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Highlight 

 

Wind-induced movement is a ubiquitous property of all crops yet has not been accounted for 

with reference to photosynthesis. We put forward the opinion that we should manipulate crop 

biomechanical properties specifically to improve wind-induced light patterning which in turn 

will enhance dynamic photosynthesis. 

Abstract 

Wind-induced movement is a ubiquitous occurrence for all plants grown in natural or 

agricultural settings and in the context of high, damaging wind speeds it has been well studied. 

However, the impact of lower wind speeds (that do not cause any damage) on mode of 

movement, light transmission and photosynthetic properties has, surprisingly, not been fully 

explored. This is likely to be influenced by biomechanical properties and architectural features 

of the plant and canopy. A limited number of eco-physiological studies have indicated that 

movement in wind has the potential to alter light distribution within canopies, improving 

canopy productivity by relieving photosynthetic limitations. Given the current interest in 

canopy photosynthesis is timely to consider such movement in terms of crop yield progress. 

This opinion article sets out the background to wind-induced crop movement and argues that 

plant biomechanical properties may have a role in the optimisation of whole canopy 

photosynthesis via established physiological processes. We discuss how this could be achieved 

using canopy models.  
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Introduction: setting out the problem 

 

It is well known that high wind speeds can cause physical damage to crops and result in 

substantial losses to yield.  ‘Fatal’ events in high winds such as canopy lodging  resulting from 

stem breakage have received attention and as a result there has been much progress in 

understanding the underlying mechanisms (Kashiwagi et al., 2008b; Berry and Spink, 2012; 

Piñera-Chavez et al., 2016a). However physical movement of a plant canopy resulting from 

much lower wind speeds (for example up to 6 m s-1) that do not threaten damage to the plant is 

a common feature of field settings, yet its contribution to global crop yield has been overlooked. 

Evidence from both natural and agricultural systems has suggested that perturbations at such 

low wind speeds may be small but still have the potential to significantly influence whole 

canopy photosynthesis by altering the light available to photosynthetic tissue lower in the 

canopy (Roden and Pearcy, 1993a,b; Roden, 2003; Burgess et al., 2016). The range of 

consequences of wind movement for plant function are also far- reaching, including effects to 

both the biotic and abiotic environment and the microclimate surrounding plants; all of which 

translate to differences in productivity. However, despite its ubiquitous nature, there are many 

fundamental questions remaining and wind-induced movement remains an unknown factor in 

terms of photosynthetic productivity. Recent increased interest in canopy photosynthesis 

means that it is timely to consider movement in terms of crop yield progress.  In this paper we 

put the problem in context, drawing in part from existing knowledge from eco-physiological 

studies and focus on light as a substantial factor with consideration of others.  We will not 

consider high speeds that result in reductions in size, lodging and damage although we do make 

reference to these factors, in terms of how features with their prevalence may influence overall 

movement (see (Baker et al., 1998; Cleugh et al., 1998; Berry et al., 2003, 2007; de Langre, 

2008). We discuss the ways in which mathematical modelling and computer vision can be 

applied to this problem  (Burgess et al., 2016). We largely refer to a canopy as a crop 

monoculture such as wheat or rice and analyse ways in which plant biomechanical properties 

could be altered to enhance productivity in these species. 

 

The lack of understanding on the influence of low wind speeds on crops is partly due to the 

complexity of techniques required for  measurement and analysis. Wind-induced movement is a 

stochastic process, determined by many different factors, making it difficult to quantify and 

measure, or to link to light patterning and photosynthetic yield. Whilst movement within a 

canopy may at first appear simple, in reality movement caused by wind is highly complex and 

difficult to describe mathematically. It involves interactions between multiple types of plant 

organs, with varying physical properties, and the specific environmental conditions present. For 

example: leaves can bend or twist around different axes (partly dependent and constrained by 

growth angle and water status); leaves are displaced at different rates in relation to each other; 

the biomechanical properties of individual structures will change throughout growth and 

development; wind speed and direction are very complex and can change rapidly over short 

time scales, with large variation in eddy size, frequency and distribution; and solar angle 

changes throughout the day and year meaning that the light patterns will alter even if wind 
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speed and direction remains the same. Wind properties above the canopy can be very different 

to those within the canopy and hence different leaves will be subject to very different forces. An 

overview of some of these different factors determining movement during wind is given in 

Figure 1. 

