number of different training strategies to tune the intensity of mutation
and depth of search parameters, along with two algorithm parameters, providing a performance comparison to a number
of existing methods from the literature.
2.1. Selection hyper-heuristics using HyFlex and their parameters

In this section, the methodologies and the parameter tuning and control strategies of selection hyper-heuristics using
HyFlex are discussed. There are a growing number of studies in this area, each with their own methods and associated
parameters. We refer to the parameters included in the design of the high level hyper-heuristics as ‘algorithm parameters’.
Since these hyper-heuristics were implemented in HyFlex, they also use the HyFlex parameters (IoM and DoS) for low-level
heuristics. For a recent survey on selection hyper-heuristics including those developed using HyFlex, we refer the interested
reader to [27].

Most of the early work using the HyFlex framework, including many of the competitors to CHeSC2011, did not perform
any parameter tuning or control. These methods either made a random choice or used arbitrary ‘default’ values of 0.2 for the
IoM and DoS parameters (e.g. [28]). Although some controlled heuristic parameters during the search (e.g. [29]), there was
only one competitor (NAHH) to utilise a systematic parameter tuning method for these parameters [20]. However, as the
parameters were tuned for each problem separately, this cannot be considered as cross-domain parameter tuning in the
sense that we use in this paper. Despite the additional effort required to tune these parameters, NAHH was still outper-
formed in the competition by methods which did no parameter tuning at all (e.g. VNS-TW [28] and ML [30]). More recent
work has demonstrated the value of parameter tuning for success over this benchmark (e.g. [22]), highlighting both the
importance of parameter tuning and the variation in impact it has for different methods.

AdapHH [29] was the winner of the CHeSC2011 competition. It utilises an adaptive heuristic selection method and adap-
tive threshold move acceptance method. This algorithm determines the parameter settings of heuristics (IoM and DoS) adap-
tively via a reinforcement learning scheme. There are also a large number of algorithm parameters whose values were
determined after some preliminary experiments, with no special tuning method applied. VNS-TW [28] and ML [30], the sec-
ond and third placed entrants to the CHeSC2011 competition, are fundamentally based on two well-known search strategies
from the literature: variable neighborhood search and iterated local search respectively. Although both of these methods
performed no systematic or automated parameter tuning, using the default value of 0.2 for the heuristic parameters, they
both showed extremely strong performance over a wide range of benchmarks among the field of twenty entrants to the
competition.

NAHH [20] consists of several schemata that were tuned separately for each problem domain. The heuristic parameters,
IoM and DoS, were defined for all schemata and tuned using irace [31]. If the application of a local search heuristic takes
more than 10 s, the DoS parameter is set to the default value. As mentioned previously, the parameter tuning experiments
using irace were carried out independently for each of the problem domains, rather than in a cross-domain manner. [32]
modified and improved the traditional choice function of [33], proposing a modified choice function heuristic selection
method for cross-domain search. The choice function scores heuristics based on a combination of three measures and applies
the heuristic with the highest score at each step. Each measure has a weight to control the intensification and diversification
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during the search; thus, choosing the right parameter values for these weights is crucial. In their study, an adaptive mech-
anism inspired by reinforcement learning was proposed to control these parameter values. The modified choice function
delivered a great improvement over the original choice function for the HyFlex benchmark. The results show the importance

of parameter tuning since the classic choice function ranked 20th among the CHeSC2011 competitors, while the modified

choice function achieved rank 12th.
[34] used a data science technique called tensor analysis in order to detect the latent relationships between the low-level

heuristics and the hyper-heuristic. This method ranked second against the CHeSC2011 competitors, fixing the low-level
heuristic parameters to the default value of 0.2. [35] presented a method to automatically design the high-level strategy
of a hyper-heuristic with the Q-learning reinforcement learning technique. Although this method performed well, ranking
second against the CHeSC2011 competitors, no information was provided for the settings of the IoM and DoS parameters
used in this work.

Since the CHeSC2011 competition, a number of papers have presented results demonstrating improved performance over
AdapHH. Kheiri and Keedwell [36] used a method based on hidden Markov models (HMM), called the sequence-based selec-
tion hyper-heuristic (SSHH). Their method maintains a matrix of probabilities, determining the likelihood of selecting a par-
ticular parameter value for IoM and DoS from a discretised set of possible values. [37] presented a fair-share iterated local
search hyper-heuristic with a conservative restart condition. This method performed well despite using the default value of
0.2 for the heuristic parameters. Adubi et al. [38] combined some of the ideas from these two papers, proposing an ILS-based
method that also used a probability matrix to control parameter values. [39] proposed an iterated multi-stage selection
hyper-heuristic which considers the idea that not all low-level heuristics are necessarily useful for a particular problem
domain. The parameter values of the low-level heuristics are set to 0 initially, then the relevant parameter setting of a
selected heuristic is updated to a random value within [0,1] if the move does not improve the candidate solution, otherwise
the parameter setting remains the same. Zhao et al. [40] introduced a multi-stage hyper-heuristic, which incorporates both
single-point and population-based search mechanisms. In this work, the IoM and DoS parameters in HyFlex are set to 0.4 and
0.3 respectively, based on experimental experience.

3. Related methodologies

In this work, we will focus on the performance of parameter tuning methods for a steady state memetic algorithm (SSMA)
[23], using instances from a range of HyFlex problem domains. Although our main focus is on different training strategies for
the F-Race automated parameter tuning method, we will also compare to previous parameter tuning work based on Taguchi
design of experiments. The background of SSMA, F-Race and Taguchi design of experiments are discussed in the subsequent
subsections.

3.1. Steady-state Memetic Algorithm (SSMA)

Originally presented in the context of HyFlex by [23], the steady-state memetic algorithm (SSMA) is a metaheuristic
approach, combining the ideas of evolutionary computation and local search. Operating over a population of solutions, SSMA
iteratively attempts to improve the quality of the population via successive application of crossover, mutation and local
search heuristics. SSMA utilises low-level heuristics from all four categories within HyFlex (mutation, ruin-recreate, cross-
over and local search). In addition to the mutation heuristics, ruin-recreate heuristics are also used for the purpose of ‘mu-
tation’ within SSMA. The pseudocode of this approach is given in Algorithm1.
Algorithm1: Pseudocode of the SSMA
156
Set the parameter values for PopSize, TourSize, IoM and DoS

Generate an initial population consisting of PopSize random individuals

Apply a random local search heuristic to each individual

while termination criterion is not satisfied do

Parent1  Select-Parent(population, TourSize)

Parent2  Select-Parent(population, TourSize)

XO_ID = Random(1, MAX_CROSSOVER)

Child  ApplyCrossover (XO_ID, Parent1, Parent2)

MU_ID = Random(1, MAX_MUTATION)

Child  ApplyMutation (MU_ID, IoM, Child)

LS_ID = Random(1, MAX_LOCALSEARCH)

Child  ApplyLocalSearch(LS_ID, DoS, Child)

Replace the worst individual in the population with Child
end while
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Firstly, a population of solutions is created using the HyFlex initialisation routine provided in each domain with the
desired number of individuals specified by the value of the population size (PopSize) parameter. As a part of the initialisation
process, each generated individual is improved by applying a randomly selected local search operator. Then the evolutionary
cycle starts. At each step, two parents are selected from the population using tournament selection. This method chooses a
number of individuals of tournament size (TourSize) at random, the individual with the best fitness wins the tournament
and is selected as a parent. In the case of a tie between individuals in a tournament, the first individual is assigned as a par-
ent. A randomly chosen crossover operator is then applied to the two parents in order to create an offspring solution (Child).
Although there are many crossover operators which create two offspring in the scientific literature, within HyFlex only one
offspring is generated. The offspring then undergoes mutation and local search (hill-climbing) processes successively. At the
end of the evolutionary cycle, the resultant solution replaces the worst individual in the current population. This evolution-
ary process continues until the termination criterion is satisfied.

