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Reliable model systems are needed to elucidate the role
cancer stem cells (CSCs) play in pediatric brain tumor
drug resistance. The majority of studies to date have
focused on clinically distinct adult tumors and restricted
tumor types. Here, the CSC component of 7 newly estab-
lished primary pediatric cell lines (2 ependymomas, 2
medulloblastomas, 2 gliomas, and a CNS primitive neu-
roectodermal tumor) was thoroughly characterized.
Comparison of DNA copy number with the original cor-
responding tumor demonstrated that genomic changes
present in the original tumor, typical of that particular
tumor type, were retained in culture. In each case, the
CSC component was approximately 3–4-fold enriched
in neurosphere culture compared with monolayer
culture, and a higher capacity for multilineage differen-
tiation was observed for neurosphere-derived cells.
DNA content profiles of neurosphere-derived cells
expressing the CSC marker nestin demonstrated the
presence of cells in all phases of the cell cycle, indicating
that not all CSCs are quiescent. Furthermore, neuro-
sphere-derived cells demonstrated an increased resist-
ance to etoposide compared with monolayer-derived

cells, having lower initial DNA damage, potentially
due to a combination of increased drug extrusion by
ATP-binding cassette multidrug transporters and
enhanced rates of DNA repair. Finally, orthotopic xeno-
graft models reflecting the tumor of origin were estab-
lished from these cell lines. In summary, these cell lines
and the approach taken provide a robust model system
that can be used to develop our understanding of the
biology of CSCs in pediatric brain tumors and other
cancer types and to preclinically test therapeutic agents.

Keywords: cancer stem cells, drug resistance, etoposide,
pediatric.

B
rain tumors are the leading cause of death in chil-
dren who develop solid tumors. The incidence rate
is approximately 30 per million,1 with an overall

10-year period survival estimate of 59%.2 Diagnosis is
based on clinical history and radiological imaging but
relies heavily on histological conformation.3 Tumors
are characterized into 7 main groups depending on the
location of the tumor, histopathological features, and
immunohistochemistry. These features largely deter-
mine grade, which in turn loosely reflects outcome.4

Although there have been some improvements in the
outcome for children with brain tumors,5 the prognosis
for children with high grade or diffuse intrinsic pontine
gliomas, relapsed medulloblastoma, and ependymoma
is extremely poor.6,7 In order to achieve the necessary
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delicate balance between improved treatment and avoid-
ance of damage to the developing brain, we need a better
understanding of the underlying biology of these tumors.

Several studies have demonstrated the existence of a
highly tumorigenic subpopulation of cells in brain
tumors.8–18 Although there is a debate regarding
naming these cells (cancer “stem” or “initiating” or
“propagating” cells) and regarding their frequency
within brain tumors, studies have clearly shown an
association between this subgroup and (i) the expression
of stem cell markers such as CD133, Sox2, and nestin,
(ii) the ability to self-renew as shown by secondary neu-
rosphere formation, (iii) the ability to undergo limited
multipotent differentiation, and (iv) successful serial
implantation of xenografts.13,17,19 Importantly, signifi-
cantly higher expression of CD133 has been reported
in recurrent glioblastoma multiforme (GBM) tissue
than in respective newly diagnosed tumors,20 and
expression has been associated with a poor prognosis.18

Furthermore, CD133-positive cells have been shown to
be more resistant to radiation and standard chemother-
apy compared with CD133-negative cells.8,20,21

Therefore, cancer stem cells (CSCs) could be the source
of tumor resistance and subsequent recurrence.
However, such a hypothesis requires a thorough under-
standing of the cellular mechanisms that sustain CSC
growth and resistance in brain tumors.

Generating cell lines from pediatric brain tumors is dif-
ficult and often is limited by the size of the tumor tissue
available and the ability of dissociated cells to grow
under cell culture conditions. This has resulted in a
dearth of appropriate model cell lines in which to investi-
gate prognostic targets and develop potential therapies.
For several tumor types, such as ependymoma, there are
no “commercially” available cell lines. Others are more
readily available, but their relationship with the tumor of
origin has not been studied, and neither has their retention
of CSCs and degree of tumorigenicity. In this paper, CSCs
from 7 newly established primary pediatric cell lines were
characterized. The percentages of CSCs in all cell lines
and the growth characteristics of neurospheres enriched
with CSCs were determined. The potential for differen-
tiation was assessed, and xenograft models were used to
establish tumorigenicity. Furthermore, the resistance of
neurosphere-derived cells to etoposide, an important che-
motherapeutic agent, was determined, and mechanisms
that may contribute to this resistance were investigated.