The diverse effects of wind on plant biology  

Wind speeds of a sufficient magnitude can affect plant development, structure and function, 

resulting in reductions in plant size (dwarfing), changes in stem thickness, leaf size and shape 

and damage to plant surfaces (Grace, 1977, 1988; Ennos, 1997; Smith and Ennos, 2003; de 

Langre, 2008; Onoda and Anten, 2011). High winds can also cause stem breakage and lodging 

(for a more comprehensive review see (Berry et al., 2003, 2007). As well as altering the abiotic 

interactions of the canopy, wind can also alter biotic interactions including insect activity and 

population growth plus the development and dispersal of pests and diseases within cropping 

systems (Aylor, 1990; Moser et al., 2009; Shaw, 2012). The wind profile depends upon the 

structure of the vegetation or other objects within the air flow; which in turn determines the 

structure and size of eddies (de Langre, 2008). There are additional effects of wind caused by 

heat and mass transfer, disturbance of CO2, O2 and water vapour gradients (de Langre, 2008), 

the full effect of which will be dependent upon local environmental conditions (Grace, 1988; 

Burgess et al., 2016). Wind speeds can alter heat and mass transfer which impact upon 

transpiration and leaf temperature, in turn affecting photosynthesis via stomatal conductance. 

This process should not be underestimated but in general there is thought to be minimal impact 

on leaf and canopy photosynthesis by the low to moderate wind speeds observed under optimal 

growing conditions via this mechanism (Grace, 1988). The effect of wind speeds on boundary 

layer conductance can be complex but generally a reduction in the mean thickness of the 

boundary layer occurs with an increase in air flow (Downs and Krizek, 1997). Consequently, the 

reduction in the vapour pressure gradient between leaf material and the air can lead to a 

reduced stomatal conductance, transpiration rate and thus higher water use efficiency. Higher 

temperatures may exacerbate this effect. We also recognise that canopy microclimate is affected 

by wind movement, for example intra-canopy humidity levels and CO2 gradients caused by 

photosynthetic draw-down can be affected by wind and air movement (Buchmann and 

Ehleringer, 1998).  Previous studies have shown the beneficial impact of wind-induced 

movement in agroforestry systems, whereby reduced wind movement brought about by tree 

presence can lead to an increased humidity within the crop canopy as less water vapour is 

removed (Wu and Dalmacio, 1991; Nuberg and Bennell, 2009).  

 

Diversity within plant canopy movement  

In reality, it is convenient to divide plant movement into two types: first, that predominantly 

affecting the structural support (i.e. stem, branch, root system); and second, that affecting the 

leaves. This is due to the different properties, position and connectivity of each. The 

contribution of each to overall movement will depend on the local conditions. At low wind 

speeds, leaf movement is expected to dominate due to their low mass and high surface area 

whereas at higher wind speeds, stem or branch movement will become more dominant and leaf 

movement may decrease, with leaves becoming more ‘streamlined’ (e.g. (Speck, 2003). The 
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biomechanical properties of the structures will also determine movement. The response of a 

branch or an isolated leaf to wind depends upon its length, surface area, tensile strength and 

mass. For stem structures, low strength and a large mass can lead to breakage, whereas for 

leaves, mass and surface area will influence movement, particularly fluttering (or equivalent)- 

type movement. In tree species, the tensile strength of the petiole will determine how far a leaf 

may bend or whether the leaf may break off at the junction between the petiole and the branch 

(Derzaph and Hamilton, 2013). The range of motion or risk of breakage will also depend upon 

the strength of the leaf blade; which is in turn related to the strength of the vein and thus the 

water status of the leaf (Derzaph and Hamilton, 2013; Gonzalez-Rodrigues et al., 2016). 

 

Whilst analysis of movement in trees has been undertaken (e.g. (Roden and Pearcy, 1993a,b; 

Rudnicki et al., 2001; Roden, 2003; Sellier et al., 2006; Moore and Maguire, 2008; Rodriguez et 

al., 2008; Der Loughian et al., 2014; Tadrist et al., 2014; Gonzalez-Rodrigues et al., 2016), crop 

canopies arguably present an equally, or even more challenging scenario due to the position of 

individual plants within a dense community, and thus the interaction of plants with their 

neighbours (Doaré et al., 2004). For example, individual plants in dense stands demonstrate 

some mutual support by physical contact, restricting individual stem movement. Furthermore, 

plant motion and the associated light environment is dependent upon canopy architectural 

features which are difficult to accurately represent and model in 3-dimensions (3D), especially 

when confounded by other environmental variables. Difficulties in computer vision with respect 

to 3D modelling via computer vision arise from challenges posed by occlusion, parallax (the 

differing appearance of an object from two distinct views), calibration and the processing of 

large datasets. It is tempting to consider active approaches, in which light is projected from a 

laser into the scene (Gibbs et al., 2017). The often highly reflective surfaces of leaves, however, 

make this problematic, as projected light is often reflected away from the imaging device. 