[23] presented results over the six HyFlex problem domains available at that time, compared to another memetic algo-
rithm variant and the existing hyper-heuristics from the literature. Although some success was demonstrated in a small
number of problem domains, particularly PFS and TSP, the memetic algorithms were typically outperformed by single-
point based selection hyper-heuristics. [22] extended the original SSMA work of [23], demonstrating that effective tuning
of this method via Taguchi design of experiments was able to deliver significant performance gains for a large majority of
the instances tested.
3.2. Taguchi design of experiments method

The Taguchi method is a well-known design of experiments technique to tune parameters with respect to a fractional
factorial design. Taguchi proposed a special set of orthogonal arrays for experiments that consist of a subset of combinations
of different parameters set to different values. These standard orthogonal arrays minimise the number of experiments
required to understand the impact different parameters have on performance, based on the assumption that independent
performance and pairwise interaction between different parameters are most important. In an orthogonal array, the columns
correspond to the parameters (sometimes referred to as factors), the column entries represent the values of each parameter,
and the rows show the parameter combinations to test [41]. Taguchi orthogonal arrays are balanced to ensure that all values
of all parameters are considered equally. They are balanced in two ways: (1) there are an equal number of settings of each
parameter in a column, (2) any two columns are balanced (pairwise orthogonal) so that there are an equal number of pos-
sible parameter combinations [42]. As a concrete example, given four parameters (P1 - P4) that are each able to take one of
three values (0, 0.5, 1). Full enumeration of all combinations of parameters would require 34 ¼ 81 experiments to be com-
pleted. However, the use of an orthogonal array that is balanced as described above allows this to be reduced to only 9 exper-
iments, as shown in Table 1.

In the combinatorial optimisation literature, [43] used the Taguchi method to tune genetic algorithm parameters, such as
population size, crossover rate, mutation rate and stopping condition, to solve a job shop scheduling problem. [44] also con-
sidered a job shop scheduling problem variant, tuning the parameters of a differential evolution algorithm. [45] considered
the fixed charge transportation problem, using Taguchi orthogonal arrays to tune the parameters of three metaheuristics,
including well-known methods such as a genetic algorithm and simulated annealing. Different orthogonal arrays were used
for each metaheuristic based on their required number of parameters and parameter values.

In our previous study [22], we tuned the parameters of an SSMA with the Taguchi method using a limited number of
instances from several problem domains. The best parameter settings found were observed to generalise well to unseen
instances. Unlike other studies in the literature, the parameters were tuned for cross-domain search over multiple problem
domains rather than just for a single problem domain.
3.3. F-Race

F-Race [8] is an automated parameter tuning method for finding the best initial parameter settings for metaheuristics. An
automated parameter tuning method finds one or more configurations (parameter settings for all parameters) which per-
form well on the given problem. This is an iterative process, at each iteration the candidate configurations are evaluated
on a set of training instances and the evaluations are returned as input to the next iteration [46]. This iterative process con-
tinues until the configuration budget is reached. At the end of the search, the best configurations are returned by the method.
F-Race follows a racing procedure using sequential statistical testing to find a configuration for metaheuristics that performs
well. The idea behind F-Race is to discard statistically significantly worse performing configurations as soon as sufficient evi-
dence is found, focusing on more promising configurations. F-Race finds a good configuration from a finite set of parameter
combinations which are collected using full factorial design. In the case of continuous parameters, these need to be discre-
tised, as F-Race requires discrete levels for each parameter to form a full factorial design.

The process starts by evaluating all possible configurations on r instances, where r represents the minimum number of
instances considered before any elimination in order to gather enough information to make an informed decision. Friedman
two-way analysis of variance by rank, also known as the Friedman test, is applied to assess whether there is any statistically
significant differences between configurations. The null hypothesis of this test is ‘‘there are no differences between the con-
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Table 1
Example of experiments required using Taguchi design of experiments with four parameters able to take three values (Taguchi L9 array)

Experiment Number P1 P2 P3 P4

1 0 0 0 0
2 0 0.5 0.5 0.5
3 0 1 1 1
4 0.5 0 0.5 1
5 0.5 0.5 1 0
6 0.5 1 0 0.5
7 1 0 1 0.5
8 1 0.5 0 1
9 1 1 0.5 0
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figurations”. If the null hypothesis is rejected, pairwise comparisons are performed between the best ranked candidate con-
figuration and each other configuration. All poor performing candidate configurations that are statistically significantly dif-
ferent to the best configuration are eliminated, with the remaining configurations passing to the next iteration. The process
continues considering the next instance.

To explain this approach formally, assume that the race reaches iteration k with n remaining candidate configurations.
The observed objective costs are stored in a k � n array. According to the Friedman test, there are k blocks where each block
represents the cost of each configuration on instance il at iteration k. In the Friedman test, instead of using the objective func-
tion cost values directly rankings are used. The costs are replaced with ranks within each block and the average rank is used
in case of ties. Rlj corresponds to the rank of configuration cj in block l and Rj is the sum of ranks for cj. The Friedman test
statistic (T) is shown in Eq. 1:
T ¼
ðn� 1Þ

Xn

j¼1
ðRj � ðkðnþ 1Þ=2ÞÞ2

Xk

l¼1

Xn
j¼1

R2
lj � ðknðnþ 1Þ2Þ=4

ð1Þ
If the observed value of T is greater than the (1-a) quantile of the X2 distribution, then we reject the null hypothesis and
conclude that at least one configuration performs better than at least one other. In this case, pairwise comparisons between
the best ranked parameter configurations from the Friedman test and each of the other remaining configurations are con-
ducted. In F-Race, the following test is used as Friedman post hoc test:
jRj � Rhjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kð1� T

kðn�1ÞÞð
Xk

l¼1

Xn
j¼1

R2lj�
knðnþ1Þ2

4 Þ

ðk�1Þðn�1Þ

vuuut
> t1�a=2 ð2Þ
If the result of Eq. 2 is greater than the 1-a=2 quantile of the Student’s t-distribution, then we are confident to eliminate the
worse performing configurations. All poor performing candidate configurations with a statistically significant difference are
discarded, and the remaining configurations are retained for the next stage.

In the literature, F-Race has been used for offline parameter tuning when solving different types of combinatorial opti-
misation problems. The parameters of a Max–Min-Ant-System metaheuristic were tuned using F-Race on a set of instances
of the traveling salesman problem by [8]. [47] used F-Race to find the best parameter configurations for iterated local search
and simulated annealing applied to a timetabling problem. [48] tuned the relevant parameters of four algorithms using F-
Race on instances of the vehicle routing problem. The common feature of these studies is that they all tuned the parameters
of metaheuristics solving a single combinatorial optimisation problem. In this paper, we investigate the suitability and the
application of F-Race for cross-domain search, tuning both the algorithmic and heuristic parameters of a high-level search
method applied to a number of different problem domains.
4. Experimental design and setup

In this paper, we investigate the suitability of F-Race for cross-domain parameter tuning. This method has been used in
many studies previously. However, its performance for cross-domain parameter tuning, in which the optimisation problems
being solved are characteristically different, has not yet been tested. Previous work has shown that parameter tuning via the
Taguchi method can enhance the performance of an SSMA in the context of cross-domain search significantly [22]. In this
work, we test different strategies for the application of F-Race, to investigate how sensitive the method is to the instances
being used for training and the order they appear, as well as the run time available for tuning. The performance of SSMAs
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using the parameters found by F-Race, the Taguchi method [22] and an existing SSMA from the literature [23] are compared
along with the competing algorithms from the original CHeSC competition.

We will investigate the tuning of two algorithm parameters and two heuristic parameters of SSMA. The algorithm param-
eters are the population size (PopSize) and tournament size for tournament selection (TourSize). The heuristic parameters
are intensity of mutation and depth of search (IoM and DoS) in HyFlex. The parameter setting options (values or levels) used
during the tuning experiments for IoM and DoS are 0.2, 0.4, 0.6, 0.8 and 1.0. The potential values for PopSize are 5, 10, 20, 40
and 80. For the TourSize parameter, the possible values are 2, 3, 4 and 5.

