
  

Abstract -- Maximum torque per ampere control (MTPA) 

takes full advantage of the reluctance torque aiming at the 

minimum copper loss, which can increase the torque output 

under the minimum current conditions. The traditional MTPA 

method makes use of equations with constant inductance values 

which are implemented as look-up tables. However, the 

inductances of the motor present both magnetic saturation and 

cross-saturation characteristics. Those parameters are changing 

depending on the operating point. This paper presents a novel 

MTPA control strategy of permanent-magnet assisted 

synchronous reluctance motor (PMaSynRM) implementing a 

Newton-Raphson-Based Searching Method for improving the 

control accuracy for optimal current reference. The proposed 

method eliminates the need of fitting operations due to the 

nonlinearity of the MTPA formulation and takes the inductance 

variation, due to magnetic saturation, into account. Finally, the 

effectiveness of the proposed method is verified by means of 

Matlab/Simulink simulations. 

 
Index Terms—PM assisted Reluctance Motor, MTPA control, 

Newton-Raphson Algorithm, Magnetic Saturation, Cross- 

Saturation. 

I.   INTRODUCTION 

he PMaSynRM can be considered as a synchronous 
reluctance machine with permanent magnets embedded 
inside the rotor core. Its behaviour is depending on the 

permanent magnets (PMs) distribution, type (ferrite or rare-
earth material) and dimensions. These machines are generally 
presenting high saliency ratio and relatively low flux linkage, 
when compared to interior permanent magnet synchronous 
machine. With respect to the pure synchronous reluctance 
machine (SynRM), PMaSynRM machines provide better 
torque, higher power factor and extended speed range 
capability [1]-[4]. 

Since the permanent magnets are embedded inside the 
rotor barriers, the d-axis inductance in the synchronous 
reference frame is considerably different with respect to the 
q-axis inductance. This difference contributes to the 
additional torque that is generated as the reluctance torque. 
Therefore, the generated torque consists of two components 
defined as the permanent magnet torque and the reluctance 
torque. The former is proportional to the d-axis current, and 
the reluctance torque is related to the product of the d-axis 
current with the q-axis current. A specific torque can be 
generated by various current vectors in the dq-axis reference 
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frame. Among all the combinations of the current vectors, the 
maximum torque per ampere (MTPA) trajectory is built on 
current vectors with minimum magnitude, which guarantees 

reduced copper loss. In other words, the MTPA can also be 

considered as the maximum torque with a constant current 
magnitude. 

There are several works in literature discussing the control 

within MTPA operations. The techniques proposed can be 

divided into four main categories:  

1) simple mathematical calculations of MTPA using the 

magnetic model of the motor without considering the 

magnetic saturation;  

2) MTPA point tracking by means of additional high 

frequency injection;  

3) minimum current operation using a searching algorithm;  

4) parameter compensation by LUT or identification method. 

The first methods in [5], a Lagrangian multiplier function 
is commonly used to minimize the torque equation with 

respect to the current magnitude. The method takes 

advantage of the parameters of the motor, such as inductance, 
flux linkage, etc., to obtain the optimal reference value of the 
current through MTPA nonlinear formula operation. 
However, depending on the operating conditions, there are 
some changes in the parameters of the motor, especially the 
inductance values. This variation is due to the influence of 
the magnetic saturation and cross-saturation phenomena [6]-
[7]. The traditional MTPA methods, using constant 
inductance values, lead to current reference different from the 
optimal one, which results in higher copper loss and lower 
efficiency. These approaches are sensitive to parameter 
variation.  

The second methods are based on high frequency 
harmonic injection of current [8] or voltage [9] to the 
machine terminals. The MTPA points can be detected from 
the torque or speed response by a series of signal processing 
[8]. The key point is that the high-frequency signal can be 
injected into the space vector directly or indirectly. Then, the 
MTPA operational point is analysed by the variation in the 
speed measurement or stator current magnitude. However, 
the performance of these methods is limited by the current 
control bandwidth, of the injected current signals. The motor 
torque and current ripples are also increased. 