Biologically relevant data relating realistic canopy architecture, light dynamics and short-scale 

photosynthetic responses in the canopy setting are scarce.  

 

Strategies for measuring canopy movement and its physiological effects  

Movement of leaf material and corresponding changes in light levels can occur over rapid 

timescales (sub-second) and plant 3D spatial structures are so complex that the capacity to 

accurately and comprehensively sense and log motion and light levels will be limited. Attention 

must be given to the fact that the physical presence of any sensors (such as light sensors) may 

influence the canopy properties.  Hence the correct positioning and size of sensors will be 

critical and practical constraints are unavoidably imposed by the need to provide sufficient 

spatial resolution (high numbers of sensors) with accurately recorded positions in 3D space in 

order to track each leaf light history accurately. Within an experimental field plot, it is 

impossible to record all features of a moving canopy at all positions within that canopy with 

very high spatial resolution e.g.  physical leaf and stem movement, leaf microenvironment, leaf 

light absorption. Occlusion is a particular problem for the imaging methodology. Measurements 

of photosynthesis during canopy movements e.g. with gas exchange or fluorescence is possible 

but suffers from the same self-evident limitations.  
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Given this, the ‘conundrum’ from the paper title should be solvable by a combination of 

sufficient plant and canopy measurements combined with accurate mechanical models of 

canopy movement, in part informed by imaging and tracking of real canopies linked with well 

parameterised models of photosynthesis.  Validation of theories will be difficult to achieve 

without a means of quantifying movement in the field so that it may be meaningfully linked to 

yield, biomass and radiation use efficiency measurements. Whole canopy chambers such as 

those described in (Song et al., 2016) are promising for assessing the impact of different plant 

properties on canopy productivity but it remains to be seen if realistic movement is achievable 

in a combined space. It seems possible that larger scale field-based techniques such as eddy flux, 

combined with computer vision techniques for tracking movement could be recruited to 

analyse the impact of movement on canopy photosynthesis, albeit over longer time scales  

(Groenendijk et al., 2011). 

 

Wind and the canopy light environment 

Canopy productivity depends upon the integrated performance of photosynthetic elements, 

their local light environment combined with their biochemical and physiological properties 

(Horton, 2000; Sinoquet et al., 2001; Valladares and Niinemets, 2007; Zhu et al., 2010; Matloobi, 

2012). Architectural features such as leaf area index and density, clumping, leaf angle and leaf 

dimensions determine the patterning of light within a canopy (Hirose, 2005; Song et al., 2013; 

Burgess et al., 2015, 2017a). In terms of whole canopy photosynthesis, the most efficient 

architecture is one in which all the leaves are evenly illuminated at quantum flux densities 

which either approach or saturate photosynthesis (Valladares and Niinemets, 2007). This is 

often achieved using a combination of a high leaf area index and erect leaf stature, so as to avoid 

light saturation at the top of the canopy but allow efficient penetration to lower canopy layers 

(Hirose, 2005; Zhu et al., 2010; Song et al., 2013; Burgess et al., 2015). Such canopy principles 

have been applied to static canopies (e.g. (Song et al., 2013; Burgess et al., 2015, 2017b,a; 

Townsend et al., 2017), but movement has not been fully or realistically addressed in this 

context (Burgess et al., 2016). In cereal crops, movement is a highly complex behaviour 

determined by a multitude of factors including stem and leaf mechanical properties, height, ear 

size, leaf properties (e.g. stiffness, weight, shape and angle), tiller number, dry matter 

partitioning and planting density (Figure 1).  