Material and Methods

Cell Culture

Brain tumor cell lines were derived at the Children’s Brain
Tumour Research Centre (CBTRC) (nMED1, nMED2,
nEPN1, nEPN2, nOLIG1, and ncPNET1) and at the
University of Birmingham (bGB1) as approved by the
Local Research Ethics Committee. The tumors of origin
were graded and classified by a pathologist (J.L.)
according to WHO criteria (Supplementary Material,
Table S1 and Fig. S1). Blood clots and vessels were
removed from tumor specimens, and samples were

washed with Hank’s balanced salt solution (HBSS) and
finely minced. Birmingham samples were then incubated
in Dulbecco’s modified Eagle’s medium (DMEM)/F12/
L-glutamine medium with 15 mM Hepes (Invitrogen)
and 15% fetal bovine serum (FBS; Invitrogen). Samples
derived at the CBTRC were further incubated with 1×
enzyme solution22 in HBSS (0.2 mg/mL DNase type 1
[2000 U/mg], Worthington; 0.083 mg/mL neutral pro-
tease [dispase; 1 U/mg], Worthington; 0.4 mg/mL col-
lagenase type 1a [125 U/mg], Worthington; 0.1 mg/mL
hyaluronidase, 10 mL Worthington; HBSS [calcium mag-
nesium free], Invitrogen). Samples were rotated at 378C at
70 rpm for 60 minutes and passed through a 40-mm cell
strainer, and dissociated cells were centrifuged at
800 rpm (180×g) for 5 minutes at room temperature,
resuspended in 6 mL of tumor media, in a 25-cm2 tissue
culture flask. Monolayers were grown in tumor medium:
DMEM/L-glutamine (Sigma) supplemented with 15%
FBS harvested using trypsin and EDTA (Invitrogen) and
split (1:20) every 3–4 days into fresh medium.
NTERA-2, PFSK-1, U87, and SNB19 cell lines were
obtained from American Type Culture Collection and
grown as recommended. To generate neurospheres, cells
grown as monolayers were washed with HBSS (Sigma) dis-
sociated with trypsin and resuspended into the serum-free
stem cell medium: DMEM high glucose (Sigma) and
Ham’s F-12 solution (Invitrogen) (70/30%), 2% B27
(Invitrogen), 5 ng/mL heparin (Sigma), supplemented
with 20 ng/mL human recombinant epidermal growth
factor (hrEGF; Invitrogen), and 20 ng/mL human basic
recombinant fibroblast growth factor (bFGF; BD
Bioscience). To generate secondary neurospheres,
primary neurospheres were dissociated into single cells
using accutase (PAA Laboratories) or mechanically,
passed through a 40-mm strainer and reseeded at a
minimum dilution of 1:2 and a maximum dilution of
1:4. All neurospheres used in this study were passaged at
least twice as neurospheres before assessment. All cell
lines were maintained in standard humidified incubators
at 5% CO2.

Differentiation of Tumor Cell Lines

Monolayer or neurosphere-derived single cells were seeded
on chamber slides at a concentration of either 1 × 104 or
1 × 102 cells/mL and fixed after 1 or 10 days, respectively.
Cells were plated in DMEM high glucose (Sigma) sup-
plemented with 3% fetal calf serum in the absence of
hrEGF and bFGF and with or without platelet-derived
growth factor alpha (PDGF-a) (10 ng/mL; Sigma). Cells
were fixed with 0.4% paraformaldehyde (PFA) for 30
minutes at room temperature and washed in HBSS, then
slides were stored at 48C under HBSS. To test significance,
paired t-tests were applied. For staining protocols, see
Supplementary Methods.

Neurosphere Immunofluorescence Preparation

Forcryostat sectioning,neurospheres were allowed to settle
for 30 minutes at room temperature, fixed with 0.4% PFA,
and resuspended in 30% sucrose/HBSS. Neurosphere
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pellets were embedded in optimal cutting temperature
compound (BDH Laboratory Supplies, 361603E) and sec-
tioned (Leica CM 1850) at a thickness of 10 mm onto
3-aminopropyltriethoxysilane (VWR International)–
coated slides. Slides were stored at 2208C. To cytospin,
50 mL of neurosphere suspensions were loaded into each
well and samples centrifuged at 1000 rpm for 2 minutes
using the a Cell-Prep cytospin (Centurion Scientific,
model 4050). Cells were fixed in 0.4% PFA and processed
immediately for immunofluorescence. For staining proto-
cols, see Supplementary Methods.

Single-Nucleotide Polymorphism Array and Data
Analysis

Freshly harvested monolayer and neurosphere cells or
frozen tumor material were lysed in a buffer (50 mM
Tris, pH 8.0, 100 mM EDTA, 1% SDS, 100 mM
NaCl, and proteinase K 4 mg/mL), homogenized for
1 minute, and incubated on a thermomixer
(Eppendorf) at 378C, 450 rpm overnight. Standard
phenol–chloroform extraction was then carried out.
All array experiments were performed by Almac
Diagnostics, using the Affymetrix GeneChipw Human
Mapping 500 K Array Set. Row data were produced
using the Affymetrix software GCOS and GTYPE, and
copy number alterations were identified using Copy
Number Analyser for GeneChip.23 DNA from each cell
line was compared with tumor and where possible
(nEPN1 and bGB1) with constitutional DNA.
Annotated output files were then imported into the
Spotfire Decision Site (www.spotfire.tibco.com) to allow
visualization and comparison.

