
Physics in Medicine & Biology
     

PAPER • OPEN ACCESS

Ensemble Kalman inversion for magnetic
resonance elastography
To cite this article: Marco Iglesias et al 2022 Phys. Med. Biol. 67 235003

 

View the article online for updates and enhancements.

You may also like
A modified iterative ensemble Kalman filter
data assimilation method
Baoxiong Xu, Yulong Bai, Yizhao Wang et
al.

-

Adaptive Tikhonov strategies for stochastic
ensemble Kalman inversion
Simon Weissmann, Neil K Chada, Claudia
Schillings et al.

-

Well posedness and convergence analysis
of the ensemble Kalman inversion
Dirk Blömker, Claudia Schillings, Philipp
Wacker et al.

-

This content was downloaded from IP address 213.31.112.9 on 01/12/2022 at 10:39

https://doi.org/10.1088/1361-6560/ac9fa1
https://iopscience.iop.org/article/10.1088/1755-1315/81/1/012197
https://iopscience.iop.org/article/10.1088/1755-1315/81/1/012197
https://iopscience.iop.org/article/10.1088/1361-6420/ac5729
https://iopscience.iop.org/article/10.1088/1361-6420/ac5729
https://iopscience.iop.org/article/10.1088/1361-6420/ab149c
https://iopscience.iop.org/article/10.1088/1361-6420/ab149c
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjss0LEJAkuRBSv8nmXh56rstbxubUvMy7sq5DcuARiKyBL_ECQ5WvSKSVMepUimwJc0voHOI5G6lVaEGivhz_ruhA9B1aIFOfGXKNPZWYFWE4QTgnvqj18t65IR5A82SJjaJBe2g2GvB8x6s3GprP4tccFN1s4712qk6vSWAocs0zHnN3V_Lwq8pS2DXks0wYdr3Arkhdr6axN2xcA63uFy9vwKdk9c66LWfL3KuMxaxLwPbNEYBvKodP2iL9WUFYqOmZZ7i-t0YVwnSUkXLOWn03ox_cEpcR6EFFVJGqjflNw&sai=AMfl-YQ5Ak6pVClZhOSHjb33M7x8B4I6D3i5taan7KkNSjui7UowaPo3Ny57LPDzl0DcqKpd4T2b2CgoyaMpQXEB5g&sig=Cg0ArKJSzElqaNHNOIWt&fbs_aeid=[gw_fbsaeid]&adurl=https://iopscience.iop.org/bookListInfo/physics-engineering-medicine-biology-series%23series


Phys.Med. Biol. 67 (2022) 235003 https://doi.org/10.1088/1361-6560/ac9fa1

PAPER

Ensemble Kalman inversion for magnetic resonance elastography

Marco Iglesias1 , DeirdreMMcGrath2,3,MVTretyakov1 and SusanTFrancis2,3

1 School ofMathematical Sciences, University ofNottingham,Nottingham,United Kingdom
2 NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham,
Nottingham,United Kingdom

3 Sir PeterMansfield ImagingCentre, University of Nottingham,Nottingham,UnitedKingdom

E-mail:marco.iglesias@nottingham.ac.uk

Keywords:magnetic resonance elastography, ensemble Kalman inversion, Bayesian inversion

Abstract
Magnetic resonance elastography (MRE) is anMRI-based diagnosticmethod formeasuring
mechanical properties of biological tissues.MREmeasurements are processed by an inversion
algorithm to produce amap of the biomechanical properties. In this paper a new and powerful
method (ensemble Kalman inversionwith level sets (EKI)) ofMRE inversion is proposed and tested.
Themethod has critical advantages:material property variation at disease boundaries can be
accurately identified, and uncertainty of the reconstructedmaterial properties can be evaluated by
consequence of the probabilistic nature of themethod. EKI is tested in 2D and 3D experiments with
syntheticMREdata of the human kidney. It is demonstrated that the proposed inversionmethod is
accurate and fast.