 

A small number of studies have shown that wind-induced movement is highly effective in 

altering the light environment within the canopy both in terms of overall amount of light but 

also the temporal pattern of light penetration. This principle can be visualised in Figure 2, which 

indicates the fate of different light rays on an idealised crop plant. (Burgess et al., 2016) used 3D 

reconstructions of rice canopies in different configurations to reflect movement in wind. When 

used in combination with a ray tracing algorithm Song et al (2013) found that such simulated 

movement can increase light distribution and modelled canopy photosynthesis up to 17% 

above a static canopy. This is due to the movement providing more opportunities for photon 

penetration as the canopy shifts between different configurations. In a constantly moving 

canopy, it is more likely that any given leaf surface will receive an appropriate period of high 
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light and thus be more likely to be able to maintain a higher photosynthetic induction state. This 

is analogous (though arguably more complex) than previous work on natural systems. A high 

frequency of movement of leaves in light winds, known as flutter or twisting, can result in 

greater penetration of light to lower layers. This can be seen in tree species such as Aspen 

(Roden and Pearcy, 1993a,b; Roden, 2003; de Langre, 2008). The effect of isolated leaf 

movement can be visualised in Figure 3, where rapid movement of a ‘distributor’ leaf will alter 

the probability that a direct ray of light will reach a ‘recipient’ leaf. Within tree and broadleaf 

species, this is predominantly caused by rotation about the petiole (Derzaph and Hamilton, 

2013) and has the effect of producing very short, rapid bursts of light (sun flecks) on the sub- 

second scale. Visually similar movements can also be seen within cereal canopies, and we 

propose that this type of behaviour can be used to optimise canopy productivity. Here we will 

refer to them simply as isolated leaf movements rather than flutter, which is a specific term that 

may not refer to the type of movement capable by cereals.  

 

The effect of movement on plant integrated biochemical capacity 

The integrated photosynthetic yields available to a plant are determined by the duration and 

frequency of light events across all of the photosynthetic surfaces, therefore any changes to 

these light dynamics can impact on productivity as previously described (Retkute et al., 2015; 

Burgess et al., 2016; Townsend et al., 2017). As such, manipulating plant movement to facilitate 

light distribution within a canopy, or manipulating the metabolic features of plants enabling 

them to optimally respond to a change in light, should provide key targets for future crop 

improvement (see below). Work by Caldwell (1970) first predicted that changes in leaf angle 

brought about by wind could influence whole plant photosynthesis. Photosynthesis is a multi-

component process that does not perfectly track fluctuating light and frequently presents ‘lag’ 

according to the kinetics of component processes which can limit integrated carbon gain and 

canopy biomass (Walters and Horton, 1994; Athanasiou et al., 2010; Retkute et al., 2015; 

Kromdijk et al., 2016; Taylor and Long, 2017). The ‘induction state’ of photosynthesis can be 

thought of as the maintenance of enzyme activity, thylakoid energisation, metabolite pool sizes 

and stomatal aperture in a state that can support high photosynthesis. Attaining this state takes 

time and the leaf will revert to a lower state of induction once transferred to darkness or lower 

light. For example, Rubisco activation exerts strong limitation during photosynthetic induction 

(Pearcy, 1990) due to its slow rates of recovery from low light events (Salvucci and Anderson, 

1987). Recent work has shown that the dynamics of stomatal aperture changes in response to 

environmental stimuli should imposes a substantial limitation on carbon gain in fluctuating 

light via the lag during low to high light transitions. Notably there should also be a decline in 

water- use efficiencies during high to low transitions as stomata remain open and transpiring  

whilst photosynthesis declines due to light limitation (Lawson and Blatt, 2014; McAusland et al., 

2016; Matthews et al., 2018). The acclimation status of leaves within a canopy also determines 

their ability to utilise sun flecks effectively (Athanasiou et al., 2010; Retkute et al., 2015; 

Townsend et al., 2017). The amplitude and frequency of switching between high and low light 

will determine the “drag” effect of photosynthetic induction: a higher frequency can lead to a 

higher integrated photosynthetic rate (Retkute et al., 2015) and can be related directly to 

intrinsic processes such as Rubisco activation state (Roden and Pearcy, 1993a,b; Roden, 2003). 

This is especially important in dense canopies where it can be predicted that unless sun flecks 

are frequent or of sufficient duration, the induction time is too low to adequately exploit any 
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periods of high light (Retkute et al., 2015; Townsend et al., 2017). Optimal productivity would 

require tracking changes in environmental conditions in real time and matching the biochemical 

capacity and physiological state to such conditions that a leaf section directly experiences 

(Retkute et al., 2015; Kromdijk et al., 2016; Ruban, 2017). As outlined below, we propose that 

modes of movement already seen in nature, such as aspen leaf flutter, could be transferred to 

crop species to provide a means of maintaining lower leaves in a higher state of induction and 

thus increase the integrated photosynthetic rate. 