Microsomal Membrane Extraction

Frozen cell pellets were thawed and resuspended in lysis
buffer (250 mM sucrose, 10 mM Tris, pH 7.4, 0.2 mM
CaCl2, 1× protease inhibitor cocktail [Roche,
10946900]) and homogenized with a 1-mL syringe (25
gage needle). Homogenized cells were incubated on ice
for 20 minutes and centrifuged at 300×g, 48C for 3
minutes. The supernatant was then ultracentrifuged
at 100 000×g, 48C for 1 hour (Optima Max
Ultracentrifuge 130 000 rpm, Beckman Coulter). The
microsomal membrane pellets were resuspended in cold
phosphate buffered saline (PBS). Samples were added to
buffer (0.76% Tris, pH 6.8, 15% glycerol, 2% sodium
dodecyl sulfate [SDS], 5% b-mercaptoethanol, 0.05%
bromophenol blue, pH 6.8) and incubated at 378C for
45 minutes prior to SDS–polyacrylamide gel electrophor-
esis (PAGE).

Clonogenic Assay

Single-cell suspensions were incubated in DMEM only
(Sigma) for 30 minutes at 378C in 5% CO2 to recover
membrane integrity. Approximately 5 × 105 cells were
added to 5 mL of dimethyl sulfoxide with etoposide
at the test concentration (6.25, 12.5, 25, 50, and
100 mM) or to 5 mL of media with 0.1% dimethyl sulf-
oxide (Sigma) and incubated for 2 hours at 378C in 5%

CO2. Treated cells were then plated in 2 independent
6-well plates (all monolayers at 300 cells/well; neuro-
spheres for nMED1, 500 cells/well; nEPN1,
1000 cells/well; bGB1 and nOLIG1, 2000 cells/well)
and supplemented with 3 mL/well of neurosphere or
tumor medium. At day 4, neurospheres were replenished
with hrEGF and bFGF. After 8 days, monolayers were
fixed with 4% PFA and stained with crystal violet, and
colonies were counted. For neurospheres, 1 mL of 4%
PFA was added, images of each well were obtained
(Nikon SMZ1500), and neurospheres ≥100 mm were
counted using Adobe Photoshop vCS3. The survival
fraction was the number of colonies in the test well as
a percentage of the control. To test significance, the gen-
eralized linear model was applied using Statistical
Package for the Social Sciences (SPSS).

In Vivo Growth of Cell Lines

Cells from semiconfluent monolayers were harvested with
0.025% EDTA and resuspended for in vivo administration
at 6 × 105 cells in 5 mL of PBS and injected via a small
burr-hole 2 mm anterior to the Bregma and 2 mm lateral
of the midline of the skull. The clinical condition of the
mice was regularly monitored for any signs of adverse
effect for up to 30 days. Pretermination mice were injected
intraperitoneally with 150 mg/kg bromodeoxyuridine
and 60 mg/kg pimonidazole. Brains were excised, fixed
in formalin, and paraffin embedded. The project was run
under Home Office project PPL 40/2962, which was
awarded in November 2006 (Watson) following local
ethical approval and adhered to the guidelines of the UK
Coordinating Committee for Cancer Research.

Comet Assay

The comet assay was based on previously described proto-
cols.24,25 Monolayers and neurospheres were dissociated
and treated with etoposide at 100 mm for 2 hours and har-
vested immediately after treatment or 2 and 4 hours after
drug removal. A total of 100 randomly selected individual
cells per gel from 2 separate slides were analyzed to give a
representative result for the population of cells. The per-
centage of DNA in the comet tail was selected to assess
DNA damage, and the mean and SEM were determined.
Comet imagecapture and analysis utilizedKomet software
(Version 5.5, Andor Technology) and an epifluorescence
microscope (Olympus BH2) fitted with an excitation
filter of 515–535 nm and a barrier filter of 590 nm, at a
magnification of ×400. To test significant differences
between early time points of monolayers and neuro-
spheres, an analysis of variance test was applied using
SPSS. To test significant differences in the rate of DNA
damage over time between monolayers and neurospheres,
the generalized linear model was applied using SPSS.