1. Introduction

Magnetic resonance elastography (MRE)McGrath (2018) is anMRI-based diagnosticmethod used tomeasure
mechanical properties of biological tissues. Changes in these properties, in particular elasticity, can be associated
with disease such as cancer (Sinkus et al 2000, Venkatesh et al 2008, Li et al 2011, Sakai et al 2016) andfibrosis
(Yin et al 2007, Singh et al 2015). The twomain classes ofMRE are dynamic or harmonic (Muthupillai et al
1995), and static or ‘quasi-static’methods (McGrath et al 2012). In dynamicMREmechanical waves are
produced in the tissue using a vibrating driver, while in staticMRE thewhole tissue volume is compressed. In
each case, the resulting displacement field ismeasuredwithmotion encoding gradients used to detect the
displacements as phase-shifts in theMRI images received by the scanner. These images are then processed by an
inversion algorithm to produce amap of the biomechanical properties of the tissue, typically referred to as an
elastogram. DynamicMRE is nowbeingwidely used for clinical applications in the liver (Singh et al 2015,
Mathew andVenkatesh 2018), and there is growing interest in applying themethod in awide range of organs
including the spleen and kidney (Venkatesh et al 2013), brain (Hiscox et al 2016), lung (Marinelli et al 2017), and
muscle (Kennedy et al 2017).

Themain elasticity parameter of interest in dynamicMRE is the shear elasticmodulus, which varies by
several orders ofmagnitude across different tissues and between the healthy and diseased state.Most soft tissues
havematerial properties that are intermediate between those of solids and fluids, and can be characterised by
viscoelastic constitutivematerialmodels. The complex shearmodulusG summarises the shear viscoelasticity:
the real component, or storagemodulusGs, defines the solid-like shear elasticity and the imaginary component,
or lossmodulusGl, defines thefluid-like shear viscosity. In this context, an inversion algorithm is employed to
inferGs andGl fromMRImeasurements of tissue displacements.

A variety of inversion algorithms have been explored forMRE (see e.g. VanHouten et al 1999, Papazoglou
et al 2008, Doyley 2012,McGarry et al 2013, Ammari et al 2015, Fovargue et al 2018,McGarry et al 2019 and
references therein). One of themorewidely usedmethods is direct inversion (DI), or algebraic inversion
(Papazoglou et al 2008). Othermethods include local frequency estimation and iterative basedmethods
(Manduca et al 1996, VanHouten et al 1999,Manduca et al 2001,Hu and Shan 2020). The quality and accuracy
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of calculated elastograms is limited by the assumptions andmathematicalmethods employed. For example, in
direct or algebraic inversion, typically the assumption of local tissue homogeneity ismade (Sinkus et al 2005),
and this can lead to large errors in the elastograms at the boundaries between tissues with very different
underlying elastic properties. Also, algebraic inversion involves numerical differentiation of imaging data, which
can amplify imaging-related noise. Iterativemethods, on the other hand, avoid differentiation of data by posing
the inversion as a least-squares problem that is solved numerically. Since this problem is inherently unstable (or
ill-posed), regularisation strategies are needed in order to compute a stable reconstruction of the stiffness
properties. However,most existing regularisation strategies produce over-smoothed properties which cannot
accurately reconstruct the interface between healthy tissue andmalignancies.While iterativemethods can be
equipped to address the instabilities (or ill-posedness) of the inversion inMRE, thesemethods are
computationallymore costly than those used inDI. Consequently, a large body of work has been devoted to
improving the computational efficiency of iterativemethods by using a domain decomposition (subzone)
method (VanHouten et al 1999,McGarry et al 2013, 2019).

Most existing approaches, either direct or iterative, for inversion inMRE are developedwithin deterministic
frameworkswhich do not account for the uncertainty in the produced elastograms. This uncertainty arises from
the unavoidable presence ofmeasurement noise aswell as the fact that the solution to the inversion problem in
MREmay not be unique. In otherwords,multiple elastogramsmay be consistent with the samemeasured data.
While rigorous theoretical work on uniqueness inMRE reconstructions is very limited (Higashimori 2007),
existingwork has proven uniqueness under idealisedmathematical hypotheses that are not likely to be satisfied
in relevant settings forMRE (i.e. for stiffness properties in the presence ofmalign tissues).