Modelling wind-induced movement 

Canopy models are essential for understanding how spatio-temporal shifts in light and other 

environmental variables influence photosynthesis, growth and yield. One of the limitations has 

been the ability to accurately describe ‘real’ canopies in the field and to model light fluxes within 

them, but this is being overcome (Song et al., 2013; Burgess et al., 2015, 2017a,b; Townsend et 

al., 2017). Dynamic photosynthesis is the focus of more and more studies and models even 

though the computational power required for its assessment is quite large. Despite this, the 

number of dynamic empirical and mechanistic models of photosynthesis capable of handling 

light fluctuations and making future predictions is increasing and it is then a case of applying 

these models to the light fluxes that are induced by canopy movement (Porcar-Castell and 

Palmroth, 2012; Retkute et al., 2015; Harbinson and Yin, 2017; Townsend et al., 2017; Morales 

et al., 2018). Models of individual processes are also becoming more sophisticated e.g. for 

photoprotection (Zaks et al., 2012). The accuracy of this may depend on sufficient model 

parameterisation. A recent striking example demonstrated how an earlier prediction from 

dynamic canopy light fluctuations (Zhu et al., 2004) led to an experimental validation and 

improvement of crop biomass and yield through manipulation of a photosynthetic process 

(recovery from photoprotection) (Kromdijk et al., 2016).   

 

Whilst the mathematical infrastructure is becoming increasingly available to cope with the 

types of rapid dynamic shifts observed in natural and agricultural canopies described here, the 

limitation of accurately assessing the effects of wind movement on crop canopies seems to be in 

the difficulty of generating dynamic mechanical models of crop canopies and the 3D and ‘4D’ 

(i.e. 3D over time and space) descriptions that are required model light dynamics. Firstly, it is 

important to achieve a plant description that can accurately mimic a wide range of movements. 

These movements can be captured, or predicted, via different methods and can be broadly split 

into computer vision-based approaches or biomechanical based approaches, each of which is 

discussed below.  

 

Computer vision approaches to modelling movement 

Two broad approaches can be used to gather a description of plant geometry. These are rule-

based approaches, which apply a series of generative rules based on manual measurements of 

plants and image-based approaches, which use actual visual descriptions of a target plant in the 

form of 2D images (Remondino and El-hakim, 2006). The latter rely upon computer vision 

techniques and tools to extract the required information from the available image data. Image-

based methods are further categorised as either active, in which some form of controlled 
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radiation is projected onto the plant, or passive, in which only natural illumination is used. Both 

methods have been applied to controlled and field-based environments. Active methods are 

significantly more expensive and require specialist hardware. Passive techniques are typically 

portable and low cost, recording data using radiation already present in the scene. Light 

Detection and Ranging (LiDAR), also known as Laser Scanning, can be classified as active 

whereas Space Carving, Shape-from-Silhouette, Shape-from-Shading, Shape-from-Contour, 

Stereo vision and Structure from Motion are passive approaches, commonly using standard 

hand-held cameras to acquire data (Kender, 1981; Horn and Brooks, 1989; Cryer and Shah, 

1999; Seitz, 2000; Wahl, 2001; Tan et al., 2007; Pound et al., 2014; Gibbs et al., 2017, 2018).  

 

Data obtained using computer vision methods, such as 2D images and 3D point clouds, can aid 

the detection of motion by matching features between views and tracking their position over 

time  (Yang et al., 2011). For 2D movement, features of interest (for example leaf or ear tips) can 

be detected for each frame within a video and matched, producing a 2D movement path for 

each. One such example of this is the movement of a single organ, for example a leaf. A video can 

be made of a moving leaf which is segmented from the background. Frames can be split and the 

difference between each frame (i.e. the position of the leaf in frame i subtracted from the leaf in 

i+1) will reveal the difference (i.e. the movement) in the leaf over time, in this case over two 

frames. Applying this principle across all frames within a video can allow a spline to be fitted 

and thus the path of the leaf can be described. This principle can be applied to any plant organ 

and even scaled up to a canopy in a field setting given the accurate detection of a given feature. 

 

Whilst the 2D tracking approaches described above could be used to gather a general 

description of movement, more accurate modelling will rely on the determination of plant 

geometry and motion in 3D. This can be achieved using image-based approaches by positioning, 

for example, multiple cameras around a target plant, or canopy. The same principle can be 

applied as above, but multiple frames are captured at the same point in time from different 

viewpoints, which can then be matched across each of the frames. By matching features in 2D 

across multiple frames, the 3D position of each feature can be estimated. Continuing to do this 

over time enables a 4D model of features to be produced which represent the motion of the full 

organ, plant or canopy. Such descriptions could be combined with light modelling approaches 

(e.g. ray tracing (Song et al., 2013)) in order to assess alterations in light dynamics brought 

about through movement. Further applications are also possible such as the comparison of 

different modes of movement; modelling disease or pest spread or; predicting the effects of 

climate change. For more details see Burgess et al.( 2016) and references within.  