Results and Discussion

Primary Pediatric Brain Tumor Cell Lines Are Stable
and Can Form Neurospheres

To date, we have successfully established 35 primary pedi-
atric cell lines. Seven of these were selected for a detailed
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characterization, namely 2 ependymomas (nEPN1 recur-
rent and nEPN2 primary), 2 medulloblastomas (nMED1
primary and nMED2 recurrent), 1 glioblastoma (bGB1
primary), 1 oligodendroglioma (nOLIG1 primary), and
1 CNS primitive neuroectodermal tumor (ncPNET1
primary). The clinical history for all of the original
tumors was obtained (Table 1), and histology was
reviewed using standard structural stains and immunohis-
tochemistry hematoxylin/eosin sections showing histo-
logical features of each tumor (Supplementary Material,
Fig. S1). Monolayers from all cell lines were successfully
passaged for more than 60 generations. Neurospheres
were serially passaged for up to 11 generations, could be
readily derived even at late passage from our primary
monolayers, and had retained the relative CSC com-
ponent (Supplementary Material, Fig. S2), indicating
that the conditions used maintain CSCs. In contrast, it
was not possible to derive neurospheres from the commer-
cially available sPNET cell line (PFSK-1). Metaphase
spreads of each of the cell lines confirmed a near diploid
chromosome number in contrast to PFSK-1 (Fig. 1A,
Supplementary Methods), suggesting that they are more
chromosomally stable.

In comparison with human neural stem cells
(hNSCs), the adult GBM U87 line, and PFSK-1, all of
our cell lines demonstrated a high level of telomerase
processivity under both growth conditions using the tel-
omere repeat amplification protocol assay (Fig. 1B,
Supplementary Methods). Human neural stem cells
retain high levels of telomerase activity, whereas com-
mercial cell lines (U87 and PFSK-1) that have been cul-
tured for long periods of time are believed to have
reactivated telomerase. Whether our cells have retained
or reactivated telomerase was not ascertained.

Chromosomal Abnormalities Present in the Original
Tumor Are Retained in Culture

To ensure that the growth conditions used in this study
enrich for aberrant cancer cells, single-nucleotide poly-
morphism (SNP; Affymetrix 500 K arrays) analysis
was performed on 5 of the primary pediatric cell lines
grown as monolayers or neurospheres (nEPN1,
nEPN2, bGB1, nMED2, and ncPNET1). DNA copy
number was compared with that detected in primary
tumor samples from which they were derived.
Aberrant regions in patient tumors were retained in
primary cell lines under both culture conditions
(Fig. 1C). For the recurrent nEPN1, chromosome copy
number gains in regions 1q32.1, 2q32.1, 6p21.33,
11q23.3, 14q11.2, and 17q21.2 have been reported pre-
viously.26 The primary ependymoma nEPN2 cells
retained gains in regions 2p23.1, 2q14.2, 3p14.2,
6q25.3, 7q32.3, and 17q12, and loss of 15q11.2.
Amplification of 3p14.2 has also been reported in epen-
dymoma.26 Copy number aberrations of bGB1 SNP in
region 1q32.1 and changes in chromosome 7 have
been detected in other glioblastoma tumors.27 For the
nMED2 cell line, gain of 1p34.2 and loss of 8p23.1
have recently been reported in medulloblastoma.28

Aberrations of ncPNET1 included 1q21.3, 2p24.1, and
6p22.1, which are also gained regions commonly seen
in this tumor type (S.M., unpublished data).

Enrichment of the tumor initiating population and
associated genomic alterations in the cultured cells was
accompanied by a corresponding decrease in other cell
types harboring genomic alterations that are likely to
be less important for tumor initiation and maintenance.
These cells are most likely to be those that vary in aneu-
ploidy and chromosome stability.29,30

Cells Expressing Stem Cell Markers Are Enriched in
Neurosphere Compared with Monolayer Culture

To confirm the presence of CSCs in our cell lines, the
percentage of cells coexpressing Sox2 and CD133 was
determined using immunofluorescence (Fig. 2 and
Supplementary Material, Fig. S2). When grown as neu-
rospheres, costained cells appeared small and round
compared with those grown in monolayers (Fig. 2A).
A 3–4-fold increase in the percentage of CD133 and
Sox2 costained cells was detected in neurospheres
(mean 36.3+1.8%) compared with monolayers
(mean 10.9+0.5%; P ¼ 1 × 1025), thus confirming
enrichment of CSCs in cultured neurospheres (Fig. 2B).

To confirm that neurosphere cultures are enriched for
cells expressing membranous CD133, membrane frac-
tions were resolved on SDS-PAGE (Fig. 2C).
Significantly, a differential band of approximately
140 kDa, representing glycosylated CD133, was
detected at a higher intensity in neurosphere membranes
compared with monolayers. In contrast, CD133 protein
levels overall did not change between monolayers and
neurospheres (Supplementary Material, Fig. S3), con-
firming that only membranous glycosylated CD133 is a
biomarker for CSCs.31

Cells Grown as Neurospheres Have an Altered Cell
Cycle Profile

Many chemotherapeutic agents specifically target
cycling cells; therefore, understanding the nature of the
cell cycle of CSCs is vital. Currently, it is unclear
whether CSCs are inherently quiescent31,32 or whether
they can alter their cell cycles in a niche-responsive
manner.33–35 To investigate this, cell cycle dynamics
were studied. The doubling time for cells grown as
neurospheres was significantly higher than for their cor-
responding monolayers (25.9 vs 18.6 hours; P ¼ .008;
Fig. 3A). Cell cycle profiles for cell lines were analyzed
(Fig. 3B). Growing cells as neurospheres resulted in an
increase in the percentage of cells in G0G1 (44% vs
64%; P ¼ .0003). This was accompanied by a significant
decrease in cells in S-phase (39% vs 23%; P ¼ .0003)
and G2/M (16% vs 15 %; P ¼ .0434).

