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Abstract
Tea [Camellia sinensis (L.) O. Kuntze] is mainly grown in low- to middle-income

countries (LMIC) and is a global commodity. Breeding programs in these coun-

tries face the challenge of increasing genetic gain because the accuracy of selecting

superior genotypes is low and resources are limited. Phenotypic selection (PS) is tra-

ditionally the primary method of developing improved tea varieties and can take over

16 yr. Genomic selection (GS) can be used to improve the efficiency of tea breeding

by increasing selection accuracy and shortening the generation interval and breed-

ing cycle. Our main objective was to investigate the potential of implementing GS

in tea-breeding programs to speed up genetic progress despite the low cost of PS in

LMIC. We used stochastic simulations to compare three GS-breeding programs with

a Pedigree and PS program. The PS program mimicked a practical commercial tea-

breeding program over a 40-yr breeding period. All the GS programs achieved at least

1.65 times higher genetic gains than the PS program and 1.4 times compared with

Seed-Ped program. Seed-GSc was the most cost-effective strategy of implementing

GS in tea-breeding programs. It introduces GS at the seedlings stage to increase selec-

tion accuracy early in the program and reduced the generation interval to 2 yr. The

Seed-Ped program outperformed PS by 1.2 times and could be implemented where

it is not possible to use GS. Our results indicate that GS could be used to improve

genetic gain per unit time and cost even in cost-constrained tea-breeding programs.

Abbreviations: ACT, advanced clonal trial stage; BLUP, best linear

unbiased prediction; ECT, elite clonal trial stage; ECT-GS, elite clonal trials

genomic selection breeding program; GS, genomic selection; LMIC, low- to

middle-income countries; PS, phenotypic selection; QTL, quantitative trait

locus; Seed-GSc, cost-constrained seedlings genomic selection breeding

program; Seed-GSunc, cost-unconstrained seedlings genomic selection

breeding program; Seed-Ped, seedlings pedigree breeding program.
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1 INTRODUCTION

Tea [Camellia sinensis (L.) O. Kuntze] is mainly grown in
tropical and subtropical regions in low- to middle-income
countries (LMIC) (Mondal, 2014). It is an important crop
for the economies of these countries as it provides a source
of income for many smallholder farmers and those employed
in tea-processing companies (Wambulwa et al., 2021). Addi-
tionally, the tea-growing areas have benefitted from improved
social infrastructure such as good road networks, schools,

Plant Genome. 2022;e20282. wileyonlinelibrary.com/journal/tpg2 1 of 18
https://doi.org/10.1002/tpg2.20282

 19403372, 0, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/tpg2.20282 by T

est, W
iley O

nline L
ibrary on [22/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0002-8975-0793
https://orcid.org/0000-0001-8008-2787
https://orcid.org/0000-0001-7077-7163
mailto:nelsonlubanga@gmail.com
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/tpg2
https://doi.org/10.1002/tpg2.20282


2 of 18 LUBANGA ET AL.The Plant Genome

and hospitals. All tea varieties currently grown in the world
originated in China and India and were either directly or indi-
rectly imported from these two countries to other countries
(Meegahakumbura et al., 2018; Wambulwa et al., 2021).
As the world population increases, it is expected that the
demand for beverages will also increase (Valin et al., 2014).
Conventional tea breeding is well established in the major
tea-growing countries such as China, India, and Kenya and
has led to the development of many superior varieties (Chen
et al., 2012). In Kenya, Tea Research Institute has in the
past released high yielding and good quality varieties such
as TRFK 31/8 and TRFK 303/577 and TRFK 6/8 (Kamunya
et al., 2012). These varieties are widely cultivated by most
smallholders and the main multinational tea companies in
Kenya. To sustain long-term tea production and the increas-
ing demand for tea, breeders need to continuously bring new
improved varieties to the market. Tea-breeding goals vary
among the major tea-growing countries, depending on local
needs. However, in the recent times, the most important tea-
breeding objectives are to develop varieties with high yield
and improved quality (i.e. color, aroma, taste, and mouthfeel)
(Kamunya et al., 2012; Mondal, 2014). Currently, tea pro-
ductivity is seriously threatened by climate change, which is
already causing yield losses and decreased quality (Gunathi-
laka et al., 2017). Climate change has led to extreme and
unpredictable weather patterns, resulting in longer dry spells,
heavy rainfall, more hail, higher temperatures, and increased
attacks of pests and diseases (Marx et al., 2017). Therefore,
effective tea-breeding strategies that use genomic-assisted
breeding are needed to develop high-yielding and high-quality
tea varieties that are also tolerant to biotic and abiotic stresses
(Mondal, 2011; Muoki et al., 2020).

Tea-breeding programs traditionally use recurrent pheno-
typic selection (PS) to identify the best individuals based
on phenotypic values estimated from the per se performance
of clones in evaluation trials. This involves the creation of
genetic variation through crossing, followed by many years
of testing to determine the genetic value of promising geno-
types, leading to the identification of genotypes that will serve
as new parents for crossing and for the commercial release
(Kamunya et al., 2012). In the initial phase of the breed-
ing program, new genotypes are first tested as seedlings in
single bush (preliminary) trials. Then, selected seedlings are
clonally propagated allowing the clones to be tested across
multiple locations and years (Carr, 2018). The PS has been
somewhat successful in delivering improved tea varieties over
many years (Mondal, 2014). However, it is a time-consuming
process as it takes about 16 yr to develop new varieties for
commercial release (Figure 1).

Pedigree best linear unbiased prediction (BLUP) method
predicts estimated breeding values (EBVs) using information
from known genetic relationships among the parents and
available phenotypic data on related crosses (Bernardo, 1996;

Core Ideas
∙ Genomic selection strategies achieved higher

genetic gains than phenotypic and pedigree-based
selection programs.

∙ Cost-constrained Seedlings Genomic Selection
was the most promising and cost-effective strategy.

∙ The Seedlings Genomic Selection program intro-
duced genomic selection at the seedlings stage and
had 1.7 times more genetic gain than phenotypic
selection.

∙ The pedigree program outperformed phenotypic
selection and can be implemented in cases where
genomic selection cannot be used.

Piepho et al., 2008). The BLUPs are obtained by defining
the genotypes as random effects in a mixed linear model
(Henderson, 1975). To our knowledge, most tea-breeding
programs traditionally do not use pedigree-based selection
although inclusion of genetic relationships can improve
selection accuracy. In soybean [Glycine max (L.) Merr.],
the application of pedigree BLUP resulted in more superior
crosses that were selected compared with the traditional
mid-parent value (Panter & Allen, 1995). Similarly, Bernardo
(1996) used Pedigree BLUP to predict performance of
untested single crosses of maize (Zea mays L.) using relation-
ship data from relatives. In forest breeding, pedigree BLUP
based on kinship relationships between individuals is com-
monly used to identify superior trees with traits of interest
(Alves et al., 2018). However, pedigree-based relationships
do not account for random Mendelian sampling and therefore
within-family selection is not possible (Hill & Weir, 2011).

In modern times, plant breeding has started to move from
complete reliance on PS to genomic-assisted selection due to
improved molecular biology and high-throughput genotyping
technologies (Leng et al., 2017). Genomic selection (GS)
offers a great potential for more accurately identifying good
parents and superior clones for variety development and
commercial release, and thus increasing the genetic gain
of tea-breeding programs (Meuwissen et al., 2001). In GS,
molecular markers are used to estimate relatedness between
individuals and represent realized genomic relationships
rather than the expected relationships. This makes it possible
to capture distant relationships and variation in sibling
relationships due to Mendelian sampling, leading to more
accurate estimates of additive genetic variance and breeding
values (Legarra et al., 2009). In tree breeding, GS has been
reported to have a substantial impact on the rate of genetic
gains due to the increased accuracy in estimating the additive
genetic variance and the breeding values (Grattapaglia et al.,
2018). In some animal-breeding programs, the introduction
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F I G U R E 1 Schematic overview of the phenotypic selection breeding program (PS). This program is based on a commercial tea breeding

program as described by Carr (2018). The dashed line represents the stage at which the 5 or 20 new parents are selected based on phenotypic

information. PT, Preliminary Trial stage; ACT, Advanced Clonal Trial stage and ECT, Elite Clonal Trial stage

of GS has resulted in almost doubled genetic progress
compared with pedigree-based selection (García-Ruiz et al.,
2016).

Genomic selection involves estimation of genomic esti-
mated breeding values (GEBVs) by summing marker effects
that are in linkage disequilibrium with one or more quantita-
tive trait loci (QTLs) across the entire genome (Bernardo &
Yu, 2007). Genomic selection uses a prediction model that is
first trained using a population of genotyped and phenotyped
individuals and is then used to predict GEBVs of selection
candidates with genotyping information but no phenotypes.
This is especially useful for key tea traits such as tea yield and
quality, which are controlled by many genes with small effects
and the use of traditional marker-assisted selection is lim-
ited (Bernardo & Yu, 2007). By then correlating GEBVs with
the actual phenotypic data, it is possible to assess the accu-
racy of the GS model (Heffner et al., 2009; Meuwissen et al.,
2001). For instance, Lubanga et al. (2021) investigated the
potential use of GS to improve tea quality and reported higher
prediction accuracies for all genomic prediction models com-
pared with the Pedigree BLUP model. Similar findings were
also reported by Yamashita et al. (2020), who also investi-
gated the potential of using GS to improve tea quality and
they found moderate prediction accuracies for the six tested
genomic prediction models.

In practice, GS can be used to improve the rate of genetic
gain and accelerate the release of new improved varieties in a
tea breeding programs by:

1. Reducing the generation interval since new parents can be
selected at the earliest Seedlings stage rather than in late
testing stages.

2. Increasing the accuracy of selecting superior tea geno-
types at the Seedlings stage where selection accuracy is
generally very low.

3. Increasing the selection intensity at the nursery stage by
testing more genotyped seedlings compared with PS.

4. Shortening the entire breeding cycle time by reducing or
eliminating lengthy field progeny testing.

The implementation of GS in LMIC faces limitations,
however. In most of these countries, the cost of phenotypic
selection is much lower compared with Europe and North
America because the local population provides labor at a
lower cost. In addition, most breeding programs in LMIC have
limited investment budgets for conducting research and there
are few qualified personnel who understand GS and its prac-
tical implementation in breeding programs. Therefore, the
possibility of successful implementation of GS in tea breeding
should be empirically tested.