4.1. Training strategies for cross-domain parameter tuning with F-Race

In order to investigate the suitability of F-Race for cross-domain parameter tuning and the impact of implicit design deci-
sions made when deploying it, a number of training strategies are tested and compared. These strategies are based on train-
ing using a different number of instances across a different number of domains, and different orderings of instances to be
provided to F-Race. Of the four strategies tested, the first three use eight training instances from the four original ‘public’
problem domains of the CHeSC2011 competition (two each from SAT, BP, PS, PFS). The final strategy uses twelve instances
from all six problem domains (additionally two each from TSP and VRP) of CHeSC2011. These training instances are the same
instances which were used in our previous studies [49,22] in order to be able to make a direct comparison. The strategies
used to test F-Race are as follows:

� Default: Add one instance from one of the four ‘public’ problem domains at each iteration, in the ‘default’ HyFlex domain
ordering (SAT, BP, PS, PFS). This strategy acts as a control, enabling a better comparison to the CHeSC competition
entrants, as only these domains were available to these methods in advance of the competition.
� Grouped: Add four instances as a group, one from each of the four problem domains at each iteration. This strategy aims
to investigate whether grouping multiple instances from different domains can benefit the training process.
� Reverse: Add one instance from one of the four problem domains at each iteration, with the domains considered in a
reverse order to the Default strategy. This strategy will demonstrate the impact of modifying the order in which problem
domains are considered in the training process.
� Extra: Add one instance from one of the six CHeSC2011 problem domains (SAT, BP, PS, PFS, TSP, VRP) at each iteration.
This strategy will show whether adding additional information in the form of other problem domains will impact the per-
formance of the training method.

In the experiments, F-Race starts with 500 parameter configurations (combinations) which are created by full factorial
design, and eliminates statistically significantly worse performing configurations at each iteration. Before the first elimina-
tion, all training instances are evaluated, with one run performed for each configuration on each instance. For example, if the
number of training instances is eight, then the number of initial iterations without elimination of candidate configurations
(r) is also eight. Once every configuration has been evaluated, F-Race performs the Friedman test. If there is no evidence of a
statistically significant difference, then an instance in the queue with a different seed is added to the test. If the null hypoth-
esis is rejected and there is evidence of statistically significant difference, the configurations which are statistically signifi-
cantly worse are eliminated. F-Race continues with the remaining candidate configurations considering another instance.
Here, ‘another instance’ refers to solving the instance with a different random seed. The configuration budget of F-Race is
determined as 31 iterations for each of the training instances. This means that if the number of training instances is eight,
then the total budget for F-Race will be 31 * 8 = 248 iterations. 31 runs is the standard used for comparison in the literature
for this benchmark. When the configuration budget is reached, F-Race reports the remaining configurations and their mean
ranks over all the instances. The one with the best rank is chosen as the best configuration.

4.2. Parameter tuning with F-Race using different computational budgets

Methods in the literature performing cross-domain search using the HyFlex framework typically operate with a nominal
run time budget of 10 min. As the full factorial design gives 500 possible parameter configurations, using the full time budget
of ten minutes would require 500 * 10 = 5000 min to execute. Without applying any tests and reducing the number of can-
didate configurations, for eight training instances, F-Race would perform eight iterations, requiring 5000 * 8 = 40000 min
computational time before any elimination takes place. As a point of reference, the total time used by [22] for the Taguchi
method was 62000 min, and was reduced to 9300 min by [49]. Given that it could take F-Race a significant number of rep-
etitions before an elite set of non-dominated configurations are identified, the run time required is potentially extremely
large. Hence, there is a need to try to reduce the computational effort required to obtain useful parameter settings. [49]
demonstrated that using the Taguchi method, the same best configuration could be found by reducing the run time for exe-
cution of each configuration to 1 min. Here, we will also reduce the run time budget for F-Race significantly, presenting
experiments using a run time budget of 1 and 2 min per configuration to investigate how the results change with different
levels of computational effort. We will perform these experiments for each of the four training strategies of F-Race described
above, analysing the behaviour and comparing the performance of different strategies with different budgets. To facilitate
comparisons across different hardware when using HyFlex, a benchmarking tool was provided by the original competition
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organisers. According to the tool, our machine is allowed a budget of 41.5 and 83 nominal seconds run time for the execution
of each instance when training, equivalent to 1 min and 2 min respectively on the competition machines. For testing, 415 s
on our machine is equivalent to 10 nominal ‘CHeSC’ minutes.
5. Experimental results

This section presents the results and analysis of our experiments using F-Race and the HyFlex framework for cross-
domain search. Section 5.1 and 5.2 present the experiments for F-Race with 1 min and 2 min budgets respectively, discussing
the best configurations found before comparing to the existing methods from the literature [23,22]. Section 5.3 compares the
best configurations found in the previous subsections using 1 and 2 min budgets to one another, before Section 5.4 compares
them to the selection hyper-heuristics from the literature submitted to the original CHeSC competition.

5.1. F-Race with 1 min run time

The first set of experiments uses F-Race with a 1 min time budget per instance. The list of the remaining configurations at
the end of a run for each of the four training strategies are given in Table 2 with their ranks provided in parentheses. The top
three configurations for each strategy are highlighted bold. Starting from the original 500 configurations, the progress of the
total remaining configurations over time for each of these strategies is provided in Fig. 1. Among the remaining parameter
configurations, the best candidate and the total time that F-Race used to find this result are as follows:

� Default: Fourteen configurations remained when the configuration budget was reached. Conf410 has the best mean rank,
thus it is considered the best configuration. The total time required for F-Race to find this result is 12338 min.
� Grouped: Twelve configurations remained when the configuration budget was reached. Conf410 has the best mean rank,
thus it is considered the best configuration. The total time required for F-Race to find this result is 13296 min.
� Reverse: Nine configurations remained when the configuration budget was reached. Conf410 has the best mean rank,
thus it is considered the best configuration. The total time required for F-Race to find this result is 9359 min.
� Extra: Eighteen configurations remained when the configuration budget was reached. Conf410 has the best mean rank,
thus it is considered the best configuration. The total time required for F-Race to find this result is 17690 min.

The results show that all of the strategies found the same best configuration: Conf410. The parameter values of Conf410 are
as follows: population size 80, tournament size 2, intensity of mutation 0.4 and depth of search 1.0. The order of instances or
adding instances as a group did not have a significant effect on the final results with this run time budget. Almost all of the
remaining configurations have a population size of 80. In addition, the DoS value for all of the remaining configurations is
either 1.0 or 0.8, with 1.0 occurring in 43 out of the 53 remaining configurations across all four strategies. For the TourSize
and IoM parameters, no dominant value was found. As can be seen from the progress plots of the number of remaining con-
figurations in Fig. 1, more than half of the configurations are eliminated very quickly. After a few eliminations, it becomes
more difficult to find a statistically significant difference between the remaining configurations. The Extra strategy, which
uses a larger number of instances for training (twelve instances from six domains, as opposed to eight from four for the other
three strategies), eliminated the largest number of configurations at the first elimination step (after the first r iterations)
compared to the other strategies. Despite this, more configurations remained at the end, indicating that the increased level
of information provided by the additional instances and problem domains made it more difficult to distinguish between the
performance of parameter configurations.

5.1.1. Performance comparison of SSMA-Ozcan2013 [23] and SSMA tuned by F-Race using 1 min run time
The base SSMA that we are tuning with F-Race is the same algorithm which was proposed by [23], referred to herein as

SSMA-Ozcan2013. The parameters of SSMA-Ozcan2013 were not systematically tuned, offering poor results when compared
to the CHeSC2011 participants. In this section, SSMA-Ozcan2013 and the best configuration SSMA found by F-Race with a
1 min per configuration budget (denoted as SSMA-Conf410) are compared. SSMA-Conf410 is evaluated on the same thirty
instances from six problem domains as [23], with 31 runs performed for each instance, and a time limit of 10 nominal min-
utes as defined by the CHeSC competition. These thirty instances include the eight instances used for training in the Default,
Grouped and Reverse strategies, and the twelve instances used for training by the Extra strategy.