The third method uses the automatic search method as 
presented in [10]-[15]. One of the simplest search methods is 
the exhaustive method, which requires several operating 
points and performs a large range of operations and 
comparisons to find the extreme values, and therefore 
increases computation burdens for the controller. In [10], 
authors are searching for the MTPA operating point by 
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modulating the current phase angle and observing the 
variation in the power command, therefore the tracking 
algorithm is suitable only for slow dynamic applications. In 
[11], optimal dq-current step adjustments are calculated from 
these approximate voltage/torque increment lines with 
differential approach. Some researchers present Hill-climbing 
method in [12] or gradient descent method in [13], although 
the method shows good convergence, the derivative of the 
dynamic inductances with respect to the current with cross 
saturation is neglected for the simplicity of calculation. These 
methods do not achieve maximum accuracy.  

In the fourth method, parameter compensation for variable 
inductance are used in [9][14]. Lookup tables are widely used 
for magnetic saturation. However, lookup tables tend to be 
huge because it is necessary to create separate MTPA tables 
on the basis of inductance variation. To tune those 
parameters time-consuming experimental measurements are 
often required. In [14], a fitting model for the nonlinear flux 
linkage is proposed, approximate precision needs to be 
further improved. Other works are proposing parameter 
identification methods to adjust the inductance parameters 
[15], which undoubtedly increases the complexity of the 
algorithm and the convergence rate for these parameter 
identification methods. 

This paper proposes a novel Newton-Raphson based 
searching strategy, in combination with the third and the 
fourth methods. The influence of magnetic saturation and 
cross saturation into consideration is compensated by LUT. 
Firstly, the mathematical model of the motor based on 

nonlinear flux linkage is reconstructed. By revising the 

traditional Lagrange multiplier equation considering 
magnetic saturation and cross-saturation, the second-order 
Newton-Raphson method is used as an automatic search 
algorithm aiming at the minimum copper loss. The results 
show a more accurate solution compared with constant 
inductance, the Newton-Raphson algorithm demonstrates the 
automatic search for the optimal dq-axis reference current 
with only few iterations with fast convergence and good 
accuracy for any operating conditions. 

II.   ANALYSIS OF PMASYNRM MODEL AND MTPA 

OPERATION  

A.   PMaSynRM Model 

In Fig.1 a sketch of the 6 pole PMaSynRM machine 
considered in this work is presented. In the dq-reference 
frame, the equations describing the operation of a 
PMaSynRM can be written as follows: 
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where, ud and uq are the dq-axis stator voltages; id and iq 

are dq-axis current components; Ld and Lq are the inductance 

of PMaSynRM along the d and q-axis, respectively. Rs, ψf 

and p are the stator resistance, the permanent-magnet flux 

linkage and the pole pairs, respectively. ωe is the electrical 

pulsation. The torque equation can be described as: 

T 1.5p[ ( ) ]e f d d q q di L L i i    (3) 

 

Fig.1: Sketch of the 6 pole PMaSynRM machine. 

B.   MTPA Analysis 

Among all the control strategies, the MTPA one is the 

most commonly used [11]-[12]. For a given operating 

condition, corresponding to a defined torque demand, MTPA 

control method focuses on the minimum copper losses with 

maximum torque production. 

The MTPA solution is formulated aiming at copper loss 

minimization problem. The superscript * represents the 

reference value of the currents in the subsequent description. 
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The Lagrange Multiplier applied for Minimum copper loss 

can be describes as follows: 
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(6) 

Solving the first two equations by eliminating the 

parameter , the relationship for id and iq can be derived as: 

*2 *2 *( ) ( ) 0d q d d q q f qL L i L L i i      (7) 

It is worth to observe that the MTPA mathematical 

relationship represented by (7) is a nonlinear function of a 

hyperbolic relationship, as shown in Fig. 2. 

The following are the issues related to MTPA control: 

1) MTPA is a nonlinear equation with a root operation, 

which is quite complex to solve directly. The traditional 

MTPA control method with a constant inductance to 

construct MTPA curve is not accurate. 

2) Traditional motor parameters such as Ld, Lq and Ψf 

are considered constant and independent of the motor 

operating point, which means that the effects of saturation 

and cross saturation on inductances are neglected. However, 



  

in the real operating conditions, these parameters are 

changing with the input current [7][8][13][14].  

3) The look-up table method is commonly used and 

these lookup tables tend to be huge with large memory 

because it is necessary to create separate MTPA tables on the 

basis of inductance variation. The estimation of MTPA with 

the parameters variation requires a considerable amount of 

fitting work and it is very time consuming. 
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Fig.2: MTPA curve in dq-axis current plane. 

C.   Magnetic model of the motor 
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(a)                              (b) 

Fig.3: the magnetic saturation and cross saturation phenomenon (a) d-axis 

flux (b) q-axis flux. 

Considering the saturation of the magnetic circuit for the 

inductance, the d-axis and q-axis inductances are affected by 

the dq-axis current, so that the flux linkage cannot be 

expressed as a linear equation or a constant inductance under 

a large current or a heavy load. For a PMaSynRM, the dq-

axis flux linkage exhibits different magnetic saturation 

characteristics for the dq-axis current. The d-axis flux linkage 

is saturating faster with respect to the q-axis flux linkage, 

which presents a more linear characteristic, as shown in the 

Fig. 3. For the d-axis flux linkage, under the condition of low 

current loading, the d-axis flux linkage shows a linear 

relationship under 40A current. 

On the other hand, as the q-axis current increases, d-axis 

flux linkage will also increase. This phenomenon is known as 

cross-saturation and leads to more complex equations, since 

it is very difficult to give an analytic solution of cross-

saturation directly. Considering the magnetic saturation and 

cross-saturation phenomenon, the direct-axis flux linkage and 

cross-axis flux linkage can be expressed as a non-linear 

function of the inductance with the dq axis currents. 
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Where Ψd and Ψq are the dq axis flux linkages under the 

influence of magnetic saturation, Ld and Lq are the 

inductances varying with dq axis currents, and Ψf is the 

permanent magnet flux linkage influenced by the d-axis 

current. 

The magnetic mathematical model for a PMaSynRM 

machine can be rewritten as: 
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Fig. 4: the 3-D plots of Ld and Lq (a) d-axis inductance (b) q-axis inductance. 

Fig. 4 shows the 3-D plots of Ld and Lq inductances as a 

function of the dq-axis currents, determined by means of 

finite element (FE) simulations. The inductances were 

computed in the current range, from -200A to 200A in the 

second and first quadrant, respectively. Due to the 

complexity of the magnetic saturation and cross-saturation 

equations, in this paper, the two-dimensional look-up table is 

utilized to find the inductance of the motor with different dq 

axis current. 

III.   THE PROPOSED NEWTON-RAPHSON METHOD FOR 

MTPA CONTROL 

The second order Newton-Raphson method (abbreviated 

to N-R searching method) is a fast convergence procedure 

used to solve nonlinear equations to obtain the optimal result 

for generic x and y variables, with the condition f(x,y)=0 and 

g(x,y)=0. By the recurrence formula, starting the iterative 

process with an initial value x(0) and y(0) as first guess, after 

a few steps the optimal solutions can be obtained. 

To find a value of x,y that satisfies the equation (11) 
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where f(x,y) and g(x,y) are some function, the Newton-

Raphson method uses the following formula to get a better 

estimate of xn+1 and yn+1 from a previous value of xn and yn.  

The formula for (8) should be corrected into Lagrange 

multiplier equation of formula (12) 
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(12) 

The first two equations of formula (12) can be combined 

to obtain the equation (13). 
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The Jacobi matrix of the flux linkage is listed as follows: 
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The Jacobian matrix of (14) can be expressed as (15): 
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According to the N-R algorithm, the binary function 

solution obtained by equation can be expressed as an iterative 

form of equation (16). 
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Substituting the inverse of the Jacobian matrix into 

equation (16) yields equation (18): 
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where xn+1 and yn+1 are the new estimate of x and y, xn 

and yn are the previous estimate of x and y respectively, f(xn, 

yn) and g(xn, yn) are the function evaluated using xn yn (note 

that f(xn, yn) ≠ 0 and g(xn, yn) ≠ 0 because xn is not the correct 

solution), and Jacobi matrix are the partial derivative of f(x,y) 

and g(x,y) evaluated using xn yn. n is an integer iteration index 

that starts with 1. The iterative procedure starts by 

substituting a first guess into (19) to get a second estimate. 

This second estimate is then substituted into (19) to get a 

third estimate. This process is repeated until the geometric 

distance of two iterations are below a define threshold. Final 

convergence condition can be defined as: 
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Fig. 5 the Newton-Raphson searching algorithm flow chart 

Newton-Raphson based on search method of PMaSynRM 

flowchart is shown in the Fig.5, initial value is set at first, k 

represents the current iteration. N represents the maximum 

number of iterations. id1 and iq1 set the initial value in the 

first quadrant inside the current limit circle within the first 

iteration of the Jacobian matrix and the initial function value 

f(id0 ,iq0) and g(id0 ,iq0) is used for the N-R iterative algorithm. 

This is calculated by updating id1 and iq1, repeated iterative 

updates continue to search, until the iterative error reaches a 

value below the threshold set. The torque converges to the 

optimal point rapidly, and the optimal current setting values 

for the MTPA are obtained. 

IV.   SIMULATION RESULTS 

In order to investigate the influence of the initial values on 

the Newton-Raphson search results, four simulation 

experiments have been carried out with two different torque 

and inductance values given. The motor parameters are 

shown in Table. I. Since the optimal current reference should 

be limited in the first quadrant, the rated current value is 

72.5A, obtained by the maximum current value under the 

rated torque 120Nm. Fig. 6 and Fig. 7 depict the iteration 



  

results from different initial current values. The detailed 

iteration process with two initial conditions is listed in Table 

II. The current initial values are set to be (20A, 60A) and 

(40A, 15A), which finally converge to (53.82A,45.53A) in 

Case I and (7.28A,2.03A) in Case II, respectively. The 

simulation results show that the proposed N-R search 

algorithm does not depend on the selected initial value of id* 

and iq* and it can cover all the ranges from low torque to 

rated torque and it has a fast convergence rate with less than 

7 iterations for getting the optimal results.  
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Fig. 6 the Newton-Raphson searching process with high reference torque 

(a)Te=120Nm, Ld=9.85mH, Lq=2.06mH 

(b)Te=120Nm, Ld=7.65mH, Lq=1.81mH 
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Fig. 7 the Newton-Raphson searching process with low reference torque 

(a)Te=5Nm, Ld=9.85mH, Lq=2.06mH 

(b) Te=5N.m, Ld=7.65mH, Lq=1.81mH 

TABLE II ITERATION PROCESS FOR N-R METHOD 

INITIAL CONDITION ITERATION PROCESS 

Case I 

Ld=9.85mH 
Lq=2.06mH 
Te=120N.m 

(id0,iq0) 

=(20A,60A) 

(20,60)→(49.60,37.54)→(53.90,46.12) 

→(53.82,45.54)→(53.82,45.53) 

(id0,iq0) 
=(40A,15A) 

(40,15)→(51.86,57.70)→(53.13,46.08) 

→(53.81,45.53)→(53.82,45.53) 

Case II 
Ld=7.65mH 
Lq=1.81mH 

Te=5N.m 

(id0,iq0) 
=(20A,60A) 

(20,60)→(10.55,25.13)→(7.31,9.07)→

(7.04,3.12)→(7.26,2.06)→(7.28,2.03) 

(id0,iq0) 
=(40A,15A) 

(40,15)→(18.39,1.78)→(8.85,-0.34) →

(7.12,2.04)→(7.28,2.03) 