Plant breeders have traditionally relied on lengthy and
costly field trial experiments to inform their decisions (Ahmar
et al., 2021). Stochastic simulations are useful in identifying
promising breeding strategies through studying the genetic
gain, predictive accuracy, and cost-effectiveness of GS under
different scenarios (Gaynor et al., 2021). Simulations have
been conducted for many crops, including wheat (Triticum
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aestivum L.) (Gaynor et al., 2017), maize (Powell et al.,
2020), sorghum [Sorghum bicolor (L.) Moench] (Muleta
et al., 2019), clonally propagated crops (Werner et al., 2020),
and trees (Iwata et al., 2011). However, to our knowledge, no
simulation study has been published integrating GS into a tea-
breeding program to investigate the feasibility and long-term
outcomes.

Our study aims to test the feasibility of implementing GS in
a tea-breeding program using stochastic simulations. A phe-
notypic selection breeding program was used as a baseline
in which the number of crosses, seedlings, replicates, and
locations mimicked a practical commercial tea-breeding pro-
gram. Using AlphaSimR R software, we developed three new
breeding programs that integrated GS and a pedigree selection
program and compared them to the PS-breeding program. Our
objectives were to (a) investigate the potential of implement-
ing GS in tea-breeding programs despite the limited resources
and low cost of PS in LMIC, (b) compare different strategies
of implementing GS in tea-breeding programs at the same cost
as PS, and (c) quantify how shortening the tea-breeding gen-
eration interval and the entire breeding cycle length using GS
leads to higher genetic gains.

2 MATERIALS AND METHODS

We used stochastic simulations to evaluate the possibility of
implementing GS in tea-breeding programs. We compared
three breeding strategies incorporating GS to a pedigree-
based and a commercial PS-breeding program. We subdivided
the Materials and Methods section into simulation of the
founder genotype population and simulation of the breeding
programs.

We simulated the founder genotype population as fol-
lows:

1. Genome simulation: A genome sequence was simulated
for a hypothetical diploid tea species.

2. Simulation of founder genotypes: The simulated genome
sequences were used to generate a base population of
20 diploid founder genotypes.

3. Simulation of genetic values: A single trait representing
yield was simulated for all founder genotypes by summing
the additive effects at 2,400 quantitative trait nucleotides
(QTN).

4. Simulation of phenotypes: The phenotypes of all founder
genotypes were simulated by adding random error to the
total genetic value of the tea genotypes.

We simulated the breeding programs in two phases as
follows:

1. Recent (burn-in) breeding phase: A PS-breeding program
was simulated for a period of 40 yr (burn-in) to provide
a common starting point for all breeding programs in the
future breeding phase.

2. Future breeding phase: A pedigree and three different GS-
breeding programs were simulated and compared with the
PS-breeding program for a period of 40 yr.

2.1 Simulation of the founder genotype
population

2.1.1 Genome simulation

We simulated a genome sequence with 15 pairs of chromo-
somes to reflect a hypothetical diploid tea species [Camellia
sinensis (L.) O. Kuntze]. Each chromosome was assigned a
physical length of 108 base pairs and a genetic length of 1
Morgans. The chromosome sequences were generated using
the Markovian coalescent simulator (MaCS) (Chen et al.,
2009), implemented in AlphaSimR (Gaynor et al., 2021).
The recombination rate was set to 10−8, mutation rate to
2.5 × 10−8 and effective population size (Ne) to 100 in the
base population as in Werner et al. (2020).

2.1.2 Simulation of founder genotypes

We used the simulated genome sequences to generate a base
population of 20 diploid founder genotypes by randomly sam-
pling 15 chromosome pairs per genotype. A set of 160 biallelic
quantitative trait nucleotides (QTNs) and 600 single
nucleotide polymorphisms (SNPs) were randomly selected
along each chromosome to simulate a quantitative trait
controlled by 2,400 QTN and a SNP marker array with
9,000 genome-wide SNP markers.

2.1.3 Simulation of genetic values

We simulated genetic values for a single trait by summing
the additive genetic effects of 2,400 sampled QTNs. Addi-
tive genetic effects (a) were sampled from the standard normal
distribution and scaled them to obtain an additive genetic vari-
ance of σ2

𝑎
= 150, 000in the founder population. Each year,

additive genetic effects were also scaled by a single environ-
mental covariate value to simulate the genotype × year (G×Y)
effect (Gaynor et al., 2021). The environmental covariates
were sampled from the normal distribution with mean 0 and
variance was a square root ofσ2G×Y, which was assumed to be

equal to σ2
𝑎
.
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2.1.4 Simulation of phenotypes

We simulated a single trait representing tea yield (measured
in kilogram made tea per hectare; kg MT ha–1) by adding ran-
dom error to additive genetic value. The random error was
sampled from the standard normal distribution with mean
zero and variance σ2

𝑒
. The σ2

𝑒
was defined by the target level

of narrow-sense heritability (ℎ2) at each testing stage of the
tea-breeding program. In the founder population, we calcu-
lated the entry-mean values obtained from previous studies
by Lubanga et al. (2021) to determine narrow-sense heritabil-
ity (ℎ2) at each breeding stage. The ℎ

2 at the Seedling and PT
stages was .05, .45 in the advanced clonal testing stage (ACT)
and .65 in the elite clonal testing (ECT) stage. The heritabili-
ties in later testing stages were higher because of the increased
number of replicates per genotype. Narrow-sense heritability
was calculated as

σ2
𝑎(

σ2
𝑎
+ σ2

𝐺×𝑌 ∕𝑒 + σ2
𝑒
∕𝑒𝑟

) ,

where e and r are the number of environments and replicates
within each environment, respectively.

2.2 Recent (burn-in) breeding phase

We simulated the burn-in phase over a 40-yr period using a
PS program to establish a common baseline for the future
breeding phase. The structure of the PS program was based
on a practical commercial tea-breeding program (Figure 1),
and a more detailed description can be found in Carr (2018).
Prior to the start of the burn-in phase, 16 crossings and selec-
tion cycles were conducted by crossing the same 20 founder
genotypes to fill the breeding pipeline with unique geno-
types at each stage. After the initial filling stage, the burn-in
phase continued for 40 yr. Twenty parental genotypes were
crossed each year to make 100 bi-parental crosses with 100
pollinations per cross to achieve a total of 10,000 crosses.
Based on our experience, we assumed that about 20% (i.e.,
2,000) seedlings germinated and were grown in the nurs-
ery for 1 yr. The following year, seedlings were planted in
the field as preliminary trials (PT), followed by a 3-yr eval-
uation period. Five hundred superior clones were selected
and planted in ACT, and yield data were recorded for 5 yr.
Forty clones with the highest yields were then advanced to
the ECT, and yield data were recorded for 6 yr until a vari-
ety was selected for release. Each year, new parents were
selected at the ECT stage in Year 16, and the five oldest
parents in the crossing block were replaced with the new
high-yielding genotypes from the ECT stage. The total breed-

ing cycle duration of the PS breeding program was 16 yr
(Figure 1).

2.3 Future breeding phase

In the future breeding phase, a pedigree-based and three
GS programs were compared with the PS program. Each
breeding program used the burn-in phase as a starting point
and was tested for 40 yr. The operating costs of the three
GS strategies are presented in detail in Table 1 and were
equated to the estimated cost of the PS program (US$71,880).
The pedigree-based program was assumed to have the same
costs as the PS program. The equalization of costs in the
GS programs was based on the estimated costs of genotyp-
ing and reducing program sizes at different breeding stages.
We assumed that the cost of genotyping per individual was
$15 (e.g. https://excellenceinbreeding.org/toolbox/services/
mid-density-genotyping-service), whereas phenotyping costs
were assumed to be for pollination; maintaining seedlings
in the nursery; and recording data at the PT, ACT, and
ECT stages in plots. The sizes and costs of the five breed-
ing programs are shown in Table 1, and a summary of the
key differences among the breeding programs is provided in
Table 2.

Additionally, two parent replacement methods were tested
for each of the five breeding programs by:

1. Replacing 25% (5) parents after each breeding cycle.
2. Replacing 100% (20) parents after each breeding cycle.

A common burn-in was used for both methods to ensure
that the results were directly comparable.

2.3.1 Seedlings Pedigree Breeding Program

The Seedlings Pedigree Breeding Program (Seed-Ped pro-
gram) incorporated known genetic relationships among the
parents and the available phenotypic data of the crosses to
predict EBVs for tea yield. These were obtained from the pedi-
gree BLUP model to advance superior genotypes to the next
stage and select the best 5 or 20 genotypes to replace the old-
est parents in the crossing block. The PT stage was eliminated
to avoid 3 yr of field trial testing. The EBVs were used to
advance the best 300 genotypes from the Seedlings stage to
the ACT stage. Yield trials were recorded at the ACT stage
for 5 yr. Forty promising clones with the highest EBVs were
advanced to the ECT stage and yield trials were recorded for
6 yr until variety release. This program had a 2-yr generation
interval and lasted a total of 13 yr, which is 3 yr shorter than
the PS breeding program (Figure 2).
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T A B L E 1 Summary of sizes and annual operating costs of the five simulated tea-breeding programs

Breeding program No. of parents Seedlings PT ACT ECT Cost
US$

PS 20 2,000 2,000 500 40 71,880

Seed-Ped 20 2,000 0 500 40 71,880

Seed-Gsc 20 800 0 300 40 69,980

Seed-GSunc 20 2,000 0 500 40 100,980

ECT-GS 20 800 0 0 90 72,970

Note. ACT, Advanced Clonal Trial stage; ECT, Elite Clonal Trial stage; ECT-GS, Elite Clonal Trial Genomic Selection Breeding Program; GS, genomic selection;

PS, phenotypic selection breeding program; PT, Preliminary Trial stage; Seed-GSc, Cost-constrained Seedlings Genomic Selection Breeding Program; Seed-GSunc,

Cost-unconstrained Seedlings Genomic Selection Breeding Program; Seed-Ped, Seedlings Pedigree Breeding Program.