The performance comparison between SSMA-Conf410 and SSMA-Ozcan2013 using a one-tail Wilcoxon signed ranked test
is reported in Table 3, along with the mean, median and best results found by each approach over 31 runs for each of the
thirty instances. The results of the statistical tests are given in the ‘vs.’ column of the table. ‘P’ indicates that the result
on the left is better than the result on the right on average, with ‘>’ denoting that this difference is statistically significant
within a 95% confidence interval. Similarly, ‘<’ and ‘6’ denote that the result on the right is better on average with and with-
out a statistically significant difference. Later comparisons using Wilcoxon signed-rank test calculations also include cases
where the sum of positive ranks and the sum of negative ranks are exactly the same, indicated by a ‘=’.

SSMA-Conf410 outperforms SSMA-Ozcan2013 with a statistically significant difference on 17 instances, with the opposite
true for 7 instances. There is no statistically significant difference between the two algorithms in the other 6 instances.
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Table 2
Remaining configurations for each strategy with 1 min run time. The top three configurations for each strategy are highlighted bold, with their ranks provided
in parentheses.

Config No. PopSize TourSize IoM DoS Default Grouped Reverse Extra

Conf305 40 2 0.2 1 (13)
Conf404 80 2 0.2 0.8 (13) (11) (18)
Conf405 80 2 0.2 1 (6) (6) (5) (8)
Conf409 80 2 0.4 0.8 (12) (17)
Conf410 80 2 0.4 1 (1) (1) (1) (1)
Conf414 80 2 0.6 0.8 (15)
Conf415 80 2 0.6 1 (8) (8)
Conf420 80 2 0.8 1 (11) (16)
Conf425 80 2 1 1 (10) (8) (10)
Conf430 80 3 0.2 1 (2) (2) (3)
Conf435 80 3 0.4 1 (5) (3) (2) (5)
Conf440 80 3 0.6 1 (3) (4) (3) (2)
Conf445 80 3 0.8 1 (6)
Conf450 80 3 1 1 (9) (9) (7) (6)
Conf454 80 4 0.2 0.8 (14) (12) (14)
Conf455 80 4 0.2 1 (4) (5) (4) (4)
Conf460 80 4 0.4 1 (7) (7) (7)
Conf464 80 4 0.6 0.8 (11)
Conf465 80 4 0.6 1 (9) (12)
Conf470 80 4 0.8 1 (10) (9)

Fig. 1. Progress of the number of remaining configurations over iterations for each strategy with 1 min run time.
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SSMA-Conf410 is clearly more successful on problem instances in the SAT, BP and PS domains. The results show that overall,
the configuration found by F-Race outperforms SSMA-Ozcan2013, providing a parameter combination which performs well
for cross-domain search with a relatively low computational budget for the training runs.
5.1.2. Comparison of SSMAs tuned by Taguchi and F-Race using 1 min run time
This section compares the performance of two tuning methods for cross domain search. The best parameter setting

obtained by [22] using Taguchi was 0.2 for IoM, 1.0 for DoS, 5 for PopSize and 5 for TourSize, and is referred to as SSMA-
Taguchi in the subsequent sections. It was evaluated over problem instances taken from nine different problem domains,
both the original six domains from the CHeSC competition and the additional three domains introduced by [25]. To be able
to investigate and compare the cross-domain performances of these two methods, SSMA-Conf410 is used to solve all 45
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Table 3
Performance comparison of SSMA-Conf410 and SSMA-Ozcan2013 based on mean, median and best fitness values obtained from 31 runs for each instance of
CHeSC2011.

SSMA-Conf410 SSMA-Ozcan2013

PD ID mean median best vs. mean median best

SAT 1 9.903 9 5 > 21.161 22 8
2 33.545 40 12 > 52.484 53 37
3 16.387 11 4 > 35 37 10
4 16.581 17 8 > 27.742 27 16
5 13.774 14 11 > 19.194 18 14

BP 1 0.037 0.036 0.030 > 0.083 0.082 0.075
2 0.007 0.008 0.007 > 0.015 0.013 0.012
3 0.008 0.008 0.006 > 0.022 0.022 0.019
4 0.109 0.109 0.108 > 0.111 0.111 0.110
5 0.014 0.014 0.012 > 0.043 0.041 0.036

PS 1 31.290 32 27 > 51.129 50 37
2 10396.387 10338 9991 > 72015.613 70477 52056
3 3275.968 3272 3215 > 13203.710 11859 5581
4 1816.226 1813 1557 > 2942.419 2655 1820
5 357.936 360 321 > 435.645 431 385

PFS 1 6264.742 6264 6241 < 6257.806 6258 6231
2 26907.548 26908 26867 < 26884.935 26884 26813
3 6349.903 6357 6319 P 6351.841 6363 6318
4 11458.258 11458 11419 < 11441.806 11441 11410
5 26705.452 26707 26649 6 26699.226 26703 26626

TSP 1 48203.808 48194.920 48194.920 P 48227.747 48194.920 48194.920
2 21153257.9 21159375.5 21050272.3 P 21155458.2 21160876 20969186
3 6827.100 6826.495 6810.696 6 6825.522 6825.663 6800.708
4 68546.171 68639.410 67991.239 < 68123.369 68059.971 6800.708
5 53711.126 53702.434 53192.830 P 53810.138 53748.537 52685.992

VRP 1 93723.112 93371.914 90116.035 < 71768.053 71480.081 67820.589
2 13293.735 13364.073 12308.190 > 14324.522 14411.658 13358.612
3 209689.948 209215.368 196823.398 < 176206.081 177131.584 167704.513
4 20727.215 20658.282 20653.158 > 21647.018 21675.195 20678.097
5 172492.221 172285.478 166707.184 < 152642.040 152829.839 149032.552
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instances from the same nine HyFlex problem domains. As both SSMA-Taguchi and F-Race (with the Default, Grouped and
Reverse strategies) were trained on the same instances from four of the problem domains, and then tested on the same
instances from nine of the problem domains, we can compare these directly. Table 4 provides a comparison of the perfor-
mance of SSMA-Taguchi and SSMA-Conf410 over 31 runs of each instance.

Based on these results, we see that SSMA-Taguchi outperforms SSMA-Conf410 with a statistically significant difference on
25 of the 45 instances tested. SSMA-Conf410 outperforms SSMA-Taguchi with a statistically significant difference for 14
instances, while there are 6 instances where no statistically significant difference is found. SSMA-Taguchi performs well
on all instances of the PS and PFS domains; on the other hand, SSMA-Conf410 performs well on all BP instances. SSMA-
Taguchi also performs better for most of the instances of the SAT and TSP problem domains. For the remaining domains,
it is more difficult to draw general conclusions about the better approach, since there are instances for both of the config-
urations where they perform best. Overall, we conclude that SSMA-Taguchi outperforms SSMA-Conf410 over these nine
problem domains. Although it is difficult to compare the overall computational effort spent training between these two
approaches, it is worth highlighting that although the same set of training instances were used, each configuration was
tested with a longer run time of 10 min. It might be that the 1 min computational budget is insufficient for F-Race to effec-
tively identify a good parameter set for the longer testing runs.