In this workwe propose a new inversion framework forMRE via the ensemble Kalman inversion (EKI)
algorithmdeveloped in Iglesias et al (2013), Iglesias (2016), Iglesias andYang (2021), and that has been
successfully used for tomography and detection in various applications including geophysics (Tso et al 2021) and
engineering (Simon et al 2018, Iglesias et al 2018,Matveev et al 2021). The proposed EKI algorithm forMRE is
derived from the Bayesian approach for inverse problems (Kaipio and Somersalo 2005, Stuart 2010). Therefore,
contrary tomost existing inversion algorithms forMRE,where a single estimate is producedwith no known
measure of its uncertainty, the proposed EKI-based framework provides a full characterisation of the posterior
probability distribution of the inferred tissue properties. From this distributionwe are able to computemeasures
of the uncertainty of the storage and lossmodulus such as the (pointwise) variance and credible intervals as well
as the probability for the presence of anomalies within the tissue under investigation.

In contrast toDI approaches which rely on the assumption of local homogeneity (i.e. piecewise constant
stiffness properties) or standard iterativemethodswhich often produce over-smoothed elastograms, our
approach characterises the storage and lossmodulusGs andGl via spatially-varying (fully heterogeneous)
random functions thatmay display abrupt changes in the presence of unknown anomalies (e.g. tumours or
cysts).We allow for these potential abrupt changes by encoding a level-set parameterisation (Iglesias et al 2016,
Dunlop et al 2017, Chada et al 2018)within the EKI algorithmwhich enables us to statistically identify well-
defined boundaries between normal and anomalous tissue.

Here we implement and test the proposed EKI-basedMRE inversion framework using an underlying
forwardmodel based on a standard isotropic linear viscoelasticmodel (Fovargue et al 2018, Sinkus et al 2005, Li
et al 2021) that we program inMATLAB via the PDE toolboxpdetool. Nonetheless, since one of the
advantages of the EKI framework is that the forwardmodel is used in a black-box fashion, the proposed EKI-
based algorithm can be easily usedwith other acoustic wave propagation solvers.

We illustrate capabilities of the proposed EKI-basedMRE approach via synthetic (virtual)MREexperiments
of the kidney in 2D and 3D.We demonstrate that the proposed EKI-algorithm forMREproduces reliable
probabilistic estimates of the stiffness properties of the tissue (including sharp discontinuities from the presence
of disease) togetherwithmeasures of uncertainty that can provide practitioners with a valuable tool for decision
making under the presence of inherent uncertainties in the stiffness properties of biological tissue.

In section 2we introduce a standard formulation for harmonicMRE—a linear viscoelastic PDEproblem
which is the forwardmodel in this paper.We thenwe formulate theMRE inverse problem and briefly review
some of the existingmethods for solving this, including an explanation of the Bayesian approach to inverse
problemswhichwe exploit in this paper. The key for success of the Bayesian approach lies in an appropriate
parameterisation of the quantities of interest (i.e. stiffness properties of the tissue)which is proposed in section 3.
We illustrate the proposed Bayesian approach on 2D and 3D experiments in section 4. Concluding remarks are
in section 5. Appendices provide technical details about the parametrisation and the prior used. Supplementary
material contains additional experiments demonstrating how the accuracy of the proposed approach depends
on (i) choice of the prior ensemble (including ensemble size), (ii) level ofmeasurement noise, and (iii)
segmentation uncertainties.
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2. Bayesian reconstruction of stiffness properties

In this sectionwe formulate the forward and inverse problems forMRE (section 2.1).We discuss some of the
existing inversion approaches which have been used forMRE (section 2.2), and outline the Bayesian approach
(section 2.3).