T A B L E 2 Summary of the key differences between the five simulated tea-breeding programs

Program Parent selection stage Parent selection

Generation
interval/breeding cycle
duration Key features
yr

PS ECT Phenotype 16/16 Conventional breeding

Seed-Ped Seedlings Pedigree 2/13 PT stage removed, selection from 2,000 seedlings

Seed-GSc Seedlings GS 2/13 PT stage removed; 800 seedlings genotyped

Seed-GSunc Seedlings GS 2/13 PT stage removed; 2,000 seedlings genotyped

ECT-GS Seedlings GS 2/8 PT and ACT stages removed; increased number of

clones tested in ECT stage

Note. ACT, Advanced Clonal Trial stage; ECT, Elite Clonal Trial stage; ECT-GS, Elite Clonal Trial Genomic Selection Breeding Program; GS, genomic selection;

PS, phenotypic selection breeding program; PT, Preliminary Trial stage; Seed-GSc, Cost-constrained Seedlings Genomic Selection Breeding Program; Seed-GSunc,

Cost-unconstrained Seedlings Genomic Selection Breeding Program; Seed-Ped, Seedlings Pedigree Breeding Program.

F I G U R E 2 Schematic overview of the Pedigree Breeding Program (Seed-Ped) and Seedlings Genomic Selection Breeding Program with

constrained costs (Seed-GSc) and unconstrained costs (Seed-GSunc). The dashed line represents the stage at which the 5 or 20 new parents are

selected based on genomic prediction or pedigree best linear unbiased prediction (BLUP). The values outside the brackets refer to Seed-GSc and the

values inside the brackets refer to Seed-GSunc. Seed-Ped, Seedlings pedigree selection; GS, genomic selection; ACT, Advanced Clonal Trial stage;

and ECT, Elite Clonal Trial stage
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2.3.2 Cost-constrained Seedlings Genomic
Selection Breeding Program

The Seedlings Genomic Selection Breeding Program
(Seed-GSc program) has a similar strategy to the Seed-Ped
program, except that genotyping and GS were introduced
at the Seedlings stage. The preliminary trial (PT) stage
was also eliminated (Figure 2). Eight hundred (eight per
family) seedlings were randomly selected for genotyping
from the 2,000 germinated seeds in the nursery due to budget
constraints. Genomic selection was used to advance the geno-
types to the next stage and select the best 5 or 20 genotypes to
replace the oldest parents in the crossing block. The PT stage
was eliminated to avoid 3 yr of field trial testing, and therefore
GS was used to advance the best 300 genotypes from the
Seedlings stage to the ACT stage. Yield trials were recorded
at the ACT stage over 5 yr. Forty promising clones with the
highest GEBVs were advanced to the ECT stage and yield
trials were recorded for 6 yr until variety release. The Seed-
GSc program had a 2-yr generation interval and lasted a total
of 13 yr, which is 3 yr shorter than the PS-breeding program.

2.3.3 Cost-unconstrained Seedlings Genomic
Selection Breeding Program

The Cost-unconstrained Seedlings Genomic Selection Breed-
ing Program (Seed-GSunc program) followed the same
strategy as the Seed-GSc program, except that it used a higher
operating budget (Figure 2). There are two main differences
between the two programs: (a) all 2,000 seedlings (instead
of 800) at the Seedlings stage were genotyped and predicted
using GS, and (b) GS was used to advance a total of 500 geno-
types (instead of 300) to the ACT stage. The Seed-GSunc
program also had a 2-yr generation interval and lasted a total
of 13 yr, which is 3 yr shorter than the PS-breeding program.

2.3.4 Elite Clonal Trial Genomic Selection
Breeding Program

The Elite Clonal Trial Genomic Selection Breeding Program
(ECT-GS program) introduced genotyping and GS at the ear-
liest Seedlings stage and eliminated the PT and ACT stages
(Figure 3). The two stages were eliminated to avoid 8 yr of
testing and to reallocate the resources for genotyping all 2,000
seedlings at the Seedlings stage as in the PS program. Com-
pared with the previous two GS programs, seedlings were
planted in the nursery for an additional year to produce enough
cuttings for direct planting at the ECT stage. The GS was then
used to advance genotypes to the next stage and select the best
5 or 20 genotypes to replace the oldest parents in the cross-
ing block. Ninety promising clones were advanced from the

Seedlings stage to the ECT stage, where they were evaluated
for 6 yr until variety release. The ECT-GS breeding program
has a 2-yr generation interval and lasts a total of 8 yr, which
is 8 yr shorter than the PS-breeding program.

2.4 Training population and models

Pedigree and phenotypic data were collected from the ACT
stage during the last 6 yr of the burn-in phase and new data
were added to the training population as new yield trials were
recorded in subsequent years. The initial training population
consisted of 3,000 phenotypic records from the ACT geno-
types. After 40 yr of future breeding, the training population
increased to 23,000 records. The construction of the pedigree
relationship matrix and fitting of the pedigree BLUP model
was performed using the ASReml-R v4.1 R package (Butler
et al., 2017). Year was fitted as a fixed effect to account for
G×Y effect and heterogeneous error variance was allowed for
each year.

To initialize the GS training population, phenotypic data
were collected from the ACT stage in the last 6 yr of the burn-
in phase. The initial training population consisted of 3,000
phenotypic records from the ACT genotypes and new data
were added to the training population as new yield trials were
recorded in subsequent years. For the Seed-GSunc and Seed-
GSc programs, ACT data were used to update the training
population, whereas only ECT data were used to update the
ECT-GS program. After 40 yr of future breeding, the train-
ing population increased to 23,000 (Seed-GSunc, Seed-GSc),
and 6,600 (ECT-GS) records. A ridge regression best linear
unbiased prediction model (RR-BLUP) was used for genomic
predictions (Meuwissen et al., 2001). Year was fitted as a
fixed effect to account for G×Y effect and heterogeneous error
variance was allowed for each year. The predicted additive
SNP effects at each marker locus were then multiplied with
genotypes and summed to obtain GEBVs.

2.5 Evaluation and comparison of the
tea-breeding programs

The efficacy of the Seed-Ped and the three GS-breeding
programs was compared with the PS program by tracking
the mean genetic values of the newly developed genotypes at
the Seedlings stage over a 40-yr period in the future phase.
Genetic variance, selection accuracy, and the efficiency
of converting genetic diversity into genetic gain were also
tracked for all breeding programs at the Seedlings stage.
All genetic parameters were tracked at the Seedlings stage,
as this is the earliest stage at which all programs evaluated
new crosses (F1 seedlings). Genetic gain and variance were
assessed by plotting the mean and variance of the Seedlings
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8 of 18 LUBANGA ET AL.The Plant Genome

F I G U R E 3 Schematic overview of the Elite Clonal Trial Genomic Selection Breeding Program (ECT-GS). The dashed line represents the

stage at which the 5 or 20 new parents are selected based on genomic prediction. GS, genomic selection; ACT, Advanced Clonal Trial stage; and

ECT, Elite Clonal Trial stage

population genetic values against time. We calculated the
prediction accuracy for the GS-breeding programs as the
correlation between the true genetic values and their GEBVs
at the Seedlings stage. The efficiency of converting genetic
diversity into genetic gain was measured by regressing
achieved genetic gain on lost genetic diversity, as described
by Gorjanc et al. (2018). All simulations for each strategy
were repeated 30 times.

Comparison between breeding programs was expressed as
ratios. These were calculated by applying the paired Welch
test to the log transformed values of the 30 simulation repli-
cates. The log-transformed differences from t tests were then
back-transformed to obtain the ratios (Ramsey & Schafer,
1997). Significant differences between mean genetic values
from the final year between all pairwise combinations of the
five breeding programs were determined using Tukey’s HSD
test (p < .05).

3 RESULTS

Our simulations showed that the Seed-Ped and all the
GS-breeding programs outperformed PS program. The Seed-
GSunc program had the highest overall genetic gain. All
GS-breeding programs had higher selection accuracies com-
pared with the Seed-Ped and PS-breeding programs. Genetic
variance decreased rapidly over time for the GS programs.
Replacing all parents resulted in a slightly higher genetic
gain, with a slight decrease in genetic variance compared
with replacing 25% of parents. The PS-breeding program had
the highest conversion efficiency, but the lowest genetic gain
compared with the Seed-Ped and GS programs.

3.1 Genetic gain

Our results showed that all the genomic selection strategies
performed significantly better than Seed-Ped and PS pro-
grams (p < .05) in Year 40 (Figure 4). When 25% of the
parents were replaced the Seed-Ped and PS programs were
not significantly different from each other (p < .05). However,
when all the parents were replaced, the Seed-Ped program per-
formed significantly better than the PS program (p < .05). All
the GS programs were not significantly different from each
other when all parents were replaced and also when 25% of
the parents were replaced (p < .05) (Figure 4).

The Seed-Ped and three GS-breeding programs (Seed-
GSunc, Seed-GSc, and ECT-GS) achieved greater genetic
gain compared with the PS-breeding program over time. This
is shown in Figure 5, where the mean genetic values are plot-
ted against the number of years of breeding at the Seedlings
stage. The plot shows the trends for the mean genetic values
of 30 replicates for each of the tea-breeding programs evalu-
ated in the future phase when 25 or 100% of the parents were
replaced. Seed-GSunc showed the greatest genetic gain com-
pared with all other programs. Both plots show that the overall
ranking of the breeding programs in terms of total genetic gain
was consistent across the two proportions of parents replaced.
The ranking of the breeding programs from highest to low-
est mean genetic gain was: Seed-GSunc, Seed-GSc, ECT-GS,
Seed-Ped, and PS.

The breeding programs in which all parents were replaced
showed slightly higher genetic gain than the programs in
which 25% of the parents were replaced. When all par-
ents were replaced, the best program, Seed-GSunc, generated
1.72 times genetic gain of the PS-breeding program.
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LUBANGA ET AL. 9 of 18The Plant Genome

F I G U R E 4 Genetic gain in the final year of the five breeding programs when 25% (left) or 100% (right) of parents were replaced. Within each

boxplot, the dots represent the outcome of each simulation replicate, and the line and gray circle represent the median and mean of the 30 replicates.