5.2. F-Race with 2 min run time

In this subsection we extend the run time available when training F-Race to 2 min per problem instance, presenting
results for the same four training strategies as before. The list of configurations remaining at the end of each application
of F-Race for the four training strategies are given in Table 5, with the top three configurations (where applicable) for each
strategy highlighted bold. The relative ranking of each configuration is provided in parenthesis. The progress of the number
of remaining configurations over iterations for each of the strategies is provided in Fig. 2. The results of these four strategies
are as follows:

� Default: Four configurations remained when the budget was exhausted. Conf424 has the best ranking among the remain-
ing configurations. The total time that F-Race used to find this result is 43838 min.
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Table 4
Performance comparison of SSMA-Conf410 and SSMA-Taguchi based on mean, median and best fitness values obtained from 31 runs for each instance of
CHeSC2011 and five instances each from three additional HyFlex problem domains.

SSMA-Conf410 SSMA-Taguchi

PD ID mean median best vs. mean median best

SAT 1 9.903 9 5 6 9.484 9 3
2 33.545 40 12 6 30.065 36 9
3 16.387 11 4 6 15.387 10 3
4 16.581 17 8 < 13.613 13 9
5 13.774 14 11 < 12.742 13 9

BP 1 0.037 0.036 0.030 > 0.063 0.063 0.058
2 0.007 0.008 0.007 > 0.011 0.012 0.008
3 0.008 0.008 0.006 > 0.034 0.034 0.029
4 0.109 0.109 0.108 > 0.11 0.11 0.11
5 0.014 0.014 0.012 > 0.061 0.06 0.054

PS 1 31.29 32 27 < 21.548 21 16
2 10396.387 10338 9991 < 9705.129 9677 9477
3 3275.968 3272 3215 < 3211.452 3219 3146
4 1816.226 1813 1557 < 1596.871 1589 1344
5 357.936 360 321 < 318.065 315 290

PFS 1 6264.742 6264 6241 < 6249.581 6251 6219
2 26907.548 26908 26867 < 26812.452 26811 26754
3 6349.903 6357 6319 < 6336.387 6333 6303
4 11458.258 11458 11419 < 11376.613 11375 11333
5 26705.452 26707 26649 < 26632.548 26640 26515

TSP 1 48203.81 48194.92 48194.92 P 48221.583 48194.92 48194.92
2 21153257.9 21159375.5 21050272.3 < 20912006.4 20885233 20789117
3 6827.1 6826.495 6810.696 < 6811.145 6811.518 6799.111
4 68546.171 68639.41 67991.239 < 67029.810 67043.255 66518.735
5 53711.126 53702.434 53192.83 < 53503.576 53457.422 52247.568

VRP 1 93723.112 93371.914 90116.035 < 71946.305 70776.497 65967.938
2 13293.735 13364.073 12308.190 > 13826.295 13384.024 13328.791
3 209689.948 209215.368 196823.398 < 147512.686 148001.434 143921.208
4 20727.215 20658.282 20653.158 > 21275.493 21648.051 20654.219
5 172492.221 172285.478 166707.184 < 147372.783 147228.056 145266.409

KP 1 �1250624.194 �1250591 �1255807 > -1218268.419 -1218057 -1238755
2 -431338.419 -431338 -431347 < �431357.581 �431357 �431363
3 �4303821.484 �4305327 �4321742 > -4259007.355 -4259569 -4272767
4 �1577174.645 �1577175 �1577175 > -1574342.419 -1572999 -1577175
5 -1467361.903 -1467361 -1467381 < �1467381.355 �1467362 �1467429

CUT 1 -273265650.7 -273353749 -274962313 < �273724297.5 �274024670 �276334160
2 �3024.452 �3022 -3037 > -3018.323 -3018 -3040
3 �13128.742 �13129 -13201 P -13127.226 -13128 �13206
4 -9802.161 -9805 -9860 < �9962.935 �9965 �10010
5 -2794.452 -2790 -2844 < �2819.613 �2822 �2860

QAP 1 154141.419 154136 153992 > 154500.194 154472 153978
2 149884.968 149880 149756 > 150315.677 150330 149738
3 1186951649.4 1186634168 1185996137 6 1190423963 1189780533 1185996137
4 44871905.7 44871022 44858486 < 44852272.8 44853276 44826672
5 273328 273332 273140 > 273691.677 273726 273220

Düriye Betül Gümüs�, E. Özcan, J. Atkin et al. Information Sciences 619 (2023) 153–171
� Grouped: Only two configurations remained when the budget was exhausted. The IoM and DoS values of these config-
urations were the same, while the other two parameters had different settings. Among these two configurations, Conf424
has the better rank. The total time that F-Race used to find this result is 35392 min.
� Reverse: Sixteen configurations remained when the budget was exhausted. Conf30 has the best ranking among the
remaining configurations. The total time that F-Race used to find this result is 54354 min.
� Extra: Only two configurations remained when the budget was exhausted. Among these two configurations, Conf424 has
the better rank. The total time that F-Race used to find this result is 60138 min.

Three of the strategies found Conf424 to be the best setting while one strategy found a different configuration (Conf30). The
parameter values of Conf424 are 80 for population size, 2 for tournament size, 1.0 for intensity of mutation and 0.8 for depth
of search. Conf30 has the following parameter settings: population size of 5, tournament size of 3, intensity of mutation of
0.2 and depth of search of 1.0. The parameter values of Conf30 are very similar to the parameter values found by the Taguchi
method, only the TourSize parameter value is different, while both of these configurations have the same PopSize, IoM and
DoS parameter settings.

As can be seen in Table 5, more configurations remained at the end of the search when using the Reverse strategy, indi-
cating that this strategy finds fewer significant differences between configurations. Fig. 2 shows that the Reverse strategy
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Fig. 2. Progress of the number of remaining configurations over iterations for each strategy with 2 min run time.

Table 5
Remaining configurations for each strategy with 2 min run time. The top three configurations for each strategy are highlighted bold, with their ranks provided
in parentheses.

Config No. PopSize TourSize IoM DoS Default Grouped Reverse Extra

Conf3 5 2 0.2 0.6 (4)
Conf5 5 2 0.2 1 (2)
Conf27 5 3 0.2 0.4 (11)
Conf28 5 3 0.2 0.6 (5)
Conf30 5 3 0.2 1 (1)
Conf33 5 3 0.4 0.6 (8)
Conf55 5 4 0.2 1 (7)
Conf58 5 4 0.4 0.6 (9)
Conf60 5 4 0.4 1 (4) (2)
Conf399 40 5 1 0.8 (2)
Conf409 80 2 0.4 0.8 (14)
Conf410 80 2 0.4 1 (2)
Conf415 80 2 0.6 1 (3) (9)
Conf420 80 2 0.8 1 (3)
Conf424 80 2 1 0.8 (1) (1) (1)
Conf425 80 2 1 1 (6)
Conf430 80 3 0.2 1 (10)
Conf435 80 3 0.4 1 (15)
Conf440 80 3 0.6 1 (12)
Conf445 80 3 0.8 1 (13)
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eliminated fewer configurations at the first elimination stage and retained more configurations during the process, resulting
in a much longer time to execute compared to the Default and Grouped strategies. This analysis reveals that the order that
instances are added to the training set has an effect on the final result of F-Race. Even though F-Race used the same instances
in training for the Default and Reverse strategies, the remaining configurations are quite different. The best configuration
found by the Default strategy is not in the remaining configurations found by the Reverse strategy at all.

In light of this, we have run additional experiments using a Random ordering of problem domains at each cycle. This can
be seen as an alternative to reduce the effort of setting and testing different orders. For the 2 min experiments, the best con-
figuration found is Conf4251. We note that a very similar configuration, Conf424, was found previously by three of the other
1 For 1 min experiments, there is no difference in the best configuration found. The Random strategy finds the same configuration (Conf410) as the four
existing training strategies.
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strategies. The only difference between Conf424 and 425 is their DoS values. DoS is 0.8 for Conf424 while DoS is 1.0 for Conf425.
Regarding this particular parameter, our previous work [49] found that DoS did not tend to have a significant effect on perfor-
mance, so would not expect much variation from the results provided between these two configurations.