The MTPA trajectory, the constant torque curve and 

current limit circle over all the operating range are drawn in 

dq axis current plane in Fig. 8. The solid lines in the figure 

show the setting torque with Ld=9.85mH and Lq=2.06mH, 

and the dotted lines represent the setting torque with 

Ld=7.65mH and Lq=1.81mH. Variable inductance shows a 

significant effect on the optimal current trajectory curve of 

the MTPA, and the constant torque curve will also shift due 

to the change of inductance parameters.  
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Fig. 8 MTPA curve considering or neglecting magnetic saturation in dq 

current plane 
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Fig. 9 the simulation result for torque change (a) without consideration of 

magnetic saturation (b) with consideration of magnetic saturation 

In order to investigate the magnetic saturation influence 

on the trajectory offset of MTPA curve, the torque 

experiment is carried out with a constant speed of 500rpm in 

the simulation experiments, as shown in Fig. 9 (a) and Fig. 9 

(b). The current reference value is black dotted line and the 

current feedback value is gray solid line. The simulation time 

is 0.5s and the initial given torque is set to be 40Nm, jumps 

to 60Nm at 0.2s, and jumps to 100Nm at 0.4s. Seen from the 

Fig.9 (a), the MTPA control algorithm ignores the saturation 

characteristics, the direct-axis inductance and the quadrature-

axis inductance use the constant parameters of 9.85mH and 

2.06mH. At the same operating condition, the magnetic 

saturation is taken into consideration, as shown in Fig. 9 (b). 

Comparing Figs. 9 (a) and (b), when the torque is smaller 

than 40Nm, at low current loading the phenomenon of 

magnetic saturation is not obvious. The d-axis inductance 

decreases 6.6% and the q-axis inductance decreases 6.3%, 

the d-axis current setpoint error is 1.37A and the q-axis 

current setpoint error is 1.37A. In the 0.2s-0.4s interval, the 

d-axis inductance drops by 12.2% and the q-axis inductance 

decreases 7.8%. Due to the magnetic saturation of the 

inductance, the deviation of the d-axis current reference value 

is 1.1A and the q-axis current deviation value is 0.7A. For 

higher loading, with torque values around 100Nm, the d-axis 

inductance decreases 22.3%, the q-axis inductance decreases 

TABLE I SPECIFICATIONS OF THE TARGET PMASYNRM 

PARAMETERS VALUES 

Rated power kW 37 
Max torque Nm 126 
Rated speed rpm 2800 
Stator resistance Ω 0.1334 
d-axis inductance mH  7.65-9.85 
q-axis inductance mH  1.81-2.06 

Pole pairs 3 
Permanent magnetic linkage Wb 0.1408 

 



  

12.1%, the magnetic saturation is more significant, the d-axis 

current deviation is 0.6A and the q-axis current deviation is 

7.1A. 
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Fig. 10 the simulation result for torque change in dq current plane 

If the response current considering magnetic saturation is 

drawn in the dq-axis current plane, as depicted in Fig. 10, the 

MTPA curves ignoring magnetic saturation are shown in blue 

thin lines and the actual MTPA curves are shown in blue 

thick line. The torque curve with and without the 

consideration of magnetic saturation are depicted with 

colored solid lines and the dotted lines, respectively. If the 

torque reference is set to be below 60Nm, the MTPA curve 

deviation due to magnetic saturation is small. When the 

torque reference value increases above 60Nm, or the load 

torque increases beyond 60Nm, it can be noted that the 

MTPA curve is considerably shifted due to magnetic 

saturation, leading to higher copper loss.  

V.   CONCLUSION 

In this paper, the influence of the magnetic saturation and 

cross saturation on the current setpoint of MTPA is analyzed 

in detail. The magnetic saturation effect leads the actual 

current trajectory to deviate from the optimal one, resulting 

in higher copper loss and lower efficiency. An automatic 

searching method second order Newton Raphson has been 

proposed and implemented to derive rapidly the current 

setpoint in the dq-axis current plane, involving just a few 

iterations (less than seven). The proposed method is novel 

and can be applied to any operating condition. Its fast 

convergence is practically useful when the motor is working 

under frequent change of the operating point. The parameters 

variation is considered and thanks to the Newton Raphson 

searching method it is possible to reduce the complexity and 

computational burden caused by the nonlinear functions. The 

FE simulations results and the validating tests are showing 

that the robustness is increased, and the current response is 

more rapid. The proposed solution can improve the accuracy 

of MTPA control for PMaSynRM. 
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