The dotted line represents the mean of the Seedlings Genomic Selection Breeding Program with constrained costs (Seed-GSc) for reference

F I G U R E 5 Genetic gain over time for the five breeding programs when 25% (left) or 100% (right) of parents were replaced. The lines in each

plot represent the five programs, with each line representing the mean genetic values over 40 yr. These values are based on 30 simulation replicates

and were measured at the Seedlings stage. Black line represents the Phenotypic Breeding Program (PS), yellow line the Seedlings Pedigree Breeding

Program (Seed-Ped), blue line the Cost-constrained Seedlings Genomic Selection Breeding Program (Seed-GSc), orange line the Cost-unconstrained

Seedlings Genomic Selection Breeding Program (Seed-GSunc) and red line the Elite Clonal Trial Genomic Selection Breeding Program (ECT-GS)

Seed-GSc and ECT-GS generated 1.70 and 1.65 times the
genetic gain of the PS-breeding program, respectively. The
Seed-Ped program generated 1.20 times more genetic gain
compared with the PS program. When 25% of the parents
were replaced, Seed-GSunc generated 1.60 times the genetic
gain of the PS-breeding program. On the other hand, Seed-
GSc and ECT-GS generated 1.54 and 1.50 times the genetic
gain of the PS-breeding program, respectively. The Seed-Ped
program generated 1.16 times more genetic gain compared
with the PS program (Figure 5).

3.2 Selection accuracy

Genomic selection programs had increased selection accuracy
compared with Seed-Ped and PS programs. This is shown
in Figure 6, which plots the selection accuracy as the cor-
relation between true and estimated genetic values in the
Seedlings stage across time. The plot shows the selection
accuracy for all breeding programs when 25 or 100% of
the parents were replaced. All GS-breeding programs had
higher selection accuracy (mean ∼.70) compared with the
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F I G U R E 6 Accuracy of selection over time for the five simulated breeding programs when 25% (left) or 100% (right) of parents were

replaced. The lines in each plot represent the five programs, with each line representing the mean accuracy of selection over 40 yr. These values are

based on 30 simulation replicates and were measured at the Seedlings stage. Black line represents the Phenotypic Breeding Program (PS), yellow line

the Seedlings Pedigree Breeding Program (Seed-Ped), blue line the Cost-constrained Seedlings Genomic Selection Breeding Program (Seed-GSc),

orange line the Cost-unconstrained Seedlings Genomic Selection Breeding Program (Seed-GSunc) and red line the Elite Clonal Trial Genomic

Selection Breeding Program (ECT-GS)

Seed-Ped (mean ∼.25) and PS (mean ∼.18) -breeding pro-
grams. Generally, a higher selection accuracy was observed
when 25% of the parents were replaced (mean ∼.50) than
when all parents were replaced (mean ∼.41). Selection accu-
racy was stable across years for SeedGSc and SeedGSunc. In
the early years of the future breeding phase, selection accu-
racy was lower for the ECT-GS program compared with the
other two GS-breeding programs but then gradually increased
until it reached a plateau in Year 20.

3.3 Genetic variance

Genomic selection increased the rate of loss of genetic vari-
ance compared with PS and Seed-Ped programs. This is
shown in Figure 7, which plots the genetic variance in the
Seedlings stage across time. The plot shows the genetic vari-
ance for all breeding programs when 25 or 100% of the parents
were replaced. All breeding programs showed a decrease
in genetic variance over time. However, the rate of loss of
genetic variance varied among the breeding programs. All
GS-breeding programs showed a large decrease in genetic
variance (up to 99% over a 40-yr period), whereas the PS pro-
gram showed a slower decrease in genetic variance over time.
Note also that the Seed-Ped program showed a substantial loss
of genetic variance, especially when all parents were replaced.
The difference in genetic variance when 25 and 100% of the
parents were replaced was negligible for GS programs, except
during the transition period when GS was introduced and 25%
of parents were replaced.

3.4 Conversion efficiency

Breeding programs in which all parents were replaced had
higher conversion efficiencies than those in which 25% of
parents were replaced. This is shown in Figure 8, which plots
the long-term genetic gain in standard deviation units over
long-term change in the conversion efficiency, calculated by
the slope of realized genetic gain on lost genic variance across
time. In other words, the slope of the change in genetic mean
over the change in the genic standard deviation quantifies the
efficiency of converting genetic diversity into genetic gain.
The plots show the conversion efficiency for all breeding
programs when 25 or 100% of the parents were replaced.

The Seed-GSc program had the best balance between
genetic gain achieved and genetic diversity lost. When 25% of
the parents were replaced, the PS-breeding program achieved
a genetic gain of 10 for a loss of .2 units of genic standard devi-
ation (an efficiency factor of 50). The Seed-Ped program and
all GS programs had a nearly similar efficiency factor. The
Seed-GSunc program had a genetic gain of 18.50 for a loss of
.75 units of genic standard deviation (an efficiency factor of
24.66). The Seed-GSc program had a genetic gain of 18 for
a loss of .70 units of genic standard deviation (an efficiency
factor of 25.71). The ECT-GS program had a genetic gain of
17.50 for a loss of .70 units of genic standard deviation (an
efficiency factor of 25). The Seed-Ped program had a genetic
gain of 12 for a loss of .50 units of genic standard deviation (an
efficiency factor of 24). A similar trend was observed when
all parents were replaced for the PS and GS programs. The
Seed-Ped had the lowest efficiency factor, whereas the GS
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F I G U R E 7 Genetic variance over time for the five simulated breeding programs when 25% (left) or 100% (right) of parents were replaced. The

lines in each plot represent the five programs, with each line representing the mean genetic variance across 40 yr. These values are based on 30

simulation replicates and were measured at the Seedlings stage. Black line represents the Phenotypic Breeding Program (PS), yellow line Seedlings

Pedigree Breeding Program (Seed-Ped), blue line the Cost-constrained Seedlings Genomic Selection Breeding Program (Seed-GSc), orange line the

Cost-unconstrained Seedlings Genomic Selection Breeding Program (Seed-GSunc) and red line the Elite Clonal Trial Genomic Selection Breeding

Program (ECT-GS)
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F I G U R E 8 Conversion efficiency as the change in genetic mean and genic standard deviation over time for the five simulated breeding

programs when 25% (left) or 100% (right) of parents were replaced. The lines in each plot represent the five programs, with the slope representing

the conversion efficiency based on values from 30 simulation replicates measured at the Seedlings stage. Black line represents the Phenotypic

Breeding Program (PS), yellow line the Seedlings Pedigree Breeding Program (Seed-Ped), blue line the Cost-constrained Seedlings Genomic

Selection Breeding Program (Seed-GSc), orange line the Cost-unconstrained Seedlings Genomic Selection Breeding Program (Seed-GSunc) and red

line the Elite Clonal Trial Genomic Selection Breeding Program (ECT-GS)

programs had almost the same conversion efficiency factor.
The ranking of breeding programs from the highest to the low-
est conversion efficiency factor was: PS (47), Seed-GSc (30),
Seed-GSunc (28), ECT-GS (27), and Seed-Ped (14).

4 DISCUSSION

Tea-breeding programs require the integration of genomic-
assisted breeding approaches to increase the future rate of

genetic progress. However, it is currently unclear how these
can be integrated into existing programs and whether the
additional costs these approaches impose are feasible. In this
study, we used stochastic simulations to demonstrate that
the tea-breeding programs in LMIC can benefit from GS.
We developed a pedigree-based (Seed-Ped) and three GS-
breeding programs (Seed-GSc, Seed-GSunc, and ECT-GS)
and compared them to a PS-breeding program that mimicked
a practical commercial tea-breeding program. To discuss
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12 of 18 LUBANGA ET AL.The Plant Genome

the results, the breeding strategies are examined in terms
of genetic gain, selection accuracy, genetic variance, and
conversion efficiency.

4.1 Genetic gain

Phenotypic selection in tea breeding is an extremely slow pro-
cess that requires 16 yr to develop a new tea variety. Tea is
a perennial crop with a long generation interval – it takes
between 3 and 6 yr for a seedling to grow into a mature bush
(Mondal, 2014). To obtain reliable phenotypic information
on each bush, multi-year testing at many locations is typi-
cally required which is time-consuming. This has resulted in
slow genetic progress and release of improved varieties in
tea-breeding programs, so GS needs to be considered.

Breeding programs that used either pedigree-based selec-
tion or GS achieved greater genetic gain compared with
the PS-breeding program. These results demonstrate the
potential to improve the rate of genetic progress even in cost-
constrained tea-breeding programs. Genomic selection was
used to shorten the generation interval, increase selection
accuracy, and increase selection intensity in the case of the
Seed-GSunc program. The Seed-Ped program did not outper-
form any of the GS programs, but it consistently outperformed
the PS program due to the shorter generation interval and
improved selection accuracy as a result of the use of known
genetic relationships. Shortening of the generation interval
results in increased frequency with which haplotypes are
recombined and exposed for selection, which increases the
likelihood that superior allele combinations will emerge in
newly produced progenies (Atlin et al., 2017). Similar results
were previously shown by Gaynor et al. (2017) and Bančič
et al. (2021) who used the advantages of GS to increase grain
yield in wheat and intercrop breeding programs.

Pedigree-based selection and GS can be used to shorten the
overall length of a breeding cycle. The Seed-Ped and GS pro-
grams therefore had between 3 and 8 yr shorter breeding cycle
time compared with the PS program. Shortening may be use-
ful for releasing superior varieties faster but can also result
in lower genetic progress if done too aggressively. For exam-
ple, the ECT-GS program at Year 40 achieved a slightly lower
genetic gain compared with Seed-GSc and Seed-GSunc likely
because of the fewer number of reliable training records that
could be collected in the ECT stage.

A $30,000 increase in annual operating costs was used to
increase selection intensity and resulted in only slightly higher
genetic gain. In the case of the Seed-GSunc, the increased
budget was used to genotype 1,200 more seedlings at the
Seedlings stage as well as test more genotypes at the ACT
stage compared with the Seed-GSc program. For compar-
ison, in the Seed-GSc program only a subset of seedlings
was selected by random sampling while still ensuring that

each family contributed equally which resulted in almost
similar genetic gain compared with the Seed-GSunc. A previ-
ous study, however, showed that generating and testing more
selection candidates while holding the number of selected
candidates constant led to a higher selection intensity and
increased the rate of genetic gain (Bernardo & Yu, 2007).
Therefore, this research requires further exploration to find the
most optimal point between budget increase and the change in
the rate of genetic progress.