The effect of increasing the number of training instances does not seem to have a large impact on the final configurations
found, the Extra strategy finds the same best configuration as the Default strategy. Compared to the results in Table 2 from a
1 min run time, there is a much greater diversity to the parameter settings found in the remaining configurations. Whereas
almost every configuration found by all four training strategies had a PopSize of 80 and a high value for DoS, we observe a
much greater variety of values for these parameters when allowing 2 min run time per configuration. Providing a longer run
time allows the strength of a wider variety of configurations to emerge, suggesting that in the case of the shorter run times
the configurations found may have been somewhat overfitted.

5.2.1. Performance comparison of SSMA-Ozcan2013 and SSMA tuned by F-Race using 2 min run time
The SSMAs with the two best configurations found by F-Race with 2 min run time are compared to the SSMA of [23]

(SSMA-Ozcan2013), to assess whether F-Race managed to find better parameter combinations with a larger computational
budget per configuration. Table 6 provides a direct comparison of the performance of SSMA-Ozcan2013 to SSMA-Conf424
and SSMA-Conf30, over the same thirty instances from six HyFlex problem domains as before, with 10 nominal minutes
run time for each of the 31 runs of each instance.

The results of the paired one-tail Wilcoxon signed ranked tests indicate that both of the SSMA configurations found by F-
Race outperform the original SSMA. The success of SSMA-Conf30 is more obvious, as in 28 out of 30 instances, SSMA-Conf30
performs better than SSMA-Ozcan2013 and in 26 of these cases, the difference is statistically significant. Comparing SSMA-
Conf424 and the SSMA of [23], we can see that SSMA-Conf424 performs better in 18 instances, with a statistically significant
difference in 17 of these cases. This demonstrates that F-Race has successfully found more effective parameter combinations
for cross-domain search with a 2 min computational budget per configuration.

5.2.2. Performance comparison of the SSMAs tuned by Taguchi and F-Race using 2 min run time
Table 7 summarises the results and gives a performance comparison of the SSMAs found by F-Race with 2 min run time

(SSMA-Conf424 and SSMA-Conf30) and SSMA-Taguchi, over 31 runs of each instance. Pairwise comparisons by Wilcoxon
signed rank test were performed separately between SSMA-Taguchi and SSMA-Conf424, then SSMA-Taguchi and SSMA-
Conf30.

SSMA-Taguchi performs better than SSMA-Conf424 in 29 out of 45 instances, in 25 of those cases the difference is statis-
tically significant. SSMA-Conf424 performs better in 16 instances, while in 15 of those cases there are statistically significant
differences. Overall, SSMA-Taguchi outperforms SSMA-Conf424. The performance comparison between SSMA-Taguchi and
SSMA-Conf30 shows that for most of the instances, there is no statistically significant difference between the results. There
are 27 instances in which both of the SSMAs perform similarly and there is no statistically significant difference between
them. SSMA-Taguchi outperforms SSMA-Conf30 with a statistically significant difference in 7 out of 45 instances. On the
other hand, SSMA-Conf30 performs significantly better than SSMA-Taguchi for 11 instances. Hence, we conclude that
SSMA-Conf30 has a better performance across the 45 instances.

5.3. Performance comparison of the SSMAs tuned by F-Race using 1 min and 2 min run times

In the previous subsections, SSMA was tuned using two different run times with F-Race. In this section we compare the
results of F-Race using 1 min and 2 min run times directly, to see if allowing a longer time for each run of each configuration
has positive effect on performance. With 1 min run time, all four training strategies found SSMA-Conf410 as the best con-
figuration. With 2 min run time, three of the strategies found SSMA-Conf424 as the best configuration, with SSMA-Conf30
found to be the best by the Reverse strategy. The SSMA algorithms with these three parameter configurations are tested on all
45 instances from the nine HyFlex problem domains, with 10 nominal minutes run time, in line with the standard termina-
tion criterion from the literature. Table 8 shows the results comparing Conf410 to Conf30 and Conf424 based on one-tail
Wilcoxon signed ranked tests over 45 instances from all 9 HyFlex domains.

From these results, we see that SSMA-Conf30 performs significantly better than SSMA-Conf410 in 23 out of 45 instances.
For the remaining instances, SSMA-Conf410 performs statistically significantly better in 12 cases, while there is no statisti-
cally significant difference in the other 10 instances. Comparing SSMA-Conf410 and SSMA-Conf424, we see that SSMA-
Conf410 performs significantly better in 29 instances. SSMA-Conf424 performs significantly better than SSMA-Conf410 in
only 3 instances. There are 13 cases in which the differences are not statistically significant between the two configurations.
However, based on the mean results SSMA-Conf410 performs better on average in 8 out of these 13 instances.

These results show that the run time for each instance available when training is not the only criteria for finding a better
configuration using F-Race. One of the tuned SSMA algorithms using 2 min run time (SSMA-Conf30) outperforms the tuned
SSMA using 1 min run time (SSMA-Conf410). On the other hand, the other settings obtained by F-Race using 2 min run time
(SSMA-Conf424) found worse overall results compared to the 1 min run time results. Providing additional run time to F-Race
did not necessarily result a better solution in all cases. However, in the case of the Reverse strategy, the parameter configu-
ration obtained with 2 min run times offers significantly improved performance. The capability of F-Race to find the best
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Table 6
Performance comparison of SSMA-Ozcan2013, SSMA-Conf424 and SSMA-Conf30 based on mean, median and best fitness values obtained from 31 runs for each instance of CHeSC2011.

SSMA-Conf424 SSMA-Ozcan2013 SSMA-Conf30

PD ID mean median best vs. mean median best vs. mean median best

SAT 1 11.194 11 6 > 21.161 22 8 < 10.194 10 4
2 37.065 44 10 > 52.484 53 37 < 31.129 34 8
3 19.677 16 3 > 35.000 37 10 < 12.419 8 2
4 16.645 17 10 > 27.742 27 16 < 12.613 12 7
5 13.484 13 11 > 19.194 18 14 < 11.968 12 8

BP 1 0.042 0.043 0.023 > 0.083 0.082 0.075 < 0.057 0.056 0.051
2 0.007 0.007 0.007 > 0.015 0.013 0.012 < 0.011 0.012 0.008
3 0.010 0.010 0.007 > 0.022 0.022 0.019 > 0.029 0.029 0.023
4 0.109 0.109 0.108 > 0.111 0.111 0.110 < 0.110 0.110 0.109
5 0.018 0.018 0.015 > 0.043 0.041 0.036 > 0.051 0.050 0.040

PS 1 34.290 34 26 > 51.129 50 37 < 20.161 20 14
2 10599.871 10503 10175 > 72015.613 70477 52056 < 9757.806 9758 9445
3 3298.613 3289 3206 > 13203.710 11859 5581 < 3202.452 3181 3138
4 1961.419 1974 1733 > 2942.419 2655 1820 < 1597.968 1570 1398
5 363.323 365 335 > 435.645 431 385 < 321.452 320 290

PFS 1 6297.935 6299 6281 < 6257.806 6258 6231 < 6246.065 6244 6222
2 26915.968 26914 26867 < 26884.935 26884 26813 < 26812.355 26809 26751
3 6361.226 6366 6330 < 6351.871 6363 6318 < 6343.000 6350 6307
4 11473.935 11476 11440 < 11441.806 11441 11410 < 11384.323 11387 11337
5 26713.516 26712 26645 < 26699.226 26703 26626 < 26617.065 26617 26546

TSP 1 48198.977 48194.920 48194.920 P 48227.747 48194.9201 48194.9201 6 48215.658 48194.920 48194.920
2 21172689.133 21178851.066 21050272.271 6 21155458.166 21160875.64 20969185.56 < 21011844.551 20980299.318 20855229.864
3 6859.966 6860.228 6838.551 < 6825.552 6825.66255 6800.708271 < 6814.353 6813.875 6796.592
4 68879.050 68887.686 68370.321 < 68123.369 68059.97098 67423.65527 < 67144.671 67245.273 66385.259
5 54198.922 54164.596 53374.297 < 53810.138 53748.53746 52685.99238 6 53729.805 53639.446 52860.753

VRP 1 107293.333 107022.611 101111.735 < 71768.053 71480.081 67820.589 < 60508.492 60454.929 58778.751
2 13366.053 13363.840 12313.472 > 14324.522 14411.658 13358.612 < 13790.548 13421.401 13315.537
3 252604.413 251856.117 240231.929 < 176206.081 177131.584 167704.513 < 147668.620 148180.147 145149.551
4 21088.581 20677.297 20655.207 > 21647.018 21675.195 20678.097 < 21144.088 20679.833 20653.760
5 187091.686 187863.745 181752.128 < 152642.040 152829.839 149032.552 < 147114.519 147105.888 145792.856
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Table 7
Performance comparison of SSMA-Taguchi, SSMA-Conf424 and SSMA-Conf30 based on mean, median and best fitness values obtained from 31 runs for each instance of CHeSC2011 and five instances each from three
additional HyFlex domains.