To investigate whether the observed 20% increase in
G0G1 in neurospheres was due to the enrichment of
quiescent CSCs, the cell cycle profile of the nestin-
positive CSC component was analyzed. Similar to
CD133 immunocytochemistry, a 3-fold increase in
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Table 1. Clinical details of patients from whom the cell lines were derived

Cell line Age (mo) Diagnosis WHO
grade

P/R Primary tumor site Surgical
resection status

Treatment Follow
up (mo)

Outcome Metastatic
status

nMED1 41 Medulloblastoma IV P Cerebellum Partial High-dose cyclophosphamide. UK
infant medulloblastoma protocol
posterior fossa RT

8 Deceased M2 at
relapse

nMED2 P:127 Medulloblastoma IV R Metastatic to
supratentorial
compartment (frontal
bilateral)

Partial resection
(T2)

Chemotherapy and standard
craniospinal RT. POG 3021

42 Deceased M0

bGB1 43 “Giant cell” GBM IV P Cerebrum frontal lobe Partial Cisplatin 2 temozolomide × 6
courses (partial response) repeat
surgery 2 radiotherapy (focal)

52 Alive M0

nOLIG1 78 Oligodendroglioma II P Cerebrum right fronto
temporo-parietal

Partial PCV 2 progression high-dose
Carboplatin + Etoposide. Repeat
surgery 2 Focal radiotherapy
(54 Gy)

24 Alive M0

ncPNET1 61 sPNET IV P Cerebrum left frontal Partial Headstart chemotherapy.
High-dose
Carboplatinum + Thiotepa. Local
relapse 3 February 2006. Repeat
surgery. Craniospinal radiotherapy.
Further local relapse 4 mo post-RT

21 Deceased M0

nEPN1 P:162 3rd
R:268

Ependymoma II R Cerebrum (right parietal) Complete Repeat surgery at relapse 2 (GTR)
Focal radiotherapy and
chemotherapy. Repeat surgery 18
mo later

111 Deceased M0

nEPN2 41 Ependymoma II P Fourth ventricle Macroscopic
resection

UKCCSG Infant Ependymoma
Study

20 Alive M0

GBM, glioblastoma multiforme; GTR, gross total resection; P, primary; PCV, procarbazine/CCNU (lomustine)/vincristine; R, recurrent; RT, radiotherapy; UKCCSG, UK Coordinating Committee for
Cancer Research.
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nestin-positive cells was detected by flow cytometry in
neurospheres compared with monolayers (11.1+2.2
and 3.8+0.7, respectively, P ¼ .0043; Fig. 3C).
Nestin-positive cells from neurospheres were detected
in all phases of the cell cycle (21% G0G1, 35% S, and
45% G2M; Fig. 3C and Supplementary Material, Fig.
S4B). Therefore, nestin-positive cells, representing the
CSC component, do not solely account for the accumu-
lation seen in G0G1 of neurosphere cultures. Consistent
with these data, immunofluorescent analysis of the
nEPN1 and nEPN2 cell lines demonstrated that approxi-
mately one-third of nestin-positive cells within neuro-
spheres remained Ki67 positive (nestin+Ki67+ 30.5+
9.9 and 25.3+10.4, respectively; Fig. 3D). In contrast,
for monolayer-derived nestin-positive cells, the majority
of cells (68%) were detected in G2M and almost 100%
of cells coexpressed the proliferation marker Ki67, con-
sistent with the previous observations of CD133-positive
monolayer cells.33 Since the enrichment of nestin-
positive cells in neurospheres coincides with an increase

in the G0G1 fraction, it is possible that some nestin-
positive cells utilize cellular quiescence in order to pre-
serve their own replicative capacity. The caveat for
these data is that nestin positivity may not account for
all the CSCs present.36

Cells Derived from Neurospheres Have a Higher
Capacity for Multilineage Differentiation

An essential property that links brain tumor CSCs and
tumor heterogeneity is their capacity, albeit limited, for
multilineage differentiation.37 Differentiation of all 7
cell lines in PDGF-a in combination with 3% serum
was assessed using double immunofluorescence and
cell morphology (Fig. 4). After differentiation, a signifi-
cantly lower proportion of cells were Ki67 positive
(monolayers P ¼ 3e26, neurospheres P ¼ 8e25),
suggesting a decrease in proliferation. The percentage
of cells costaining for stem cell markers had also