Replacement of all parents in the crossing block at the
start of every breeding cycle can contribute to increased
rate of genetic gain. Rapid replacement of parents increased
the frequency at which haplotypes were recombined as well
as increased the rate of change of frequencies for favorable
alleles. The cyclic pattern observed in Figure 5 reflects this.
In the PS program, parents were replaced every 16 yr, as
evidenced by the two striking increases in genetic gain in
both parent replacement scenarios. In the other programs,
this pattern was only observed when 100% of parents were
replaced in every breeding cycle. A shorter, 2-yr generation
interval in these programs results in a more frequent cyclic
pattern. This was less evident when parents were replaced
gradually and so changes in genetic gain were less erratic due
to slower change of favorable allele frequencies.

4.2 Selection accuracy

Selection of promising genotypes at the Seedlings stage in
tea-breeding programs is a major limitation because selec-
tion intensity is high and selection accuracy is extremely low.
In this study, broad-sense heritabilities for the PT, ACT, and
ECT stages were estimated from real data used in our pre-
vious studies (Lubanga et al., 2021). Heritability for the PT
stage was estimated to be .05, for the ACT stage was .45,
and for the ECT stage was .65. The low heritability at the PT
stage reflects the fact that many seedlings are tested in a sin-
gle unreplicated trial and selected on that basis. As a result,
many promising clones are lost at this stage due to poor selec-
tion accuracy. In contrast, higher heritabilities are observed
in the later stages because multi-year and multi-locational
clonal trials with larger plots consisting of more replicates of
each clone are conducted, and thus selection is more accurate.
Therefore, GS was used to improve the accuracy of selection
at the Seedlings stage.

Both pedigree-based selection and GS had higher selection
accuracy compared with the PS program. Pedigree-based
and genomic prediction were used at the Seedlings stage to
predict the yield performance of seedlings as mature bushes
more accurately to select new parents as well as advance them
to the ACT stage. The higher selection accuracy was achieved
by fitting the model using pedigree or genomic information
on relationships and more reliable phenotypic records from
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LUBANGA ET AL. 13 of 18The Plant Genome

the later breeding stages. The use of the late-stage records is
advantageous because genotype clones are tested repeatedly
over years and across different locations compared with PS
which is based on individual performance. To maintain selec-
tion accuracy in the GS programs, the training population
was updated with new records each year in order to maintain
a close relationship between the genotypes in the training
population and selection candidates (Neyhart et al., 2017).
The linkage disequilibrium (LD) between QTLs and markers
is expected to change over time because of recombination,
selection, and drift, which results in a decay of prediction
accuracy (Lorenz et al., 2011). Neyhart et al. (2017) evaluated
several methods for updating the training population in a
long-term GS and reported that using a smaller but more
recent training population provided a slight advantage in
prediction accuracy and genetic gain. Wientjes et al. (2022)
suggested that a closely related training population is also
important because trait genetic architecture is more similar
to that of the selection candidates.

The pedigree-based selection accuracy was much lower
compared with that of the GS-breeding programs. The
improved selection accuracy in GS programs compared with
pedigree-based selection is due to the ability to predict the
Mendelian sampling term. The Mendelian sampling is due to
the fact that alleles transmitted from a parent to its offspring
are sampled at random and therefore differ in each sibling
(Werner et al., 2020). The genomic relationship matrix esti-
mates relationships between siblings and other relatives more
accurately than the pedigree relationship matrix because it
is based on realized (identity-by-state) rather than expected
relationships (Legarra et al., 2009). Because the Mendelian
sampling term is included in GS, it is possible to determine
whether siblings within a family are more or less related than
expected, resulting in more accurate GEBV assignment and
higher selection accuracy (Hill & Weir, 2011; Werner et al.,
2020).

Selection accuracy in the early years of the future phase was
lower for the ECT-GS program compared with the other two
GS programs. This is likely because fewer phenotypic records
were used in the training population each year compared
with Seed-GSunc and Seed-GSc programs. For comparison,
only 90 records from the ECT stage in the ECT-GS breed-
ing program were used to update the training population
compared with 500 from the ACT stage in the Seed-GSunc
and Seed-GSc programs. The Seed-GSunc breeding program
had the highest overall prediction accuracy, confirming that
training population size is an important factor in the devel-
opment of GS-breeding programs. This is consistent with the
results of previous studies that showed that a large training
population is required to accurately estimate marker effects
(Combs & Bernardo, 2013; Zhang et al., 2017). However, it
is still worth noting that the accuracy in the ECT-GS pro-
gram was not much lower despite the substantially reduced

training records. This demonstrates the importance of high-
quality (multi-year and multi-location) phenotypic records in
the training population.

Higher selection accuracy was observed when 25% of par-
ents were replaced compared with when all parents were
replaced. When all parents are replaced in each breeding
cycle, a large shift in the LD pattern occurs and prediction
within new families becomes more difficult. The shift in the
pattern of QTL-marker LD, if not captured, can lead to lower
prediction accuracy (Lorenz et al., 2011). This also indicates
that regular updating of the training population is impor-
tant when many parents in the crossing block are regularly
replaced. A stable decline in accuracy over time was observed
in the Seed-Ped and three GS programs. This was expected
due to increasing genetic distance between training popula-
tion and selection candidates and decreasing genetic variance
as only a closed breeding population was considered (Gaynor
et al., 2017).

4.3 Genetic variance and conversion
efficiency

Maintenance of genetic variation is a critical component
for long-term breeding program sustainability and continued
genetic progress. Selection causes changes in allele frequen-
cies, genetic variances, and LD relationships between markers
and QTL (Muir, 2007). The Seed-Ped and the three GS
programs suffered a substantial loss in genetic variance com-
pared with the PS program. By applying pressure to SNPs
associated with QTLs that largely contribute to the trait
of interest, GS leads to rapid fixation of favorable alleles
and high genetic gains in the short term (Wientjes et al.,
2022). In the long term, GS increases the risk of losing rare
favorable alleles or fails to increase the frequency of such
alleles which reduces genetic variance, as may be observed
in our study. Despite the much lower genetic gain, the loss
of genetic variance of the Seed-Ped program was similar
to that of the GS programs. Similar results were reported
by Wientjes et al. (2022), who argued that more segregat-
ing causal loci are lost through pedigree-based selection
likely because of stronger family-based selection. Contrast-
ingly, slower decrease in genetic variance observed in the
PS is likely due to selection pressure being more evenly
distributed across the genome which reduces the loss of seg-
regating loci as a result of hitchhiking, apart from a much
longer breeding cycle (Barton, 2000). Faster rate of loss in
variance occurred especially in the early years of both the
Seed-Ped and GS programs due to sudden increase in selec-
tion accuracy. The increase in selection accuracy resulted in
the rapid decrease in genetic variance under directional selec-
tion due to the build-up of negative LD between causal loci
(Bulmer, 1971).
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14 of 18 LUBANGA ET AL.The Plant Genome

Breeding programs differed in the conversion efficiency
which measures the rate of variance lost and genetic gain
produced. When 25% of the parents were replaced, the
Seed-Ped and GS programs had a lower conversion effi-
ciency factor compared with the PS-breeding program. This
implies that selection based on PS is still an effective method
because it converts genetic gain over genetic variance loss
more efficiently but is too slow to produce the required
genetic gains. When all parents were replaced, the conver-
sion efficiency of the PS program decreased and increased
slightly for the GS-breeding programs. This is because the
GS programs generated more genetic gain when all par-
ents were replaced, although little difference in the loss of
genetic variance was observed when 25 and 100% of parents
were replaced. Overall, the lowest conversion efficiency was
observed for Seed-Ped, suggesting that GS is more sustainable
than pedigree-based selection in terms of maintaining future
genetic gain.

The large reduction in genetic variance observed in GS pro-
grams can limit long-term genetic gains in breeding (Cobb
et al., 2019). The strategies that balance the rates of genetic
gain and loss of diversity that could be implemented in
tea-breeding programs include optimal contribution selec-
tion (Yadav et al., 2020), optimal cross selection (Gorjanc
et al., 2018), optimal contribution selection with branching
(Santantonio & Robbins, 2020), optimal population value
selection (Goiffon et al., 2017), and expected maximum
haploid-breeding value selection (Müller et al., 2018). As
previously shown by Werner et al. (2020), crossing parents
should be selected based on genomic predicted cross perfor-
mance especially in the presence of dominance which was not
considered in this study.

4.4 Simulation constrains and practical
implementation of genomic selection in
tea-breeding programs

We used a practical commercial tea-breeding program and
its parameters as a basis to test the possible integration of
GS. Our main constraints were low operating costs for breed-
ing due to low labor wages and limited research resources.
Kenya is one of the LMICs where wages are significantly
lower compared with countries with advanced economies.
For example, the average daily wage of a field worker in
multinational tea companies in Kenya is ∼$5 (based on the
collective bargaining agreement between workers and tea
companies in Kenya), whereas the hourly wage in the UK
is ∼$8–12 (according to glassdoor.co.uk). Our simulations
have shown that implementation of GS is feasible despite
these constraints. Although caution is still required in inter-
preting the results due to simulation limitations (see Gaynor
et al. (2017) and Powell et al. (2020), our results provide

useful conclusions for GS implementation in tea-breeding
programs:

1. Genotyping seedlings in nurseries and selecting the best
parents based on GEBVs can greatly increase genetic gain
by reducing generation interval and increasing selection
accuracy.

2. Eliminating the early PT stage reduces the costs and short-
ens the breeding cycle by 3 yr. The saved cost can be
reallocated for genotyping more seedlings in the nursery.

3. Elimination of the PT and ACT stages in the ECT-GS
program shortened the duration of the breeding cycle by
8 yr. However, genetic gains were lower compared with
the other GS strategies because fewer training records were
available for genomic prediction.

4. A $30,000 increase in the operating budget in the Seed-
GSunc resulted in only a small increase in genetic gain.

5. Genomic selection is cost effective in tea-breeding pro-
grams when genotyping costs are $15 per sample or
lower. Benefits are expected to increase as the cost of
high-throughput genotyping decreases in the future.

6. Consistent replacement of parents should occur in each
breeding cycle to ensure continued genetic progress. How-
ever, optimal cross-selection strategies may need to be
considered.

7. In breeding programs where GS is not feasible due to
financial and logistical constraints, pedigree-based selec-
tion could be used as an alternative.