 

Biomechanical approaches to modelling movement 

In order to accurately model movement of a crop stand, biomechanical properties of individual 

organs, the whole plant, and, ultimately, the whole canopy must be known (de Langre, 2008). A 

number of models exist that simulate movement, ranging in complexity from simple, to more 

complex descriptions (e.g. Berry et al., 2003; Doaré et al., 2004; Tadrist et al., 2014; Gonzalez-

Rodrigues et al., 2016; Tadrist et al., 2018). Models are often created based on vibration analysis 

of a single plant (de Langre, 2008; Der Loughian et al., 2014). This allows the measurement of 
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displacement, local deformation or rotation in order to determine modal frequencies and can be 

captured via a number of different methods, as described in de Langre (2008). Such techniques 

are suitable for large plants, and have commonly be applied to study movement in trees (e.g. 

(Sellier et al., 2006; Moore and Maguire, 2008; Rodriguez et al., 2008; Der Loughian et al., 2014; 

Tadrist et al., 2014; Gonzalez-Rodrigues et al., 2016). We argue here that crop plants actually 

provide a more complex modelling scenario as the presence of plants within a community (i.e. 

the canopy) means that the characteristics of movement and interactions between individuals 

are homogenised, and reliant on the specific structure of the community as a whole. Whilst 

some models have been generated to cover specific aspects of movement in crops (e.g. Berry et 

al. 2003), the lighter weights of organs and softer tissues combined with contact and collisions 

with neighbouring vegetation mean that the methods applied to tree species are often not 

appropriate. Furthermore, trees often contain several orders of regular branching; a much 

contrasting architectural system to that present in crop species. 

 

Obtaining a geometrical description of a plant or organ is the first step towards characterising 

movement and can be achieved using the computer vision- based approaches described above, 

although manual measurements are also required. Mechanical properties will differ depending 

upon the plant of study; for example, the structure of broadleaf species is highly contrasting to 

that of cereals. Other considerations are the mass, stiffness and damping of individual organs; 

all of which will vary depending upon the specific architectural properties and local conditions 

(de Langre, 2008). Firstly, the distortion of a leaf must be characterised. Leaves are often 

represented as a tapered inextensible elastic rod that is stiffer and anchored at the base. Similar 

representations of a fixed structure can also be applied to branches or petioles (Niklas, 1991; 

Vogel, 1992). The rod is subject to gravity, intrinsic curvature and drag forces in the presence of 

wind; the full effect of which will depend upon turbulence (Finnigan, 2000). For crops such as 

wheat, the leaf will be attached to a stem structure, which will have its own distinct mode of 

movement. Stems have often been modelled as a mono- or bi-dimensional oscillating rods, with 

complexity of models ranging from isolated stem movements (Farquhar et al., 2000; Niklas and 

Speck, 2001), a set of discrete stem movements (Farquhar et al., 2003), or a community of 

moving stems which include collisions (i.e. plant-to-plant contacts) between neighbours (Doaré 

et al., 2004). 

 

The influence of breeding on crop canopy movement 

    Selection for modern crop varieties has occurred over centuries within the field setting, thus 

wind is likely to have already had an influence on selection pressure. The switch in plant height 

from tall to small varieties in the mid 20th century (part of the ‘Green Revolution’) was brought 

about through the introduction of dwarfing genes (Monna et al., 2002; Hedden, 2003; Pearce et 

al., 2011). Reduced stature enabled an increase in harvest index, improved responsiveness to 

nitrogenous fertilisers and a reduced risk of lodging. This latter trait is a result of a reduction of 

the centre of gravity of the plant body, thus increasing the natural frequency of the stem 

movement, plus exposure to smaller drag forces (Onoda and Anten, 2011; Piñera-Chavez et al., 

2016; Hirano et al., 2017).  Selection has also been targeted at traits that permit a higher 

planting density, including changes in stature, leaf and tiller number (Duvick, 2005a,b). This 
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latter feature is important because the increased proximity of neighbouring plants provides 

additional support to individual plant structures through elastic collisions between material 