Fig. 1. Primary cell lines have retained tumor-specific chromosomal abnormalities and have active telomerase. (A) Chromosome number

ranges for our cell lines and PFSK-1. 100 cells were counted for each cell line. Bars represent 50 mm. (B) Telomerase products are shown

as incremental 6 bp ladder bands starting from 50 bp. The positive control cell lines used were hNSCs, adult glioma cells (U87), and

ncPNET1 cells (PFSK-1), all of which have high telomerase activity. Telomerase activity in monolayers (M) and neurospheres (NS) derived

from nEPN1, nEPN2, nMED1, nMED2, bGB1, nOLIG1, and ncPNET1 cell lines was consistently present in 3 individual experiments (a

representative figure is shown). Additional controls were the telomerase positive cells (+), TSR8 PCR control template, and the lysis

buffer only sample (Neg.). (C) DNA copy number analysis for nEPN1, nEPN2, bGB1, nMED2, ncPNET1, and the corresponding patient’s

tumors. DNA was extracted from tumor sample (T), monolayers (M), and neurospheres (N). *Aberrant regions commonly seen in that

classification of tumor.
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decreased (monolayers CD133+nestin+ P ¼ .002, neu-
rospheres CD133+nestin+ P ¼ .007, and
CD133+Sox2+ P ¼ .004). For monolayers, a significant
proportion of cells had differentiated into oligodendro-
cytes (P ¼ .012), whereas the ability of these cells
to differentiate into astrocytes (P ¼ .105) and neurons
(P ¼ .733) did not reach significance, suggesting that
this was suppressed. However, neurosphere-derived
cells were able to differentiate down all 3 lineages
(astrocytes, P ¼ .049; oligodendrocytes, P ¼ .001; and
neurons, P ¼ .005), indicating that neurospheres
enriched with brain CSCs have a higher capacity to
undergo multipotent differentiation. Therefore, using
PDGF-a resulted in trilineage differentiation of

neurosphere-derived, but not monolayer-derived, cells,
indicating that neurospheres may be more multipotent.
However, in keeping with their tumorigenic potential,
the degree of differentiation was limited, as a large pro-
portion of cells continued to divide and many costained
with glial fibrillary acidic protein (GFAP) and
microtubule-associated proteins (data not shown).

Orthotopic Xenografts Result in Clinically Relevant
Mouse Models

All of our cell lines rapidly form neurospheres when cul-
tured under appropriate conditions (Supplementary
Material, Figs. S1 and S5A), which was not always the
case for commercially available cell lines. Similarly,
our cell lines were able to rapidly form subcutaneous
xenografts (Supplementary Material, Fig. S5B), prompt-
ing the suggestion that the rate of neurosphere formation
could be an indicative factor for tumor growth potential
and that the tumor forming cells within the newly
derived lines are different from those present in the long-
term established cell lines.13,38

In the light of this enhanced tumorigenicity, orthoto-
pic xenografts of each of the cell lines into immune-
compromised mice were then assessed, and it was
revealed that these were capable of producing a tumor
that reflected the gross immunohistological character-
istics of their tumor of origin (Fig. 5). Every injection
resulted in a clinically relevant animal model (n ¼ 4
for each tumor, except for n ¼ 3 for nEPN1, where
complications resulted from surgery in 1 case).

The original tumor from which bGB1 was derived
was described as a giant cell GBM based on the presence
of anaplasia and multinuclear giant cells.
Immunostaining of the xenograft, however, revealed
that in addition to GFAP, it was also positive for neuro-
filament protein (Fig. 5A). Re-examination of the orig-
inal tumor demonstrated that it was also positive for
both glial and neuronal markers (Fig. 5A), suggesting
that the diagnosis should be revised to malignant glio-
neuronal tumor (MGNT). MGNTs have been linked
to better survival in children,39 which could explain
why this patient is still alive 7 years after diagnosis,
even though the tumor was only partially resected.
MGNTs have also been linked to metastasis, and a
clear invasive front was seen in the orthotopic xeno-
grafts. Immunostaining of nOLIG1 confirmed the for-
mation of a glial lineage tumor.

nEPN1 was derived from the second tumor relapse.
The original resection of tumor 8 years before and first
recurrence 2 years after had shown an epithelial-pattern
ependymoma with prominent tubules, grade II. The
second recurrence in 2001 from which the xenograft
was derived showed cellular ependymoma with areas
having a preserved but less well-defined tubular pattern
together with areas of the spindle-cell pattern. The his-
tology of the xenograft did not show any distinct
pattern and resembled the spindle-cell component of
the tumor of origin. Electron microscopy had confirmed
ependymal differentiation with desmosomal junctions in