2.1. Forward and inverse problems forMRE
This section introduces the standard formulations for harmonicMRE,we refer the reader to Li et al (2021),
Sinkus et al (2005), Jiang et al (2011), Ammari et al (2015), Fovargue et al (2018) (and references therein) for
further details. Our aim is to describe deformation of a tissue occupying a physical domain W Ì d (d= 2, 3) via
excitation of a harmonic wavewith angular frequencyω. The tissue is assumed to be isotropic and to have
density ρ. A linear viscoelasticmodel is employed inwhich the amplitude of the tissue displacement, denoted by
u(x), xäΩ, is governed by the following PDE (see e.g. Landau and Lifschitz 1986, Ciarlet 1988, Jiang et al 2011,
Ammari et al 2015,McGrath 2018, Jiang et al 2020 and references therein):

· [ ( ( ) )] ( · ) ( )rw l+   +  +   = WGu u u u 0, in , 1T2

whereλ(x) andG(x) are the (complex)first and second Lame parameters, respectively. Equation (1) has to be
accompanied by some boundary conditions (see e.g. Ciarlet 1988, Jiang et al 2011, Ammari et al 2015, Jiang et al
2020 and also section 4.1 here).

For theMRE settingwe note thatω is a known/controlled variable, while tissue density, ρ, is assumed to be
that of water (i.e ρ≈ 103 kg m−3). Oncewe specify the tissue stiffness properties characterised via S(x)≡ (G(x),
λ(x)), the forward problem consists of solving equation (1) supplementedwith appropriate boundary
conditions.We can formulate the forward problem in terms of the so-called forwardmap denoted by  :

( ) ⟹ ( ) ( ( ) ( )) ( )l= = º ¼GS S u u x u x, , , , 2M M1

which for every admissible pair (G,λ) of stiffness properties returns the solution to (1) evaluated atM points,
denoted by { }º =X xM m m

M
1.We define these points so that we can subsequently confront ourmodeling

solutionswith observed data collected on a givenmesh/grid. In expression (2)wehave removed the explicit
dependence of S= (G,λ) on x to emphasize that it is the forwardmap. Furthermore, note that  is a nonlinear
operator that, in general, cannot be expressed in a closed form.

With the aid of the forwardmap, we pose the following inverse problem forMRE: given a complex vector,
d†, of noisyMRImeasurements of tissue deformation (measured onXM)find tissue stiffness properties
S†= (G†,λ†). A key underlying assumption in formulating this inverse problem is that d† aremeasurements of
displacements †uM simulated according to (1) using the truth (i.e. S†= (G†,λ†)). One often assumes, for
example, that

( ) ( )† † † † †h h= + = +d u S , 3M 

where η† is an unknownmeasurement error/noise. One fundamental property of this inverse problem is that it
is ill-posed in the sense of continuity (Engl et al 1996, Kaipio and Somersalo 2005). In otherwords, one can find a
sequence of stiffness properties { } =

¥Sn n 1 so that the sequence ( )Sn converges to ( )†S while Sn does not
converge to S†. Furthermore, the solution to the inverse problemmay not be unique and, hence,multiple
solutions (stiffness properties)may lead to the same observed data. Even in the idealised case where the
measurement noise is absent, existing theoretical work ensures uniqueness only under very specific and often
unrealistic conditions (e.g. for smooth stiffness propertiesHigashimori 2007). Thus, there is a need to quantify
uncertainty of the reconstructed stiffness properties that we produce via solving the inverse problem.

2.2. Existing inversion approaches
Direct inversion (DI) is one of themost commonly used inversionmethodologies forMRE (see e.g. Sinkus et al
2005, Papazoglou et al 2008). The following outlines themain idea ofDI and notes that that there aremany
variants ofDI including those that useweak formulations of (1).

In the context of the forwardmap defined earlier, DI neglectsmeasurement errors and seeks a direct solution
of the nonlinear equation (3), i.e.