(Doaré et al., 2004). Whilst these alterations were not selected in order to improve movement, 

per se, they will inadvertently have altered the primary mode of movement present. In fact, it is 

feasible that these alterations will have selected against the optimal movement for canopy 

productivity. For example, it can be predicted that a flexible and elastic supporting structure 

will permit the greatest penetration of light to lower canopy layers and extend the period of 

time that lower leaves will be exposed to higher light intensities, thus increasing the ability for 

lower leaves to acclimate and maintain high induction rates (Athanasiou et al., 2010; Retkute et 

al., 2015; Townsend et al., 2017). However, a reduction in plant height combined with an 

increase in the strength of structural support may have the opposite effect, leading to reduced 

elasticity and more rapid movements of the stem. Therefore, selection for improved movement 

will also probably require consideration of such conflicting considerations.  

 

Can we improve photosynthesis and yield? 

As we move further into the 21st century, photosynthesis is increasingly considered as a key 

limitation to achieving theoretical crop yield maxima (Long et al., 2006, 2015; Murchie et al., 

2009; Zhu et al., 2010). It has long been argued that photosynthesis per unit leaf area has not 

undergone genetic improvement during breeding and the improvements in photosynthesis per 

unit ground area over time were a result of improvements to other physiological and 

morphological traits such as nutrition and leaf area index. Recent research suggests that 

different aspects of leaf photosynthesis remain a viable target for improvement if genetic 

diversity is sufficient. This includes traits that are important in order to fully exploit the 

proposed improvements to biomechanical properties i.e. maintenance of photosynthesis 

induction state and optimisation of photoprotection in rapid light fluctuations. It seems then 

that multiple traits must be targeted in order to realise the optimal ideotype for a given 

environment (i.e. Figure 4: Reynolds et al., 2000; Murchie et al., 2009). 

 

The integration of photosynthetic properties of individual leaves into a 3D canopy is thought to 

be suboptimal for a number of reasons that are related to the efficiency with which radiation is 

distributed vertically. The number of approaches to improve this is expanding rapidly, with 

optimality dependent upon changes in multiple interacting traits. Vertical leaf orientations 

improve penetration while optimising photosynthetic saturation (Long et al., 2006); reduced 

chlorophyll content e.g. via reducing antenna size aids penetration while not affecting 

saturation levels (Slattery et al., 2017; Song et al., 2017; Walker et al., 2018); dynamic responses 

of photosynthesis and photoprotection to light reduces the time lag in response to change 

(Kromdijk et al., 2016); and optimising nitrogen distribution matches photosynthetic capacity 

to the available light levels (Hikosaka, 2016; Hikosaka et al., 2016; Muryono et al., 2017; 

Townsend et al., 2017). Here we propose the addition of canopy movement properties to this 

list, which may provide a simple way to extend and modify the light distribution in a canopy by 

using existing biomechanical variation in major crops that has not previously been considered 

in this context (e.g. (Wang and Li, 2006; Berry et al., 2007; Burgess et al., 2016; Piñera-Chavez et 
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al., 2016b). Maximum canopy productivity could be achieved by altering plant mechanical 

properties to favour beneficial responsiveness in low wind, which is likely to be commonplace 

even if not continuous. Biomechanical properties that allow small but rapid movement could 

include altered stem and leaf strength, sheath or petiole flexibility, leaf blade width and length. 

The ideal plant type for a cereal crop could be viewed as having rapidly moving leaves at the top 

of the canopy, perhaps similar to the flutter type, and reduced movement lower in the canopy. It 

can be predicted that increased stem and leaf stiffness is likely to increase the frequency of 

motion, which in turn will shorten the duration of light periods (i.e. sun flecks). The type of 

movement beneficial to a plant will depend upon multiple factors including the crop chosen and 

its physiology; the range of movement available dependent upon existing architectural 

constraints; and other negative impacts to yield (see above). Substantial variation for 

morphological and biomechanical properties exists in crop plants for traits including stem 

strength, leaf size and leaf angle (Falster and Westoby, 2003; Wang and Li, 2006; Kashiwagi et 

al., 2008a). The impact of such movement may be affected by the way that the leaf boundary 

layer and stomatal conductance are affected. 