To ensure successful implementation of GS, breeders must
ensure that the necessary facilities and equipment are avail-
able on site (e.g., freezers, sterile laboratories), that field
technicians are appropriately trained, that genotyping and
sample transport costs are identified, and that they collaborate
with biometricians to optimize field testing and phenotype
collection and to develop GS pipelines using appropriate sta-
tistical models (Covarrubias-Pazaran et al., 2021). In our
study, simple pedigree-based and GS models were used for
demonstration, but models that efficiently account for multi-
ple harvests, as is the case in tea breeding, could be considered
to obtain the most accurate predictions of genotype perfor-
mance over time and across a range of environments (De
Faveri et al., 2022).

4.5 Genomic selection for improvement of
tea quality and practical implementation

Tea quality is another important attribute besides yield that
was not considered in this study. Usually, tea quality is mea-
sured based on color, aroma, taste, mouthfeel of tea liquor,
and appearance of dry tea (Zheng et al., 2016). These sensory
attributes are derived from biochemical compounds present
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in fresh tea shoots, such as catechins, alkaloids, amino acids,
and volatile compounds (Ivarsson et al., 2001). Tradition-
ally, sensory evaluation using professional tasters has been the
main method used to evaluate, grade, and determine the price
of tea (Liang et al., 2003). Sensory evaluation is quick and
practical to use. However, it requires skilled and experienced
professional tasters (Liang et al., 2008). Sensory evalua-
tion is subject to variation due to different preferences and
mood of individual tasters (Sinija & Mishra, 2011). Hence,
sensory evaluations should be complemented with chemical
and physical analytical methods for identifying biochemical
components associated with tea quality that are more objec-
tive, repeatable, and reproducible (Chen et al., 2015). These
methods include liquid chromatography coupled with mass
spectrometry (LC-MS), nuclear magnetic resonance (NMR),
near infrared (NIR) spectroscopy and chromatographic meth-
ods such as high-performance liquid chromatography (HPLC)
and gas chromatography (GC) (Yashin et al., 2015; Zheng
et al., 2016). However, the use of most analytical techniques
is currently still limited due to high purchase, maintenance,
and expertise costs.

Genomic selection could also be used to improve selection
for higher quality tea varieties (Lubanga et al., 2021). Cur-
rently, selection for tea quality occurs at a very late stage in
the breeding program, and therefore many clones with favor-
able quality traits may have been discarded. Instead, data
from professional testers and biochemical traits from ana-
lytical techniques in the late stages can be used to train the
GS model in the nursery stage. Genotyped seedlings could
be selected for multiple traits such as tea quality and yield
simultaneously using a multi-trait GS model framework and
a selection index (Shahi et al., 2022). Selection for better tea
quality could thus begin at the earliest stage, where variation
in quality traits is greater. Simultaneous selection for tea yield
and quality using GS and its effects on the overall genetic gain
are currently unclear and need further investigation.

5 CONCLUSION

Our study provides insights into the optimal implementation
of GS in tea breeding under constrained operating costs in
LMIC. Although the ECT-GS program seems more desirable
because of its short breeding cycle (8 yr) and competitive
genetic gains, we believe that breeders may be reluctant to
allow radical changes to their breeding programs and there-
fore, the Seed-GSc program is a more attractive strategy.
The Seed-GSc program has the same budget as the PS pro-
gram and retained the multi-year and multi-location clonal
trials that provide essential information for accurate genomic
prediction. Most tea-breeding programs have pedigree infor-
mation that is rarely used to predict the performance of
promising genotypes. Our simulation showed that pedigree-

based selection had higher genetic gain compared with PS and
should therefore be considered when direct transition to GS is
not possible or when GS cannot be implemented. The results
shown in this paper are not only applicable to tea-breeding
programs but also to other perennial- and clonal-breeding
programs.

AU T H O R C O N T R I B U T I O N S
Nelson Lubanga: Conceptualization; Formal analysis; Fund-
ing acquisition; Investigation; Methodology; Project adminis-
tration; Writing – original draft; Writing – review & editing.
Sean Mayes: Writing – review & editing. Festo Massawe:
Writing – review & editing. Gregor Gorjanc: Conceptualiza-
tion; Supervision; Writing – review & editing. Jon Bančič:
Conceptualization; Methodology; Writing – original draft;
Writing – review & editing.

A C K N O W L E D G M E N T S
NL thanks University of Nottingham and Unilever Tea Kenya
for the support during his PhD. We acknowledge the BBSRC
Institute Strategic Programme funding to The Roslin Institute
(BBS/E/D/30002275).

C O N F L I C T O F I N T E R E S T
The authors declare no conflict of interest.

D AT A AVA I L A B I L I T Y S T AT E M E N T
The R scripts to perform the simulations analyses using
AlphaSimR are publicly available on the GitHub repository:
https://github.com/HighlanderLab/nlubanga_teabreeding.

O R C I D
Nelson Lubanga https://orcid.org/0000-0002-8975-0793
Gregor Gorjanc https://orcid.org/0000-0001-8008-2787
Jon Bančič https://orcid.org/0000-0001-7077-7163

R E F E R E N C E S
Ahmar, S., Ballesta, P., Ali, M., & Mora-Poblete, F. (2021). Achieve-

ments and challenges of genomics-assisted breeding in forest trees:

From marker-assisted selection to genome editing. International
Journal of Molecular Sciences, 22(19), 10583. https://doi.org/10.

3390/ijms221910583

Alves, R. S., de Carvalho Rocha, J. R., do, A. S, Teodoro, P. E, de

Resende, M. D. V., Henriques, E. P., Silva, L. A., Carneiro, P. C. S.,

& Bhering, L. L. (2018). Multiple-trait BLUP: A suitable strategy for

genetic selection of eucalyptus. Tree Genetics & Genomes, 14(5), 77.

https://doi.org/10.1007/s11295-018-1292-7

Atlin, G. N., Cairns, J. E., & Das, B. (2017). Rapid breeding and vari-

etal replacement are critical to adaptation of cropping systems in the

developing world to climate change. Global Food Security, 12, 31–37.

https://doi.org/10.1016/j.gfs.2017.01.008

Bančič, J., Werner, C. R., Gaynor, R. C., Gorjanc, G., Odeny, D.

A., Ojulong, H. F., Dawson, I. K., Hoad, S. P., & Hickey, J. M.

(2021). Modeling illustrates that genomic selection provides new

 19403372, 0, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/tpg2.20282 by T

est, W
iley O

nline L
ibrary on [22/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/HighlanderLab/nlubanga_teabreeding
https://orcid.org/0000-0002-8975-0793
https://orcid.org/0000-0002-8975-0793
https://orcid.org/0000-0001-8008-2787
https://orcid.org/0000-0001-8008-2787
https://orcid.org/0000-0001-7077-7163
https://orcid.org/0000-0001-7077-7163
https://doi.org/10.3390/ijms221910583
https://doi.org/10.3390/ijms221910583
https://doi.org/10.1007/s11295-018-1292-7
https://doi.org/10.1016/j.gfs.2017.01.008


16 of 18 LUBANGA ET AL.The Plant Genome

opportunities for intercrop breeding. Frontiers in Plant Science, 12,

605172. https://doi.org/10.3389/fpls.2021.605172

Barton, N. H. (2000). Genetic hitchhiking. Philosophical Transactions
of the Royal Society of London. Series B: Biological Sciences,

355(1403), 1553–1562. https://doi.org/10.1098/rstb.2000.0716

Bernardo, R. (1996). Best linear unbiased prediction of maize single-

cross performance. Crop Science, 36(1), 50–56. https://doi.org/10.

2135/cropsci1996.0011183İ003600010009x

Bernardo, R., & Yu, J. (2007). Prospects for genomewide selection for

quantitative traits in maize. Crop Science, 47(3), 1082–1090. https://

doi.org/10.2135/cropsci2006.11.0690

Bulmer, M. G. (1971). The effect of selection on genetic variability. The
American Naturalist, 105(943), 201–211.

Butler, D., Cullis, B., Gilmour, A., Gogel, B., & Thompson, R. (2017).

ASReml-R reference manual version 4. VSN International Ltd.

Carr, M. K. V. (2018). Advances in tea agronomy (1st ed.). Cambridge

University Press. https://doi.org/10.1017/9781316155714

Chen, G. K., Marjoram, P., & Wall, J. D. (2009). Fast and flexible sim-

ulation of DNA sequence data. Genome Research, 19(1), 136–142.

https://doi.org/10.1101/gr.083634.108

Chen, L., Apostolides, Z., & Chen, Z.-M. (2012). Global tea breeding:
achievements, challenges and perspectives. Springer. https://doi.org/

10.1007/978-3-642-31878-8

Chen, Q., Zhang, D., Pan, W., Ouyang, Q., Li, H., Urmila, K., & Zhao,

J. (2015). Recent developments of green analytical techniques in

analysis of tea’s quality and nutrition. Trends in Food Science &
Technology, 43(1), 63–82. https://doi.org/10.1016/j.tifs.2015.01.009

Cobb, J. N., Juma, R. U., Biswas, P. S., Arbelaez, J. D., Rutkoski, J., Atlin,

G., Hagen, T., Quinn, M., & Ng, E. H. (2019). Enhancing the rate of

genetic gain in public-sector plant breeding programs: Lessons from

the breeder’s equation. Theoretical and Applied Genetics, 132(3),

627–645. https://doi.org/10.1007/s00122-019-03317-0

Combs, E., & Bernardo, R. (2013). Accuracy of genomewide selec-

tion for different traits with constant population size, heritability, and

number of markers. The Plant Genome, 6(1). https://doi.org/10.3835/

plantgenome2012.11.0030

Covarrubias-Pazaran, G., Martini, J. W. R., Quinn, M., & Atlin, G.

(2021). Strengthening public breeding pipelines by emphasizing

quantitative genetics principles and open source data management.

Frontiers in Plant Science, 12, 681624. https://doi.org/10.3389/fpls.

2021.681624

De Faveri, J., Verbyla, A. P., & Rebetzke, G. (2022). Random regression

models for multi-environment, multi-time data from crop breeding

selection trials. Crop and Pasture Science, . https://doi.org/10.1071/

CP21732

García-Ruiz, A., Cole, J. B., VanRaden, P. M., Wiggans, G. R., Ruiz-

López, F. J., & Van Tassell, C. P. (2016). Changes in genetic selection

differentials and generation intervals in US holstein dairy cattle as

a result of genomic selection. Proceedings of the National Academy
of Sciences, 113(28), E3995–E4004. https://doi.org/10.1073/pnas.