( ) ( )† †=d S , 4

tofind S†. Among the numerousDI approaches to solve (4) there is a class ofmethods that use † †=d uM (suitably
interpolated) instead ofu in equation (1) to solve for S† (Sinkus et al 2005, Papazoglou et al 2008). Since d† is
corrupted by noise, employingDI often requires application of filtering/smoothing ond† so that it can be used
within themodel equations that involve derivatives of the displacement field. The assumption of local
homogeneity of the tissue properties Sinkus et al (2005) can cause significant errors in the elastograms at the
boundaries between tissues having very different elasticity properties, and the errors at tissue boundaries can be
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accentuated by smoothing. Further, the required differentiation can amplify imaging-related noise. Another
weakness ofDI is that its results are not accompanied by quantification of their uncertainty.

Iterative Inversion (II)methods forMRE (see e.g. VanHouten et al 1999,McGarry et al 2013, Ammari et al
2015,McGarry et al 2019) are the other popular approach to solving theMRE inverse problem. IImethods pose
the inverse problem in terms of optimisation of a least-squares functional, e.g.

∣∣ ( )∣∣ ( )†= -
Î

S d Sarg min , 5
S

2* 


where  is a suitable space of admissible solutions. Because the inverse problemposed via (5) is also ill-posed as
described above, an additional regularisation term, typically the squared normof S on some functional space, is
often included in the right hand side of (5) to ensure stability in computations of an optimiser. The review
Fovargue et al (2018) describes various II approaches with the use of different regularisation terms and their
effect on the accuracy of the reconstructions of stiffness properties.

There are three fundamental limitations in II approaches forMRE. First, since themost natural approach to
compute (5) is via a gradient-based orNewton-typemethod, derivatives of the forwardmap and their
corresponding adjointsmust be computed. This can be a limitationwhen using commercial software for the
forwardmodel whichmay not give direct access to the linearised equations and their respective adjoints. Of
course, one can always employ black-box optimisation tools based on, for example, automatic differentiation at
the expense of higher computational cost and possible loss of accuracy. Second, existing II approaches forMRE
donot provide ameasure of uncertainty in the estimates that they produce. The third limitation is thatmost
standard regularisation terms used in II enforce a degree of smoothness in the reconstructed stiffness properties
which is not consistent with the abrupt changes that these properties display in the presence of diseased tissue
(Fovargue et al 2018). In effect, overly-smooth reconstructed properties do not enable us to accurately estimate
the interface between healthy and diseased tissuewhich is, in turn, detrimental to the diagnostic capability of
MRE.However, there are IImethods forMRE, such as the use of total variation regularisation (Zhang et al 2012)
andmodelling stiffness properties via the truncation of level-set functions (Li et al 2012), that take into to
account possible abrupt changes in stiffness properties.

In this workwe propose a new approach for solving theMRE inverse problembased on the Bayesian
formulation of inverse problems and appropriate parametrisation of the consideredMRE inverse problem. This
approach allows us to recover sharp interfaces and to quantify uncertainties of estimates of the elastic properties
of interest.

2.3. TheBayesian approach
In the Bayesian approach the stiffness properties comprised in S are unknown random functions onwhichwe
specify a joint prior distribution ( ) S .We assume that the observed datad† is a realisation of a randomvariable d
defined by

( ) ( )h h= + = +d S u , 6M

where η is an unknown randomerror which follows aGaussian distributionwith zeromean and covarianceΣ
(that is η∼N(0,Σ))which, in practice, can be informed by the precision of themeasurement device used.