SSMA-Conf424 SSMA-Taguchi SSMA-Conf30

PD ID mean median best vs. mean median best vs. mean median best

SAT 1 11.194 11 6 < 9.484 9 3 P 10.194 10 4
2 37.065 44 10 < 30.065 36 9 P 31.129 34 8
3 19.677 16 3 6 15.387 10 3 6 12.419 8 2
4 16.645 17 10 < 13.613 13 9 6 12.613 12 7
5 13.484 13 11 6 12.742 13 9 6 11.968 12 8

BP 1 0.042 0.043 0.023 > 0.063 0.063 0.058 < 0.057 0.056 0.051
2 0.007 0.007 0.007 > 0.011 0.012 0.008 6 0.011 0.012 0.008
3 0.010 0.010 0.007 > 0.034 0.034 0.029 < 0.029 0.029 0.023
4 0.109 0.109 0.108 > 0.110 0.110 0.110 < 0.110 0.110 0.109
5 0.018 0.018 0.015 > 0.061 0.060 0.054 < 0.051 0.050 0.040

PS 1 34.290 34 26 < 21.548 21 16 < 20.161 20 14
2 10599.871 10503 10175 < 9705.129 9677 9477 > 9757.806 9758 9445
3 3298.613 3289 3206 < 3211.452 3219 3146 6 3202.452 3181 3138
4 1961.419 1974 1733 < 1596.871 1589 1344 = 1597.968 1570 1398
5 363.323 365 335 < 318.065 315 290 P 321.452 320 290

PFS 1 6297.935 6299 6281 < 6249.581 6251 6219 6 6246.065 6244 6222
2 26915.968 26914 26867 < 26812.452 26811 26754 P 26812.355 26809 26751
3 6361.226 6366 6330 < 6336.387 6333 6303 P 6343.000 6350 6307
4 11473.935 11476 11440 < 11376.613 11375 11333 > 11384.323 11387 11337
5 26713.516 26712 26645 < 26632.548 26640 26515 < 26617.065 26617 26546

TSP 1 48198.977 48194.920 48194.920 > 48221.583 48194.920 48194.920 6 48215.658 48194.920 48194.920
2 21172689.133 21178851.066 21050272.271 < 20912006.397 20885233.010 20789116.983 > 21011844.551 20980299.318 20855229.864
3 6859.966 6860.228 6838.551 < 6811.145 6811.518 6799.111 P 6814.353 6813.875 6796.592
4 68879.050 68887.686 68370.321 < 67029.810 67043.255 66518.735 > 67144.671 67245.273 66385.259
5 54198.922 54164.596 53374.297 < 53503.576 53457.422 52247.568 > 53729.805 53639.446 52860.753

VRP 1 107293.333 107022.611 101111.735 < 71946.305 70776.497 65967.938 < 60508.492 60454.929 58778.751
2 13366.053 13363.840 12313.472 > 13826.295 13384.024 13328.791 6 13790.548 13421.401 13315.537
3 252604.413 251856.117 240231.929 < 147512.686 148001.434 143921.208 P 147668.620 148180.147 145149.551
4 21088.581 20677.297 20655.207 P 21275.493 21648.051 20654.219 6 21144.088 20679.833 20653.760
5 187091.686 187863.745 181752.128 < 147372.783 147228.056 145266.409 6 147114.519 147105.888 145792.856

KP 1 -1249594.677 -1249575 -1253595 > -1218268.419 -1218057 -1238755 < -1247959.548 -1256601 -1262931
2 -431312.355 -431312 -431323 < -431357.581 -431357 -431363 P -431356.871 -431356 -431362
3 -4297035.516 -4297892 -4317606 > -4259007.355 -4259569 -4272767 < -4321918.419 -4336862 -4366624
4 -1577150.323 -1577160 -1577168 > -1574342.419 -1572999 -1577175 P -1574070.387 -1572999 -1577175
5 -1467355.935 -1467353 -1467378 < -1467381.355 -1467362 -1467429 P -1467371.226 -1467361 -1467437

CUT 1 -272265830.323 -272308054 -274362731 < -273724297.548 -274024670 -276334160 P -273575291.484 -273752723 -276546279
2 -3021.097 -3020 -3034 > -3018.323 -3018 -3040 P -3017.710 -3018 -3030
3 -13143.516 -13140 -13193 > -13127.226 -13128 -13206 6 -13129.871 -13134 -13211
4 -9826.290 -9841 -9902 < -9962.935 -9965 -10010 > -9950.645 -9952 -9994
5 -2813.355 -2814 -2852 6 -2819.613 -2822 -2860 > -2810.194 -2812 -2850

QAP 1 154324.645 154338 154038 > 154500.194 154472 153978 6 154373.419 154374 153898
2 150069.935 150070 149886 > 150315.677 150330 149738 < 150143.935 150152 149732
3 1188695259.710 1188572215 1186607150 6 1190423963.065 1189780533 1185996137 P 1188431602.871 1188636623 1185996137
4 44871350.194 44872460 44837300 < 44852272.839 44853276 44826672 6 44850121.548 44850516 44813956
5 273585.355 273572 273344 > 273691.677 273726 273220 < 273574.968 273526 273258
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Table 8
Performance comparison of SSMA-Conf410 to SSMA-Conf30 and SSMA-Conf424 based on one-tail Wilcoxon signed ranked tests for 9 HyFlex domains.

Conf410 vs Conf30 Conf410 vs Conf424

Domain > P = 6 < > P = 6 <

SAT 0 1 0 2 2 0 4 0 1 0
BP 5 0 0 0 0 4 0 0 1 0
PS 0 0 0 0 5 4 1 0 0 0
PFS 0 0 0 1 4 4 1 0 0 0
TSP 0 1 0 1 3 4 0 0 1 0
VRP 2 0 0 0 3 4 1 0 0 0
KP 1 0 0 1 3 4 1 0 0 0
CUT 1 0 0 2 2 2 0 0 0 3
QAP 3 0 1 0 1 3 0 1 1 0

Total 12 2 1 7 23 29 8 1 4 3
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parameter settings for cross-domain search depends on both the run time and the order in which instances are presented for
training.

5.4. Performance comparison of suggested configurations to the CHeSC2011 competitors

In this section, SSMAs using the suggested parameter values from different parameter tuning methods and strategies are
compared to the selection hyper-heuristics from the literature that competed in CHeSC2011, over the thirty instances from
six problem domains used in the competition. We note here that there was some overlap between the training and testing
sets used for CHeSC2011, with twelve of the thirty instances in the test set available to all competitors for training in advance
of the competition. The SSMAs are denoted as follows:

� SSMA-Ozcan2013: The SSMA of [23] which was not systematically tuned using a parameter tuning method. The default
values in HyFlex were used for the low-level heuristic parameters (0.2).
� SSMA-Taguchi: The SSMA of [22], where the parameters were tuned using the Taguchi method.
� SSMA-Conf410: The SSMA which uses the parameter settings found by F-Race with all four training strategies when the
run time is 1 min.
� SSMA-Conf424: The SSMA with the parameter values found using F-Race with 2 min run time by three of the training
strategies; Default, Grouped and Extra.
� SSMA-Conf30: The SSMA using the parameter values found by F-Race with the Reverse strategy and 2 min run time.

We utilise the ‘Formula 1’ scoring system from the original CHeSC2011 competition for comparison [50]. When using this
system, the median objective values of the algorithm from 31 runs for each instance are collected, and the top eight algo-
rithms awarded scores. Points of 10, 8, 6, 5, 4, 3, 2 and 1 respectively are given to each of the top approaches for each
instance. If there is a tie, it is broken by taking the mean scores of the tied algorithms. At the end, the scores awarded to each
instance are added up to calculate the final score of the algorithm. The results of the competing hyper-heuristics to
CHeSC2011 have subsequently served as a benchmark for performance of future cross-domain approaches.

Table 9 provides a relative ranking of the five SSMAs and CHeSC2011 competitors.

From Table 9, we see that SSMA-Conf30 clearly performs the best of the five SMMAs, ranking 4th overall among the meth-

ods compared. It is followed by SSMA-Taguchi which was ranked 5th. SSMA-Conf410 and SSMA-Conf424 are ranked 14th and

20th respectively. SSMA-Ozcan2013 offers the poorest performance compared to other SSMAs, with a rank of 22nd. Interest-
ingly some configurations seem to perform better in some problem domains than others. Whereas SSMA-Conf410 and
SSMA-Conf424 are performing well in BP, they score no points for VRP and PS, showing that they are not within the top eight
methods for any instances in these domains. These two configurations have very large values for PopSize (80), suggesting
that this parameter value may be important for good performance in this domain. On the other hand, SSMA-Conf30 has a
much lower PopSize (5), performing poorly in BP, but offering more balanced performance across the problem domains
tested. Interestingly, of the four problem domains that this configuration is performing well in, two of them (TSP and
VRP) were not included in the instances that it was trained on. This suggests that the training method used is generalising
well to unseen problem domains and instances.

Considering that all of the SSMAs have the same source code, it is obvious that the effect of parameter tuning methods is
crucial to overall performance. Although a relatively small number of parameters are considered, there is a significant dif-
ference between the performance offered by methods tuned using different approaches. Despite this, there are still three
methods from the competition that outperform even the strongest SSMA configuration, and a number of methods from
the literature that claim to outperform all of these approaches [37,39,38,40]. This highlights the fact that performance cannot
be improved indefinitely by parameter tuning alone. Although parameter tuning can help push a method towards the top
end of its performance envelope, there is a natural limit to the improvement that can be obtained, depending on the under-
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Table 9
Performance comparison of SSMAs found by different strategies (Default (D), Grouped (G), Reverse (R), Extra (E), 1 min, 2 min) and CHeSC2011 competitors
across six HyFlex problem domains based on Formula1 scores.

Rank Algorithm SAT BP PS PFS TSP VRP Total

1 AdapHH 34.75 45 7 33 34.5 9 163.25
2 ML 14.5 9 25.5 36.5 8 20 113.5
3 VNS-TW 34.25 2 31 30.5 4.5 3 105.25
4 SSMA-Conf30 [R; 2 min] 0 0 28 24.5 16.6 24 93.1
5 SSMA-Taguchi 0 0 28 23 28.6 11 90.6
6 PHUNTER 10.5 3 8 3.5 18.5 30 73.5
7 NAHH 14 19 0 19.5 10 5 67.5
8 HAHA 32.75 0 20 0 0 12 64.75
9 EPH 0 5 5 13.5 27.5 12 63
10 ISEA 6 28 13 0 8 3 58
11 KSATS-HH 24 8 4 0 0 19 55
12 HAEA 0.5 2 0 3 5 22 32.5
13 ACO-HH 0 19 0 5 7 0 31
14 SSMA-Conf410 [D,G,R,E; 1 min] 0 17 0 0 7.6 0 24.6
15 GenHive 0 11 3 3 2 4 23
16 AVEG-Nep 12 0 0 0 0 9 21
17 XCJ 5.5 11 0 0 0 4 20.5
18 SA-ILS 0.75 0 12.5 0 0 3 16.25
19 GISS 0.75 0 10 0 0 5 15.75
20 SSMA-Conf424 [D,G,E; 2 min] 0 7 0 0 6.6 0 13.6
21 DynILS 0 9 0 0 3 0 12
22 SSMA [23] 0 0 0 0 6.6 0 6.6
23 MCHH-S 4.75 0 0 0 0 0 4.75
24 SelfSearch 0 0 0 0 1 0 1
25 Ant-Q 0 0 0 0 0 0 0
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lying structure of the method. In particular, SSMA seems to struggle in the SAT problem domain irrespective of the parameter
configuration used. Moreover, there may also be significant room for improvement in the performance of other state-of-the-
art methods in the literature, by conducting systematic parameter tuning such as that completed in this work.
6. Conclusion

In this paper, the cross-domain performance of an automated parameter tuning technique (F-Race) was investigated with
a number of different strategies for training. These strategies differ in the number of instances used for training, the order in
which the instances are presented to F-Race, and the time budget allowed for each run of a candidate configuration to solve
each training instance. The high-level algorithm parameters of a steady-state memetic algorithm, and the low-level heuristic
parameters for mutation and local search in a cross-domain environment (HyFlex), were tuned using F-Race with these
strategies.

Parameter tuning with F-Race clearly offers improved performance, with all strategies outperforming the base method
using arbitrarily chosen parameters over a cross-domain benchmark. However, different strategies provide different results,
so an appropriate strategy must be chosen carefully. With a shorter time budget, the results show that all four training
strategies identified the same best configuration of parameters. When the time for each run was increased, different training
strategies found different configurations to be the best. Interestingly, but perhaps not surprisingly, the order in which train-
ing instances are presented to the tuning method is also important. Making a decision too early, using initial observations
based on instances that are not representative of the test set, will lead to poor performance.

It is difficult to declare a clear winner between the F-Race method using different training strategies presented here and
the Taguchi-based approach from the literature. The best configuration found by F-Race outperforms Taguchi, but F-Race is
sensitive to the training budget and the order in which training instances are added. The Taguchi design of experiments
approach to parameter tuning involves a fractional factorial design, and hence it can overlook some good parameter config-
urations, although the performance does seem to be more robust. Effectively this represents a trade-off between the sam-
pling rate for training and the overall execution time, an issue which we will investigate further in our future work.

Typically, more than half of the possible configurations are eliminated in the first step, after each configuration has been
evaluated once on each instance. Although this is done to reduce the overall computational overhead required for training, it
is possible that some good configurations are lost early on. Improved performance might be possible by dedicating more
time to the early phases, gathering more information from which to base the early elimination decisions by increasing
the number of iterations that are completed before the first elimination decision is taken. Future work will also consider mix-
ing tuning strategies, merging approaches based on full enumeration such as those presented here with the Taguchi method.
The orthogonal array yielded by the Taguchi approach could be used to reduce the overall sample size, although again this
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represents a trade-off as some good configurations could be lost. Indeed, the best configuration found here (SSMA-Conf30) is
not in the Taguchi orthogonal array.

Another line of research worth pursuing is increasing the range of parameters tuned to include algorithm configuration
decisions. Our current work only considers explicit algorithm parameters such as population size, however the scope could
be extended to more implicit algorithm design decisions such as the parent selection mechanism or replacement strategy
used in the memetic algorithm. The SSMA approach studied here has relatively few parameters to tune. However, methods
such as Taguchi and F-Race don’t necessarily scale well to a large number of parameters. F-Race in particular requires a full
factorial design, which is difficult and time consuming to deploy to methods with many parameters. Investigating whether
or not these methods are still effective as the number of parameters increases will provide insight into the wider applica-
bility of these approaches.
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