Fig. 2. Growing cells as neurospheres enriches for cells expressing

membranous CD133 and nuclear/cytosolic Sox2. (A) Monolayers

were plated on chamber slides and neurospheres were

cryosectioned, and each was stained to detect CD133 (green)

and Sox2 (red). Nuclei are stained with DAPI. (B) The percentage

of cells costained with CD133 and Sox2. The data represent 3

independent experiments and error bars show the standard error

of the mean (SEM). (C) Glycosylated CD133 (140 kDa)

expression was detected in membrane fractions prepared from

cell lines grown as neurospheres or monolayers. b-Tubulin was

used as a loading control. This is a representative blot of 3

independent experiments.
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the tumor of origin with lumina showing cilia and
microvilli. Ultrastructural examination of the xenograft
did not show cilia but revealed microvillar surfaces.
Ki67 staining (20%–30%; grade II) in the xenograft
was similar to the tumor of origin (Fig. 5B).
Immunostaining of the nEPN2 xenograft was negative
for glial and neuronal markers. Although derived from

an original tumor that had clear ependymal features,
the xenograft is less well differentiated having lost clas-
sical morphological features of ependymoma.

ncPNET1 was derived from a highly aggressive grade
IV tumor classed as a supratentorial PNET. The resul-
tant xenografts revealed a primitive tumor with evidence
of a high proliferation index and an invasive growth

Fig. 3. Cells grown as neurospheres have an altered cell cycle profile. (A) The doubling times of monolayer and neurosphere cells grown from

all cell lines. (B) Cell cycle profiles of monolayer and neurosphere cells. M, monolayers; N, neurospheres. The data represent 3 independent

experiments, and error bars show the SEM. (C) Cell cycle profiles of nestin-expressing cells in monolayers and neurospheres. Cells of

equivalent passages were used. These data are representative of 2 independent repeats for each of the cell lines. (D) Representative

images of monolayer or neurosphere cells expressing nestin (red) that are either ki67 (green) positive (*) or ki67 negative (�).
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pattern. The 2 medulloblastoma tumors (nMED1 and
nMED2) both formed tumors that were positive for
neuronal markers and had a high proliferation index,
in keeping with their classification as grade IV medullo-
blastomas. nMED2 was derived from a recurrent medul-
loblastoma that had metastasized to the supratentorial
compartment. Perhaps reflecting a preserved capacity
to spread in this manner, clear leptomeningeal spread
was seen in the orthotopic xenografts (Fig. 5C).

Neurosphere-Derived Cells Are Significantly More
Resistant to Etoposide Compared with Monolayers

To investigate the drug resistance potential of our cell
lines, the clonogenic survival of monolayers and neuro-
spheres to the topoisomerase II poison etoposide was
tested. Apart from nOLIG1, neurosphere-derived cells
were significantly more resistant to etoposide compared
with monolayers (nEPN1 P , .001, bGB1 P , .001, and
nMEDl P , .001; Fig. 6A). The half maximal inhibitory
concentration values for these cell lines were signifi-
cantly higher for neurospheres compared with mono-
layers (50 compared with 12.5 mM for nEPN1, 60
compared with 20 mM for bGB1, and 80 compared
with 12 mM for nMEDl). To detect the DNA damage
after exposure to 100-mM etoposide, the alkaline
comet assay was used (Fig. 6B). Apart from nEPN1,

monolayers from all 3 cell lines had an increase in the
initial DNA damage after 2 hours compared with neuro-
spheres, with means of 35.3 and 15.8, respectively (P ¼
.03; nEPN1: monolayer 34.4+2.5 and neurospheres
37.5+3.2; nMED1: monolayer 23.1+1.6 and neuro-
spheres 3.2+1.2; bGB1: monolayer 57.8+2.7 and
neurospheres 29.3+3.2; nOLIG1: monolayer 25.2+
2.3 and neurospheres 14.8+1.7). In addition, the
level of DNA damage in nEPN1, bGB1, and nOLIG1
is reduced faster over time in neurospheres compared
with monolayers, suggesting that DNA repair is more
efficient in neurospheres (nEPN1 P , .001, bGB1 P ,

.001, and nOLIG1 P , .001). Thus, 2 possible mechan-
isms are potentially active: (i) the reduction in the initial
DNA damage may be due to the efflux of etoposide via
ABC multidrug transporters, thus preventing damage
(nMED1, bGB1, and nOLIG1); and (ii) the ability of
neurospheres to repair their DNA may be due to
enhanced DNA repair mechanisms (nEPN1, bGB1,
and nOLIG1).

To investigate the role of ATP-binding cassette (ABC)
multidrug transporters, cells derived from nMED1 neu-
rospheres, which had demonstrated background levels of
DNA damage after exposure to etoposide for 2 hours,
were costained for CD133 with ABCB1 or ABCC1 or
ABCG2 (Fig. 6BII). Coexpression analysis of CD133
and the 3 main multidrug transporters (ABCB1,

Fig. 4. Neurosphere-derived cells undergo multipotent differentiation. (A) Schematic diagram of the protocol. (B) Differentiated astrocyte

cells stained with GFAP (red) are negative for Ki67 (green) (first column), oligodendrocytes stained with CNPase (red) are negative for

Ki67 (green) (second column), and neuronal cells stained with microtubule-associated proteins (MAPs; green) positivity are nestin (red)

negative (third column). Arrows on merged images (bottom row) indicate the examples of counted differentiated cells. (C) The

percentages of cells counted pre- and postdifferentiation in all cell lines grown as (I) monolayers or (II) neurospheres. CSCs refer to

CSCs. Each value plotted represents the mean and SEM. derived from all 7 cell lines, with 3 independent experiments completed for

each cell line. Significance values were determined using the paired t-test comparing values for pre- and postdifferentiation. **P , .01

and *P , .05.
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Fig. 5. Comparison of xenografts in mouse brain to original patient tumors. (A) Upper panel shows patient tumor from which bGB1 was

derived: hematoxylin and eosin (H&E) shows a pleomorphic cellular glial tumor. GFAP and neurofilament protein (NFP) expression are

present in a proportion of tumor cells. Ki-67 staining shows a high proliferation rate. Lower panel shows the mouse xenograft tumor

derived from bGB1 transplanted cells. H&E shows a cellular glial tumor-infiltrating mouse brain. GFAP expression and NFP expression are

seen in a proportion of cells, similar to that in the original tumor. Ki67 staining shows a high proliferation index. (B) Upper panel shows

the original patient tumor, which demonstrated cellular and epithelial patterns on H&E. The recurrent tumor, from which nEPN1 was

derived 8 years later, shows a spindle cell and cellular pattern with a less well defined tubular pattern. Ultrastructural analysis electron

microscopy [EM] confirmed desmosomal junctions with spaces lined by microvilli (m) and cilia (c). In the lower panel, H&E of the mouse

xenograft derived from nEPN1 shows a glial-pattern tumor with no obvious ependymal pattern, resembling the spindle cell component

seen in the patient sample. EM revealed no desmosomal junctions but did show spaces lined by microvilli (m). The Ki67 labeling index

was low in both the recurrent patient sample and the mouse xenograft, consistent with a grade II tumor. (C) H&E of the patient sample

shows an embryonal tumor corresponding to a classical medulloblastoma. This was a recurrence that had metastasized in the

subarachnoid space to the supratentorial compartment. The transplanted tumor showed features of a primitive lesion with a high

apoptotic rate. The tumor spread in the subarachnoid space (s) and had a very high Ki67 proliferation index that was similar to that seen

in the original patient sample.
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ABCC1, and ABCG2), all of which are known to trans-
port etoposide, revealed that ABCB1 and ABCC1 were
enriched in CSCs (Fig. 7A). Twice as many CD133

cells expressed ABCB1 (8%) than ABCC1, and immuno-
fluorescent analysis of surviving clones indicated that
this expression was further increased by etoposide

Fig. 6. Neurospheres have an increased resistance to etoposide compared with monolayers. (A) Clonogenic survival of singularized

neurosphere and monolayer cells, from nEPN1, bGB1, nOLIG1, and nMED1, 8 days after 2–3 hours of treatment with etoposide. Points

represent the mean of 3 independent experiments with SEM (B) (I) Schedule of treatment for the Comet assay. (II) Comet assays

showing DNA tail %. nEPN1, bGB1, and nOLIG1 neurospheres have lower early DNA damage and are faster at DNA repair than

monolayers. Representative graphs of 3 independent experiments are shown.
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treatment (Fig. 7B). This supports the hypothesis that
ABCB1 may be responsible for etoposide efflux.

Conclusion

Establishing the current hypothesis that only a subpopu-
lation of cells is responsible for driving tumor pro-
gression, and relapse is of crucial importance as proof,
will have a major impact on the development of new
therapeutic regimes for brain tumors.14,19,37,40 In the
first part of this study, 7 newly derived pediatric brain
tumor cell lines, representative of a broad range of
tumor types, were fully characterized. Neurospheres
were readily derived from our primary cultures, indicat-
ing the presence of CSCs. Comparison with the original
tumor demonstrated that these lines not only retained
genomic changes present in the original tumor, but
also harbored alterations typical of their particular
tumor type. These cell lines have retained the CSC com-
ponent, are able to undergo limited multilineage differ-
entiation, and can rapidly form tumors in vivo.
Importantly, comparing neurosphere with monolayer
culture demonstrates a dynamic system to model CSC

and bulk tumor response to treatments. Our ability to
continuously derive CSC-enriched neurospheres from
standard monolayer cultures means that we can assay
therapeutic response in a robust system that is true to
the tumor of origin but also representative of that
tumor type. We have demonstrated this in our investi-
gations of DNA damage repair and drug transporter
expression. Thus, these cell lines can be used to under-
stand the biology of CSCs in pediatric brain tumors and
to screen new therapeutic agents that could assist in
developing antitumor therapy based on tumor biology.

Supplementary Material

Supplementary material is available at Neuro-Oncology
Journal online.
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