1519061113

Gaynor, R. C., Gorjanc, G., Bentley, A. R., Ober, E. S., Howell, P.,

Jackson, R., Mackay, I. J., & Hickey, J. M. (2017). A two-part strat-

egy for using genomic selection to develop inbred lines. Crop Science,

57(5), 2372–2386. https://doi.org/10.2135/cropsci2016.09.0742

Gaynor, R. C., Gorjanc, G., & Hickey, J. M. (2021). AlphaSimR:

An R package for breeding program simulations. G3 Genes|
Genomes|Genetics, 11(2), jkaa017. https://doi.org/10.1093/

g3journal/jkaa017

Goiffon, M., Kusmec, A., Wang, L., Hu, G., & Schnable, P. S.

(2017). Improving response in genomic selection with a population-

based selection strategy: Optimal population value selection.

Genetics, 206(3), 1675–1682. https://doi.org/10.1534/genetics.116.

197103

Gorjanc, G., Gaynor, R. C., & Hickey, J. M. (2018). Optimal cross

selection for long-term genetic gain in two-part programs with

rapid recurrent genomic selection. Theoretical and Applied Genetics,

131(9), 1953–1966. https://doi.org/10.1007/s00122-018-3125-3

Grattapaglia, D., Silva-Junior, O. B., Resende, R. T., Cappa, E. P.,

Müller, B. S. F., Tan, B., Isik, F., Ratcliffe, B., & El-Kassaby, Y. A.

(2018). Quantitative genetics and genomics converge to accelerate for-

est tree breeding. Frontiers in Plant Science, 9, 1693. https://doi.org/

10.3389/fpls.2018.01693

Gunathilaka, R. P. D., Smart, J. C. R., & Fleming, C. M. (2017). The

impact of changing climate on perennial crops: The case of tea pro-

duction in Sri Lanka. Climatic Change, 140(3–4), 577–592. https://

doi.org/10.1007/s10584-016-1882-z

Heffner, E. L., Sorrells, M. E., & Jannink, J.-L. (2009). Genomic selec-

tion for crop improvement. Crop Science, 49(1), 1–12. https://doi.org/

10.2135/cropsci2008.08.0512

Henderson, C. R. (1975). Best linear unbiased estimation and prediction

under a selection model. Biometrics, 31(2), 423. https://doi.org/10.

2307/2529430

Hill, W. G., & Weir, B. S. (2011). Variation in actual relationship as a

consequence of Mendelian sampling and linkage. Genetics Research,

93(1), 47–64. https://doi.org/10.1017/S0016672310000480

Ivarsson, P., Holmin, S., Höjer, N.-E., Krantz-Rülcker, C., & Winquist,

F. (2001). Discrimination of tea by means of a voltammetric

electronic tongue and different applied waveforms. Sensors and Actu-
ators B: Chemical, 76(1–3), 449–454. https://doi.org/10.1016/S0925-

4005(01)00583-4

Iwata, H., Hayashi, T., & Tsumura, Y. (2011). Prospects for genomic

selection in conifer breeding: A simulation study of Cryptomeria
japonica. Tree Genetics & Genomes, 7(4), 747–758. https://doi.org/

10.1007/s11295-011-0371-9

Kamunya, S. M., Wachira, F. N., Pathak, R. S., Muoki, R. C., & Sharma,

R. K. (2012). Tea improvement in Kenya. In L. Chen, Z. Apostolides,

& Z.-M. Chen (Eds.), Global tea breeding (pp. 177–226). Springer.

https://doi.org/10.1007/978-3-642-31878-8_5

Legarra, A., Aguilar, I., & Misztal, I. (2009). A relationship matrix

including full pedigree and genomic information. Journal of Dairy
Science, 92(9), 4656–4663. https://doi.org/10.3168/jds.2009-2061

Leng, P.-f., Lübberstedt, T., & Xu, M.-l. (2017). Genomics-assisted

breeding: A revolutionary strategy for crop improvement. Journal of
Integrative Agriculture, 16(12), 2674–2685. https://doi.org/10.1016/

s2095-3119(17)61813-6

Liang, Y., Lu, J., Zhang, L., Wu, S., & Wu, Y. (2003). Estimation of black

tea quality by analysis of chemical composition and colour difference

of tea infusions. Food Chemistry, 80(2), 283–290. https://doi.org/10.

1016/S0308-8146(02)00415-6

Liang, Y. R., Ye, Q., Jin, J., Liang, H., Lu, J. L., Du, Y. Y., & Dong, J.

J. (2008). Chemical and instrumental assessment of green tea sensory

preference. International Journal of Food Properties, 11(2), 258–272.

https://doi.org/10.1080/10942910701299430

Lorenz, A. J., Chao, S., Asoro, F. G., Heffner, E. L., Hayashi, T., Iwata,

H., Smith, K. P., Sorrells, M. E., & Jannink, J.-L. (2011). Genomic

selection in plant breeding. Advances in Agronomy, 110, 77–123.

https://doi.org/10.1016/B978-0-12-385531-2.00002-5

 19403372, 0, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/tpg2.20282 by T

est, W
iley O

nline L
ibrary on [22/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.3389/fpls.2021.605172
https://doi.org/10.1098/rstb.2000.0716
https://doi.org/10.2135/cropsci1996.0011183x003600010009x
https://doi.org/10.2135/cropsci1996.0011183x003600010009x
https://doi.org/10.2135/cropsci2006.11.0690
https://doi.org/10.2135/cropsci2006.11.0690
https://doi.org/10.1017/9781316155714
https://doi.org/10.1101/gr.083634.108
https://doi.org/10.1007/978-3-642-31878-8
https://doi.org/10.1007/978-3-642-31878-8
https://doi.org/10.1016/j.tifs.2015.01.009
https://doi.org/10.1007/s00122-019-03317-0
https://doi.org/10.3835/plantgenome2012.11.0030
https://doi.org/10.3835/plantgenome2012.11.0030
https://doi.org/10.3389/fpls.2021.681624
https://doi.org/10.3389/fpls.2021.681624
https://doi.org/10.1071/CP21732
https://doi.org/10.1071/CP21732
https://doi.org/10.1073/pnas.1519061113
https://doi.org/10.1073/pnas.1519061113
https://doi.org/10.2135/cropsci2016.09.0742
https://doi.org/10.1093/g3journal/jkaa017
https://doi.org/10.1093/g3journal/jkaa017
https://doi.org/10.1534/genetics.116.197103
https://doi.org/10.1534/genetics.116.197103
https://doi.org/10.1007/s00122-018-3125-3
https://doi.org/10.3389/fpls.2018.01693
https://doi.org/10.3389/fpls.2018.01693
https://doi.org/10.1007/s10584-016-1882-z
https://doi.org/10.1007/s10584-016-1882-z
https://doi.org/10.2135/cropsci2008.08.0512
https://doi.org/10.2135/cropsci2008.08.0512
https://doi.org/10.2307/2529430
https://doi.org/10.2307/2529430
https://doi.org/10.1017/S0016672310000480
https://doi.org/10.1016/S0925-4005(01)00583-4
https://doi.org/10.1016/S0925-4005(01)00583-4
https://doi.org/10.1007/s11295-011-0371-9
https://doi.org/10.1007/s11295-011-0371-9
https://doi.org/10.1007/978-3-642-31878-8_5
https://doi.org/10.3168/jds.2009-2061
https://doi.org/10.1016/s2095-3119(17)61813-6
https://doi.org/10.1016/s2095-3119(17)61813-6
https://doi.org/10.1016/S0308-8146(02)00415-6
https://doi.org/10.1016/S0308-8146(02)00415-6
https://doi.org/10.1080/10942910701299430
https://doi.org/10.1016/B978-0-12-385531-2.00002-5


LUBANGA ET AL. 17 of 18The Plant Genome

Lubanga, N., Massawe, F., & Mayes, S. (2021). Genomic and pedigree-

based predictive ability for quality traits in tea (Camellia sinensis (L.)

O. Kuntze). Euphytica, 217(3), 32. https://doi.org/10.1007/s10681-

021-02774-3

Marx, W., Haunschild, R., & Bornmann, L. (2017). Global warming and

tea production—The bibliometric view on a newly emerging research

topic. Climate, 5(3), 46. https://doi.org/10.3390/cli5030046

Meegahakumbura, M. K., Wambulwa, M. C., Li, M.-M., Thapa, K. K.,

Sun, Y.-S., Möller, M., Xu, J.-C., Yang, J.-B., Liu, J., Liu, B.-Y., Li,

D.-Z., & Gao, L.-M. (2018). Domestication origin and breeding his-

tory of the tea plant (Camellia sinensis) in China and India based on

nuclear microsatellites and cpDNA sequence data. Frontiers in Plant
Science, 8, 2270. https://doi.org/10.3389/fpls.2017.02270

Meuwissen, T. H. E., Hayes, B. J., & Goddard, M. E. (2001). Predic-

tion of total genetic value using genome-wide dense marker maps.

Genetics, 157(4), 1819–1829. https://doi.org/10.1093/genetics/157.4.

1819

Mondal, T. K. (2011). Camellia. In C. Kole (Ed.), Wild crop relatives:
genomic and breeding resources (pp. 15–39). Springer. https://doi.

org/10.1007/978-3-642-21201-7_2

Mondal, T. K. (2014). Breeding and biotechnology of tea and its wild
species. Springer. https://doi.org/10.1007/978-81-322-1704-6

Muir, W. M. (2007). Comparison of genomic and traditional BLUP-

estimated breeding value accuracy and selection response under

alternative trait and genomic parameters: Comparison of BLUP and

GEBV selection. Journal of Animal Breeding and Genetics, 124(6),

342–355. https://doi.org/10.1111/j.1439-0388.2007.00700.x

Muleta, K. T., Pressoir, G., & Morris, G. P. (2019). Optimizing genomic

selection for a sorghum breeding program in Haiti: A simulation

study. G3 Genes|Genomes|Genetics, 9(2), 391–401. https://doi.org/

10.1534/g3.118.200932

Müller, D., Schopp, P., & Melchinger, A. E. (2018). Selection on

expected maximum haploid breeding values can increase genetic gain

in recurrent genomic selection. G3 Genes|Genomes|Genetics, 8(4),

1173–1181. https://doi.org/10.1534/g3.118.200091

Muoki, C. R., Maritim, T. K., Oluoch, W. A., Kamunya, S. M., & Bore,

J. K. (2020). Combating climate change in the Kenyan tea industry.

Frontiers in Plant Science, 11, 339. https://doi.org/10.3389/fpls.2020.