 

Furthermore, optimal movement will require balance between different traits and their 

perceived conflicts. For example, resistance against failure (such as lodging), requires a trade-

off between stem properties. Increasing the strength of the stem cross section may reduce the 

risk of stem buckling or splitting but increase the risk of anchorage failure (Farquhar and 

Meyer-Phillips, 2001). A second example is leaf size and thickness: an increase in both 

parameters has been considered beneficial in the improvement of rice photosynthesis, 

especially at high leaf angles (Horton, 2000; Wang et al., 2012). However, this trend could 

reduce frequency and responsiveness to light winds unless successfully compensated for by 

alternative traits such as increased leaf number or an altered mechanical property that permits 

greater rotation around the ligule region. It may be easier to replicate flutter-like movement in 

smaller leaves at the top of the canopy and thus shift larger leaves to mid and lower regions 

where less movement is required. The uppermost leaves then have a dual role as effective 

distributors of light in addition to photosynthesising at high rates (Figure 3). Such 

compensation seems feasible because optimal light distribution is predicted to be a major 

limitation to crop yield (see above).  A flexible and elastic supporting structure may permit the 

greatest penetration of light to lower canopy layers and extend the period of time that lower 

leaves will be exposed to higher light intensities, thus increasing the ability of lower leaves to 

acclimate and maintain high induction rates (Athanasiou et al., 2010; Retkute et al., 2015; 

Townsend et al., 2017). However, a reduction in plant height combined with an increase in the 

strength of structural support, which are desirable properties to prevent yield loss through 

lodging, will have the opposite effect, leading to reduced elasticity and more rapid movements 

of the stem. 

 

Geographic location and growing season are other important considerations when selecting the 

optimal plant ideotype, with climatic conditions, including wind speed and direction, plus light 

conditions being dependent upon latitude, altitude and the topography/exposure of the 

growing site. This means that an optimised structure will not be suitable for all environments, 

and thus an understanding of the local conditions combined with how they will influence 
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canopy movement will be required. For example, in environments with high wind speeds, and 

thus at increased risk of lodging, improvements to cereals or other lodging- susceptible plants 

can be achieved by biomechanical changes to the upper part of the canopy alone. 

 

It can be predicted that the optimal response to movement will be linked to the photosynthetic 

capacity and kinetic properties of a plant. For example, we anticipate that faster movement in 

the upper layers of the canopy will lead to an overall higher state of photosynthetic induction. 

(Roden and Pearcy, 1993a,b; Roden, 2003). This characteristic of frequent but high amplitude 

shifts may alter photoprotective requirements and demand even higher capacity and more 

rapid relaxation kinetics of non-photochemical quenching which has recently been shown to be 

achievable (Kromdijk et al., 2016; Hubbart et al., 2018). Such traits could also provide initial 

lines from which to improve; with altered movement targeted at lines that will be most able to 

utilise and exploit the new light environment. Genetic variation in photosynthetic induction 

rates is likely to be present to provide this platform.  

 

This also raises the intriguing question as to whether the evolution of mechanical properties 

might have coincided with the evolution of dynamic photosynthetic efficiency. A dense canopy 

with steep light extinction and severe light limitation at the base will require a certain amount 

of movement to act as an efficient distributor of light and maintain photosynthetic induction 

states. Hence optimal responsiveness of photosynthesis to the type of fluctuating light dynamics 

caused by movement may have co-evolved and become mutually dependent. The high leaf area 

index in post-green revolution types compared pre-green revolution may provide an 

agricultural analogy. As long as the constraints of any given environment are fully characterised 

and considered, manipulation of biomechanical properties of plants, combined with improved 

biochemical responses to changes in light levels, can be used as a means to improve whole 

canopy productivity and thus provide a route for future crop improvement. 
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Figure Legends 

 

Figure 1: Schematic representation of movement in a theoretical plant and properties 

determining the mode of movement. 

 

Figure 2: The fate of light rays in a simplified plant canopy subject to wind- induced 

perturbation. Three configurations are shown and colours represent alternate penetration 

patterns according to these configurations: blue rays penetrate lower in the canopy, red rays do 

not reach as far and black rays reach the same position, relative to the static configuration. In 

this example, movement presents incident photons with more opportunities to pass through the 

canopy making it more likely that any given leaf surface area will receive a period of high light. 

 

Figure 3: The fate of light ray distribution between a distributor and recipient leaf as a result of 

movement in a broadleaf versus a cereal canopy. Different configurations are shown for each 

canopy type and colours represent alternate penetration patterns according to these 

configurations: blue rays penetrate lower in the canopy, red rays do not reach as far and black 

rays reach the same position, relative to the static configuration. In this example, movement 

presents incident photons with more opportunities to move past the distributor leaf making it 

more likely that a recipient leaf will receive a period of high light. 

 

Figure 4: Summary of possible traits that could be targeted to improve light absorption and 

conversion in canopies. 
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