The aimof the Bayesian approach is to approximate the so-called posterior distribution ( ∣ )† S d which from
Bayes’ rule is given by Stuart (2010):

( ∣ ) ( ∣ ) ( ) ( )† †=  
Z

S d d S S
1

, 7

where ( ∣ )† d S is the likelihood of themeasurements d† andZ is the normalising constant defined by

( ∣ ) ( ( )) ( )†òº  Z d S Sd . 8


From theGaussian assumption on η and (6), it follows that ∣ ( ( ) )~ SNd S S , . Hence, the likelihood is given by

( ∣ ) ( ( )) ( )† † µ - S --⎡
⎣

⎤
⎦

 d S d Sexp
1

2
. 91 2 2

Oncewe specify the prior ( ) S , we can use (9) in (7)which yields the sought posterior ( ∣ )† S d up to the
normalisation constantZ. Unfortunately, since  is a nonlinear operator,Z cannot be computed in closed-
form. Therefore, ( ∣ )† S d must be approximated via sampling strategies, where the goal is to compute a collection
of samples, ( ∣ )( ) †~ S S dj ( j= 1, K, J), fromwhichMonte Carlo estimates can be computed. These include the
samplemean, variance aswell as credible intervals for the stiffness properties (at each point x in the
computational domainΩ). Another relevant quantity is themaximum a posteriori (MAP) estimate which is
defined by
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( ∣ ) ( ( )) ( ) ( )† † º = - S -
Î Î

-⎧
⎨⎩

⎡
⎣

⎤
⎦

⎫
⎬⎭

 S S d d S Sarg max arg max exp
1

2
, 10MAP

S S

1 2 2
 

andwhich corresponds to themost likely estimate of stiffness properties of the posterior estimate.
Computing theMAP (i.e.maximising the posterior) is equivalent to an II approach (i.e. minimising the

squared datamisfit+ regularisation term) (Kaipio and Somersalo 2005), where the regularisation term is
determined by the choice of prior. Thework ofMohammadi et al (2021) uses the so-called total variation prior
to compute theMAP for a simple 2DMREproblem. Although they use the Bayesian setting to derive the
approach, they do not characterise the full posterior distributionwhich, as stated before, is required to quantify
uncertainty of all possible positions. On the other hand, aMarkovChainMonte Carlo approachwas recently
used in Jiang andQian (2020) to fully characterise the posterior for inversion in aMRE setting. This approach,
however, was used in a very simplified case in 2D,where the stiffness properties were piecewise constant and the
interface between healthy and diseased tissuewas assumed known. The Bayesian approach that we present here
approximates the full Bayesian posterior of stiffness properties in 2D and 3D settings where the location of those
interfaces are unknown and inferred via the proposed approach.Moreover, within each region, we allow for the
inference of highly heterogeneous properties.

In the next sectionwe parameterise the stiffness properties (thefirst and second Lame parameters), which is
needed in order to allow for sharp discontinuities in tissues and high heterogeneity of the properties, andwe
specify the priors on the parameterisation introduced.

3. Parameterisation of the Bayesian inverse problem

Ourmain objective here is to define a parameterisation of the stiffness properties S= (G,λ). As outlined in the
introduction, the second Lame parameter (or shearmodulus) can bewritten as

( ) ( ) ( ) ( )= +G G iGx x x , 11s l

whereGs(x) andGl(x) are the storage and lossmodulus, respectively.While a similar expression holds forλ(x),
here we assume that the complex part of this function is negligible (see e.g Sinkus et al 2005 for a physical
justification) and use the standard relation (Sinkus et al 2005)

( ) ( ) ( )l
n

n
=

-
G

x
x2

1 2
, 12s

in terms of the storagemodulus and the Poisson’s ratio denoted by ν.We employ the standard assumption of
near-incompressibility of biological tissues and hence Poisson’s ratio is close to that offluid, ν≈ 0.5 (Ammari
et al 2015,McGrath 2018).

Using these assumptions, the stiffness properties (G,λ) can be characterised by the storage and lossmodulus

( ) ( ( ) ( )) ( )= G GS x x x, . 13s l

The framework subsequently developed is focused on inferring S from (13), but it is crucial to emphasise that the
proposedmethod is quite general and can be applied to any set of physical properties of interest (e.g. ν,λ, ρ).