00339

Neyhart, J. L., Tiede, T., Lorenz, A. J., & Smith, K. P. (2017). Evaluating

methods of updating training data in long-term genomewide selec-

tion. G3 Genes|Genomes|Genetics, 7(5), 1499–1510. https://doi.org/

10.1534/g3.117.040550

Panter, D. M., & Allen, F. L. (1995). Using best linear unbiased

predictions to enhance breeding for yield in soybean: I. Choosing par-

ents. Crop Science, 35(2), 397. https://doi.org/10.2135/cropsci1995.

0011183x003500020020x

Piepho, H. P., Möhring, J., Melchinger, A. E., & Büchse, A. (2008).

BLUP for phenotypic selection in plant breeding and variety testing.

Euphytica, 161(1–2), 209–228. https://doi.org/10.1007/s10681-007-

9449-8

Powell, O., Gaynor, R. C., Gorjanc, G., Werner, C. R., & Hickey, J.

M. (2020). A two-part strategy using genomic selection in hybrid

crop breeding programs. [Preprint.] Genetics. https://doi.org/10.

1101/2020.05.24.113258

Ramsey, F. L., & Schafer, D. W. (1997). The statistical sleuth: a course
in methods of data analysis. Duxbury Press.

Santantonio, N., & Robbins, K. (2020). A hybrid optimal contribution
approach to drive short-term gains while maintaining long-term sus-
tainability in a modern plant breeding program. [Preprint.] Genetics.

https://doi.org/10.1101/2020.01.08.899039

Shahi, D., Guo, J., Pradhan, S., Khan, J., Avci, M., Khan, N., McBreen,

J., Bai, G., Reynolds, M., Foulkes, J., & Babar, M. A. (2022). Multi-

trait genomic prediction using in-season physiological parameters

increases prediction accuracy of complex traits in US wheat. BMC
Genomics [Electronic Resource], 23(1), 298. https://doi.org/10.1186/

s12864-022-08487-8

Sinija, V. R., & Mishra, H. N. (2011). Fuzzy analysis of sensory data

for quality evaluation and ranking of instant green tea powder and

granules. Food and Bioprocess Technology, 4(3), 408–416. https://

doi.org/10.1007/s11947-008-0163-x

Valin, H., Sands, R. D., van der Mensbrugghe, D., Nelson, G. C.,

Ahammad, H., Blanc, E., Bodirsky, B., Fujimori, S., Hasegawa,

T., Havlik, P., Heyhoe, E., Kyle, P., Mason-D’Croz, D., Paltsev,

S., Rolinski, S., Tabeau, A., van Meijl, H., von Lampe, M., &

Willenbockel, D. (2014). The future of food demand: Understand-

ing differences in global economic models. Agricultural Economics,

45(1), 51–67. https://doi.org/10.1111/agec.12089

Wambulwa, M. C., Meegahakumbura, M. K., Kamunya, S., & Wachira,

F. N. (2021). From the wild to the cup: Tracking footprints of the tea

species in time and space. Frontiers in Nutrition, 8, 706770. https://

doi.org/10.3389/fnut.2021.706770

Werner, C. R., Gaynor, R. C., Sargent, D. J., Lillo, A., Gorjanc, G., &

Hickey, J. M. (2020). Genomic selection strategies for clonally propa-
gated crops. [Preprint.] Genetics. https://doi.org/10.1101/2020.06.15.

152017

Wientjes, Y. C. J., Bijma, P., Calus, M. P. L., Zwaan, B. J., Vitezica, Z. G.,

& van den Heuvel, J. (2022). The long-term effects of genomic selec-

tion: 1. Response to selection, additive genetic variance, and genetic

architecture. Genetics Selection Evolution, 54(1), 19. https://doi.org/

10.1186/s12711-022-00709-7

Yadav, S., Jackson, P., Wei, X., Ross, E. M., Aitken, K., Deomano, E.,

Atkin, F., Hayes, B. J., & Voss-Fels, K. P. (2020). Accelerating genetic

gain in sugarcane breeding using genomic selection. Agronomy, 10(4),

585. https://doi.org/10.3390/agronomy10040585

Yamashita, H., Uchida, T., Tanaka, Y., Katai, H., Nagano, A. J., Morita,

A., & Ikka, T. (2020). Genomic predictions and genome-wide associ-

ation studies based on RAD-seq of quality-related metabolites for the

genomics-assisted breeding of tea plants. Scientific Reports, 10(1),

17480. https://doi.org/10.1038/s41598-020-74623-7

Yashin, A. Y., Nemzer, B. V., Combet, E., & Yashin, Y. I. (2015). Deter-

mination of the chemical composition of tea by chromatographic

methods: A review. Journal of Food Research, 4(3), 56. https://doi.

org/10.5539/jfr.v4n3p56

Zhang, A., Wang, H., Beyene, Y., Semagn, K., Liu, Y., Cao, S., Cui,

Z., Ruan, Y., Burgueño, J., San Vicente, F., Olsen, M., Prasanna,

 19403372, 0, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/tpg2.20282 by T

est, W
iley O

nline L
ibrary on [22/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1007/s10681-021-02774-3
https://doi.org/10.1007/s10681-021-02774-3
https://doi.org/10.3390/cli5030046
https://doi.org/10.3389/fpls.2017.02270
https://doi.org/10.1093/genetics/157.4.1819
https://doi.org/10.1093/genetics/157.4.1819
https://doi.org/10.1007/978-3-642-21201-7_2
https://doi.org/10.1007/978-3-642-21201-7_2
https://doi.org/10.1007/978-81-322-1704-6
https://doi.org/10.1111/j.1439-0388.2007.00700.x
https://doi.org/10.1534/g3.118.200932
https://doi.org/10.1534/g3.118.200932
https://doi.org/10.1534/g3.118.200091
https://doi.org/10.3389/fpls.2020.00339
https://doi.org/10.3389/fpls.2020.00339
https://doi.org/10.1534/g3.117.040550
https://doi.org/10.1534/g3.117.040550
https://doi.org/10.2135/cropsci1995.0011183x003500020020x
https://doi.org/10.2135/cropsci1995.0011183x003500020020x
https://doi.org/10.1007/s10681-007-9449-8
https://doi.org/10.1007/s10681-007-9449-8
https://doi.org/10.1101/2020.05.24.113258
https://doi.org/10.1101/2020.05.24.113258
https://doi.org/10.1101/2020.01.08.899039
https://doi.org/10.1186/s12864-022-08487-8
https://doi.org/10.1186/s12864-022-08487-8
https://doi.org/10.1007/s11947-008-0163-x
https://doi.org/10.1007/s11947-008-0163-x
https://doi.org/10.1111/agec.12089
https://doi.org/10.3389/fnut.2021.706770
https://doi.org/10.3389/fnut.2021.706770
https://doi.org/10.1101/2020.06.15.152017
https://doi.org/10.1101/2020.06.15.152017
https://doi.org/10.1186/s12711-022-00709-7
https://doi.org/10.1186/s12711-022-00709-7
https://doi.org/10.3390/agronomy10040585
https://doi.org/10.1038/s41598-020-74623-7
https://doi.org/10.5539/jfr.v4n3p56
https://doi.org/10.5539/jfr.v4n3p56


18 of 18 LUBANGA ET AL.The Plant Genome

B. M., Crossa, J., Yu, H., & Zhang, X. (2017). Effect of trait her-

itability, training population size and marker density on genomic

prediction accuracy estimation in 22 bi-parental tropical maize pop-

ulations. Frontiers in Plant Science, 8, 1916. https://doi.org/10.3389/

fpls.2017.01916

Zheng, X.-Q., Li, Q.-S., Xiang, L.-P., & Liang, Y.-R. (2016). Recent

advances in volatiles of teas. Molecules (Basel, Switzerland), 21(3),

338. https://doi.org/10.3390/molecules21030338

How to cite this article: Lubanga, N., Massawe, F.,
Mayes, S., Gorjanc, G., & Bančič, J. (2022). Genomic
selection strategies to increase genetic gain in tea
breeding programs. The Plant Genome, e20282.
https://doi.org/10.1002/tpg2.20282

 19403372, 0, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/tpg2.20282 by T

est, W
iley O

nline L
ibrary on [22/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.3389/fpls.2017.01916
https://doi.org/10.3389/fpls.2017.01916
https://doi.org/10.3390/molecules21030338
https://doi.org/10.1002/tpg2.20282

	Genomic selection strategies to increase genetic gain in tea breeding programs
	Abstract
	1 | INTRODUCTION
	2 | MATERIALS AND METHODS
	2.1 | Simulation of the founder genotype population
	2.1.1 | Genome simulation
	2.1.2 | Simulation of founder genotypes
	2.1.3 | Simulation of genetic values
	2.1.4 | Simulation of phenotypes

	2.2 | Recent (burn-in) breeding phase
	2.3 | Future breeding phase
	2.3.1 | Seedlings Pedigree Breeding Program
	2.3.2 | Cost-constrained Seedlings Genomic Selection Breeding Program
	2.3.3 | Cost-unconstrained Seedlings Genomic Selection Breeding Program
	2.3.4 | Elite Clonal Trial Genomic Selection Breeding Program

	2.4 | Training population and models
	2.5 | Evaluation and comparison of the tea-breeding programs

	3 | RESULTS
	3.1 | Genetic gain
	3.2 | Selection accuracy
	3.3 | Genetic variance
	3.4 | Conversion efficiency

	4 | DISCUSSION
	4.1 | Genetic gain
	4.2 | Selection accuracy
	4.3 | Genetic variance and conversion efficiency
	4.4 | Simulation constrains and practical implementation of genomic selection in tea-breeding programs
	4.5 | Genomic selection for improvement of tea quality and practical implementation

	5 | CONCLUSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES


