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Augmenting automated analytics  
using fluorescent nanosensors
Veeren M Chauhan

Cell and gene therapies (CGTs) are projected to transform healthcare 
precision in the biotherapeutics sector. However, for their true potential 
to be realised, advancements must be made to optimising their manu-
facture, such that CGT production is precise, reproducible and robust. 
This includes monitoring and control of complex cell culture conditions, 
such as extracellular and subcellular biochemical parameters, for which 
there are no readily available automated analytical systems. Biosensors, 
such as fluorescent nanosensors, provide a tangible solution to augment 
CGT manufacture, as they enable off-line, online and inline monitoring 
of the cellular microenvironments. This expert insight highlights how the 
automated analytical afforded by fluorescent nanosensors, could permit 
real-time realignment of critical sub-cellular biochemical parameters to 
enhance CGT manufacture. The insight concludes by evaluating how the 
integration of fluorescent nanosensors with new and established meth-
ods could pave-the-way forward to maximise CGT potential.
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CRITICAL ROLE OF AUTOMATION  
IN THE MANUFACTURE OF CELL &  
GENE THERAPIES

“To measure is to know … If you 
cannot measure it, you cannot im-

prove it.”

–Lord William Thomson Kelvin, 
1824–1907.

INTRODUCTION

Measurement aims to quantify ev-
ery aspect of our surroundings, 
from the distance to Andromeda, 
the Milky Way’s neighbouring gal-
axy, to the mass of a Z boson, a 

subatomic particle in the standard 
model of particle physics. Standard-
isation of the seven fundamental 
measures of length (meter), time 
(second), mass (kilogram) tempera-
ture (kelvin), electricity (ampere), 
light (candela) and amount (mole) 
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has enabled the natural sciences and 
economies to find commonality in 
measurement units. Order can be 
established from the apparent dis-
order through the application of 
measurement tools to enhance the 
knowledge of the world we live in. 
Moreover, the iterative application 
of new and improved technolo-
gies to probe our surroundings has 
augmented our knowledge and our 
ability to influence it. 

Biological systems, in particular 
the human body, have attracted the 
most attention with regard to the 
human race’s drive to understand 
and influence. Governments, phar-
maceutical companies and academ-
ic institutions annually invest large 
sums of money into the develop-
ment of new technologies and drugs 
with the aim to enhance longevity 
or eradicate diseases [1]. However, 
most of the changes that occur in 
a biological system, resulting in the 
development of healthy or diseased 
tissue, appear in microenvironments 
at the sub cellular level, which is at 
the current limit of our understand-
ing. Bearing this in mind there are 
no readily available shortcuts to ef-
fectively manipulate biological sys-
tems in a controlled manner, with-
out having some prior knowledge 
on how they operate. Therefore, to 
enhance our understanding of the 
building blocks of life, before strat-
egies are implemented to influence 
them, sensors or techniques must be 
developed that are able to map the 
transport and micro-localisation of 
critical molecules and ions, which 
are essential for cellular function. 

THERAPEUTIC DISCOVERY 
Pharmaceutical companies have 
attempted to overcome this 

limit through employment of high 
throughput automated screening 
strategies that aim to examine vast 
numbers of natural and synthet-
ic compounds with the hope they 
elicit a biological effect. However, 
this approach was not economi-
cally viable for sustained periods, 
as large amounts of money were 
invested with diminishing returns, 
yielding fewer successful drug can-
didates [2]. However, personalised 
medicine is changing the way the 
pharmaceutical industry aims to 
cure disease. Patients are stratified 
by characterizing their genetic or 
biochemical profile to identify the 
disease etiology. These measure-
ments permit the development of 
targeted therapy to delivery func-
tional proteins, cells and genes to 
repair, restore or facilitate the re-
moval disease. 

Proteins and viral vectors have 
been successfully produced using 
large-scale manufacture systems 
such as Pichia pastoris, Saccharo-
myces cerevisiae, Escherichia coli or 
mammalian cell culture. This is 
because, these systems are well de-
fined and can be monitored effec-
tively using extracellular parame-
ters temperature, pH and dissolved 
oxygen concentrations, due to the 
excellent automated feedback. In 
contrast, cell therapies have been 
produced for a limited number of 
conditions. This is due to challeng-
es in optimisation of complex cell 
culture conditions, which includes 
a multitude of intricate extracel-
lular and sub-cellular biochemical 
parameters, for which there are no 
readily available automated mon-
itoring systems, such that they 
have proved significantly more 
challenging to produce. Therefore, 
for their true potential to be real-
ised advancements must be made 
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optimizing subcellular sensory bi-
oprocessing technology, which in 
turn will augment manufacturing 
capacity.

SENSORS
Sensors recognise stimuli in their 
surroundings, to transduce a sig-
nal to a detector, which can then 
be quantified and interpreted as a 
measurement. Ideally a sensor for 
biological measurement should:

1.	 Provide high spatial and temporal 
resolution, so that dynamic 
measurements can be made from 
sub cellular microenvironments;

2.	 Cause negligible cellular 
perturbations, such that 
measurements are independent 
of the sensing technique; and

3.	 Demonstrate high sensitivity 
and selectivity to the analyte of 
interest, for accurate and precise 
quantitative measurements. 

Paradigm shifts in the develop-
ment of tools and techniques to 
manipulate and investigate matter 
at the micro- and nano-scale, such 
as scanning electron microscopy 
(SEM) [3], transmission electron 
microscopy (TEM) [4], scanning 
tunnelling microscopy (STM) [5], 
atomic force microscopy (AFM) 
[6], scanning ion conductance mi-
croscopy (SICM) [7] and optical 
microscopy [8], have permitted the 
development of miniaturised sen-
sors, such as optical [9] and electro-
chemical sensors [10], which can be 
used to probe the micro-environ-
ments found in living cells. Exam-
ples of such a technology are optical 
nanosensors. 

Optical nanosensors 

Optical nanosensors are probes 
that have nanometre-scale sizes 
in all three dimensions [11] that 
utilise light in many forms, such 
as ultra-violet light, visible light, 
near-infrared and infra-red, to elu-
cidate a vast amount of detail about 
the inner workings of microenvi-
ronments. Of the number of op-
tical nanosensors reported in the 
literature, probes that utilise the 
principles of fluorescence and phos-
phorescence have shown the most 
promise [12–15]. This is largely due 
to:

1.	 The high spatial and temporal 
resolutions they provide, when 
imaged with optical microscopes;

2.	 Enhanced sensitivity, when 
compared with the weak signals 
obtained from other techniques 
such as absorption spectroscopy 
and Raman scattering; and

3.	 Can be engineered to be non-
invasive and highly specific to 
analytes of interest. 

Due to the diversity of fluores-
cent sensing elements available, and 
ability of the versatile nanoparticle 
matrix to protect the sensing ele-
ment, development of fluorescent 
nanosensors has been taken on by 
several research groups around the 
world and has permitted the devel-
opment of ratiometric fluorescent 
nanosensors (Figure 1). Ratiometric 
nanosensors typically consist of two 
or more fluorophores that emit at 
different wavelengths [16]. There 
is an indicator fluorophore, which 
produces a signal in response to 
the analyte concentration. Whilst 
a reference fluorophore provides a 
signal, which is insensitive to the 
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analyte of interest. The combina-
tion of fluorophores permits accu-
rate ratiometric measurements to 
be made. The fluorescence emission 
can be quantified with the use of 
analytical techniques such as fluo-
rescence spectroscopy and widefield 
or confocal microscopy.

Fluorescent nanosensors have 
been reported for hydrogen ions 
(pH) [17,18], molecular oxygen 
[19], calcium [20,21], copper [22], 
chloride [23], glucose [24,25], iron 
[26–28], lead [29], magnesium 
[30], mercury [31], potassium [32], 
ROS [33–37], sodium [38,39], zinc 
[40], proteins [41,42], nucleic acids 
[43,44], ATP [45,46] and tempera-
ture [47–50]. The scope for produc-
ing new fluorescent nanosensors is 
limited only by the availability of 
analyte sensitive fluorophores or re-
ceptors that can transduce a signal 
to fluorescent molecules. 

Delivery of nanosensors 

Nanosensors have been known 
to spontaneously cross cell mem-
branes through pinocytosis or 

phagocytosis. However, not all 
nanoparticles demonstrate this 
property. This is because the cellu-
lar uptake of nanoparticles is heav-
ily influenced by size shape and 
charge [51,52]. Therefore a number 
of strategies have been explored 
to enhance the delivery in a con-
trolled manner (Figure 2A) [53]. Ex-
amples of some of these strategies 
include pico-injection, gene gun 
delivery, liposomal incorporation 
and electroporation. 

Pico-injection uses a fine needle 
to puncture the cell membrane to 
deliver pico-litres of sample into 
a single cell (Figure 2B) [53]. This 
method can cause unwanted cellu-

lar perturbations and require a high 
level of skill to inject a sample into a 
cell without causing excessive dam-
age. Gene guns have predominantly 
been used to transfect cell cultures 
with deoxyribonucleic acid (DNA) 
[54] and plasmids [55], but their use 
has also been shown for the deliv-
ery of nanosensors across cell mem-
branes [30]. The gene gun blasts dry 
nanoparticles into a cell culture dish 
using pressurized helium gas helium 
as a propellant (Figure 2C) [56]. This 
method has been found to maintain 
cell viability whilst delivering large 
quantities of nanoparticles across 
cell membranes [57]. It is important 
to note strategies such as pico-in-
jection and gene delivery are low 
throughput and may be challenging 
to incorporate on large-scale auton-
omous cell production processes.

Liposomal transfection, like gene 
gun delivery, has also been used 
to deliver nucleic acids across cell 
membranes but have shown to be 
useful at transporting nanoparti-
cles [53]. Liposomal transfection 
methods utilise artificially prepared 
vesicles formed from lipid bilayers, 
which envelop a small volume of 

ff FIGURE 1
Ratiometric fluorescent nanosensor. 
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nanosensors. The liposomal vesi-
cles fuse with the cell membrane to 
transfer the contents of the liposome 
to the cellular cytoplasm (Figure 2D). 
Whereas, electroporation applies 
a voltage across a cell membrane 
to increase its permeability so that 
foreign material, such as fluorescent 
nanoparticles, can travel through to 
sub cellular spaces (Figure 2E), and 
has been shown to be effective at 
transporting foreign material across 
cell membranes of a number of cell 
lines, including yeast cells [45]. An-
other approach has been to utilize 
the versatile nanosensor matrix 
as a platform to attach chemical 
moieties that have demonstrated 
targeted uptake through receptor 

mediated uptake pathways (Figure 
2F). Examples of some of these moi-
eties which have been use to deco-
rate nanoparticles are the universal 
membrane penetrating peptide 
trans-activating transcriptional acti-
vator (TAT), derived from Human 
immunodeficiency virus 1 (HIV-
1) [58], and the tumour-homing 
F3-peptide, which is derived from 
high mobility group nucleosome 
binding protein 2 (HMGN2) [59]. 

Due to the number of mechanisms 
available for nanoparticle delivery, 
nanosensors have been applied to a 
range of biological systems includ-
ing mammalian cell lines, [33,60] 
stem cells [61], scaffolds for regen-
erative medicine [62–64] and model 

ff FIGURE 2
Cellular uptake strategies for nanosensors. 

Nanosensors can be delivered to cells via (A) spontaneous endocytosis, (B) pico injection (C) gene gun bombardment, (D) liposomal 
fusion, (E) electroporation and (F) receptor mediated delivery. 
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organisms [65,66]. It is important to 
note targeted placement of probes 
adjacent to subcellular organelles of 
interest, such as mitochondria, is an 
even more challenging. Therefore, 
subcellular positioning must also be 
considered if specific bioprocesses 
are to be monitored [67]. Effective 
monitoring of critical molecules and 
ions in situ or in vitro in model bi-
ological systems, such as the ones 
mentioned above, using fluorescence 
microscopy could generate diagnos-
tic information biological function 
and suggest new approaches to en-
hance cell and gene therapy culture. 

INTERGRATING  
NANOSENSORS FOR CELL 
& GENE THERAPY 
Optimized cell culture encompasses 
the production of sufficient quanti-
ties of viable cells, which have the 
desired function or therapeutic ac-
tivity, whilst effectively utilising re-
sources, such as raw materials and 
time [68]. Therefore, integration of 
sensors to automatically feedback 
will enhance cell culture consisten-
cy and capacity and concurrently 
reduce waste of essential resources.

Bioreactors & fluorescent 
nanosensors

Cell production is typically con-
ducted using bioreactors [69], which 
are vessels that permit cell expansion 
by providing the essential culture 
conditions (e.g., temperature, aero-
bic/aerobic & pH), nutrients (e.g., 
carbohydrates, proteins and lipids) 
and growth factors (e.g., cytokines) 
[70]. Monitoring of cell culture en-
vironments in bioreactors can occur 
via direct or indirect measurements, 

as well as offline, online and inline 
observations [71]. 

Bioreactors are selected or de-
signed based on the cell culture 
conditions and required scale of 
manufacture. Cell culture condi-
tions refers to the ex vivo environ-
ments cells prefer to enhance their 
expansion. For non-adherent cells 
to homogenise culture conditions 
this can include the introduction 
of sheer stress, which can also im-
prove mass distribution of nutri-
ents and growth factors through 
the culture medium (e.g., orbital 
shakers, spinner flask and rotating 
wall vessels) [72]. Whereas rocking 
[73] or perfusing [74] culture media 
has also proved effective for homog-
enization of adherent cells. Hybrid 
bioreactors that increase the surface 
area for cell attachment through the 
introduction of microcarriers [75] 
and scaffolds [76] that are distribut-
ed throughout high sheer environ-
ments have also been introduced to 
improve culture capacity and max-
imise nutrient and growth factor 
resource allocation. Scale of manu-
facture is dependent on ultimate use 
of cells. Small-scale bioreactors are 
used for in vitro research purposes 
or clinical allogeneic products in 
commercial settings, such as chime-
ric antigen receptor (CAR) T cells 
[77]. Whereas, large-scale manufac-
ture, which can reach batch sizes of 
20,000 liters, are typically used for 
commercial projects [78].

Direct & indirect 
measurement 

Direct measurement corresponds 
to whether information on culture 
parameters is determined on actual 
measurement of key components 
(e.g., the partial pressure of oxygen 



expert insight 

843Cell & Gene Therapy Insights - ISSN: 2059-7800 

or carbon dioxide) in the bioreactor 
or cells [79]. Whereas indirect mea-
surement corresponds to evaluation 
of changes in cell cultures marker 
(e.g., cell surface expression marker 
and excreted products) after the in-
put parameters have been modified. 
Therefore, direct measurements 
permit measurement of real-time 
events, which can then then be 
used for automated optimization 
of cultures. Whereas indirect mea-
surements can provide information 
of cell behaviour due to changing 
growth parameters; however, these 
may include measurement artefacts 
as a number of intricate changes can 
affect the ultimate cell output, un-
less defined biochemical pathways 
have been identified [80]. Indirect 
measurements can also be used for 
real-time optimization of cell cul-
tures, however, as biochemical pro-
cesses contain an inherent time lag, 
immediate optimization of growth 
parameters may be challenging [80]. 

When fluorescent nanosensors 
are delivered to subcellular spac-
es, they permit direct and indirect 
quantification of biochemical pa-
rameters that could be used to for 
real-time optimization of growth 
parameters. Direct measurement of 
biochemical processes is evidenced 
by measurement of pH in Saccha-
romyces cerevisiae [81], whereas in-
direct measurement of has been 
shown by the quantification of 
hydrogen peroxide in human mes-
enchymal stem cells [82], a toxic 
by-product of porphyrin induced 
photodynamic light therapy. 

Offline, online & inline 
analytics 

Offline cell culture is a form of in-
direct measurement, where samples 

are extracted from the bioreactor 
and analysed at an independent 
location [83]. Extraction of sample 
can permit a greater variety of an-
alytics to be conducted, as samples 
can be subjected to an array of as-
says that cannot be readily integrat-
ed into the bioreactor. However, 
when the extraction vessel is differ-
ent from the bioreactor, especially 
if the growth conditions are altered 
and the samples are not stable, in-
teraction with new environments 
may introduce measurement ar-
tefacts. Consequentially, this may 
hinder utility of newly acquired an-
alytics for optimization growth pa-
rameters. Furthermore, extraction 
away from the bioreactor reduces 
the potential for real-time feedback 
and reduces sample size as it cannot 
be return to the culture vessel.  

The automated analytics provid-
ed by direct online monitoring per-
mits real-time in situ measurement 
of analytes of interests. This closes 
the feedback loop, or permits auto-
mated analytics, such that growth 
conditions and parameters can be 
attenuated to optimise cell growth 
conditions [84].  Inline monitoring, 
a direct measurement technique, 
can be described as a hybrid offline/
online measurement systems, where 
cell culture systems are continually 
fed and monitored at a location adja-
cent to or within the bioreactor and 
can be recirculated into the growth 
vessel after analysis, preventing loss 
of sample [85]. Inline systems are 
useful when bulk cell culture system 
are turbid, preventing spectroscopic 
analysis, or possess high fluid flow 
rates during mixing, which might 
generate unwanted measurement 
artefacts. Cell culture parameters 
are automatically analysed and at-
tenuated to optimise growth. Due 
to the automated analytics afforded 
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by online and inline monitoring, 
both cell growth and resource man-
agement are optimized. 

Implementation of  
nanosensors for cell therapy

Fluorescent nanosensors can be 
incorporated in sub cellular spac-
es or distributed throughout the 
system to provide feedback of ex-
tracellular parameters [86]. De-
livery of fluorescent nanosensors 
to subcellular spaces is a resource 
efficient method of obtaining cell 
specific information, especially for 
research purposes. This is because, 
although fluorescent nanosensors 
have demonstrated low toxicity 

[87], their ultimate use in humans 
is yet to be determined. Therefore, 
for mass production of cells for clin-
ical use an alternative measurement 
system may be required. However, 
when fluorescent nanosensors are 
distributed throughout the bioreac-
tor, vast quantities of particles will 
be required. These particles could 
be recovered for repeat use, but in 
reality, this may not be possible as 
they may introduce biologically 
active contaminants, which may 
subsequently alter the viability of 
batches. 

Fluorescent nanosensors could 
be used for offline, online and inline 
measurement for cell culture param-
eters in bioreactors (Figure 3). With 
respect to offline monitoring, cells 

ff FIGURE 3
Diagrammatic representation of offline, online and inline measurements permitted with the aid of opti-
cal fluorescent nanosensors. 
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could be extracted and then treated 
with nanosensors to determine intra 
or extracellular biochemical param-
eters [88]. For bioreactors, intracel-
lular biochemical parameter char-
acterization would consist of a very 
large time lag as particles would 
have to be initially delivered and 
validated to ensure delivery of par-
ticles has not induced biochemical 
changes [89], and therefore may not 
be valid for automated analytics. 

Fluorescent nanosensors are 
ideally suited to online and inline 
measurement systems for research 
purposes and prior to large-scale 
clinical application. Cell measure-
ments could be conducted by direct 
online measurement of culture sys-
tem with fluorescent microscopy or 
spectroscopy or inline using meth-
ods such as integrated fluorescent 
flow cytometry. Bioreactors that 
permit visualisation of growth con-
ditions have been developed [90], 
whereas bioreactors with integrated 
flow cytometers are emerging for 
research purposes. From a practical 
point of view, offline fluorescent 
nanosensor technologies would 
need to address an analytical niche 
currently occupied by powerful 
established methods, such as flow 
cytometry, liquid chromatography, 
and spent media analysis. Therefore, 
fluorescent nanosensors could be 
utilized for established techniques, 
such as flow cytometry, when con-
ventional antibody-based tools are 
not available or are not able to per-
form the dynamic biochemical pa-
rameter measurements afforded by 
fluorescent nanosensors.

FUTURE PERSPECTIVES
Biosensors such as fluorescent 
nanosensors are the future of cell 

and gene therapy manufacture 
as they enable online and inline 
monitoring of the cellular micro-
environment. Automated analytics 
of culture environments permits 
real-time realignment of ideal bio-
chemical parameters, through data 
driven allocation of key resources, 
such as nutrients and growth fac-
tors, as well as eliminating waste. 
It is anticipated the developments 
in this field provide great promise 
to further understand the cellular 
microenvironment and will pave 
the way forward for cell and gene 
therapies. 

“Science has given to him an 
acquaintance with the different 

relations of the parts of the external 
world; and more than that, it has 
bestowed upon him powers which 

may be almost called creative; which 
have enabled him to modify and 

change the beings surrounding him, 
and by his experiments to interrogate 
nature with power, not simply as a 
scholar, passive and seeking only to 

understand her operations, but rather 
as a master, active with his own 

instruments”

–Sir Humphry Davy 
(1778–1829) [91]
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