In the next subsectionwe introduce a parameterisation

( ) ( ) ( )Q= =G GS , , 14s l 

in terms of an auxiliary functionΘ. This parameterisation enables one to (i) incorporate anatomical information
of the tissue under investigation and (ii) infer storage and lossmoduli that are highly heterogeneous and could
potentially exhibit sharp discontinuities at the borders of diseased tissue. The parameterised inverse problem is
then solved via the Bayesian approach in section 3.2.

3.1. Parameterisation of stiffness properties
In order to introduce the parameterisationwe use the example of its application to the kidney as described in
section 4, but the framework can be tailored to any otherMRE settings. The kidney ismodelled as being divided
into two regions comprised of themedulla and cortexwhichwe denote byΩm andΩc, respectively. The domain
of interest can be represented as

( )È ÈW = W W W , 15b m c

whereΩb is the backgroundmedium surrounding the kidney (see figure 1 (left) for a 2D example).
In order to account for (and subsequently infer) the presence of diseased tissue (e.g. a cystic lesionwithin the

kidney), we introduce the setΩd⊂Ωc ∪Ωm. Let us now express the storage and lossmoduli in terms of a
collection of functions defined on each of the sections of the domain of interest.More specifically, we assume
that for themulti-indexα ä {s, l}:
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( )

( ) ⧹
( ) ⧹
( )
( )

( )=

Î W W
Î W W
Î W
Î W

a
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⎧

⎨
⎪

⎩
⎪
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G

G

G

G
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x x

x x

x x

x x

, ,

, ,

, ,

, .

16

c c t

m m t

d d

b b

,

,

,

,

For simplicity we assume that we know the geometry of the cortex and themedulla regions,Ωc andΩm, while we
focus on inferring the diseased regionΩd. Although the extent of the diseased regionΩdmay be also available
from theMRImeasures (e.g. T1-weighted or T2-weightedMRI images, or quanttativemaps), we keepΩd as
unknown and hence demonstrate the flexibility of the proposed EKI approach to infer the geometry of unknown
regions. To this end, we assume thatΩd is unknown and parameterised via the level-set approach (Iglesias et al
2016,Dunlop et al 2017). That is

{ ( ) } ( )È kW = Î W W x f x: , 17d c m

where f is the level-set function andκ is a threshold.We note that theκ-level corresponds to the interface
between diseased and healthy kidney tissue.Whileκ can be subsequently inferred as part of the unknown, here
we simply assume it isfixed and specified beforehand.

For the experiments of subsequent sections, the geometry of the regionsΩc andΩm is assumed known from,
for example, segmented images obtained via thresholding the signal of a T1-weightedMR image, here an ex vivo
kidney specimen. The practical case inwhich segmentation errors are present (and so uncertainties in the
geometryΩc andΩm) can also be addressedwithin the proposed EKI level-set framework. This is done in section
4 of the supplementarymaterial.

It is worthmentioning that the use of level sets tomodel discontinuous stiffness properties inMREhas been
also proposed in (Li et al 2012) although in a framework that (i) can only be applied to piece-wise constant elastic
properties and (ii) is purely deterministic and hence does not provide uncertaintymeasures of the produced
estimates.

Expression (16)withΩd characterised via (17) defines amap,, such that

({ } { } ) ⟶ ( ) ({ } { } ) ( )= =b b b b b b b bÎ Î Î ÎG G f G G G G fS, , , , , , 18s l s l s l, , , ,   

wherewe have introduced the set of indices { }º b c d m, , , . Themap enables us to parameterise the
unknown stiffness properties S= (Gs,Gl) in terms of the loss and storagemodulus on each sub-region of interest
(i.e.Gα,β), as well as the level-set function, f, which determines possible presence of an unknowndisease region.
We further characterise each of these functions via RandomFields (RFs) that we generate using aWhittle–
Matern parameterisation, WM , whichwe describe in appendix A.More specifically, we assume that (for
b Î )

[ ( )] [ ( )] ( ) ( )Q Q Q= = =b b b bG G fexp , exp , , 19s
WM

s l
WM

l
WM

f, , , ,  

whereΘl,β,Θs,β andΘf are additional auxiliary functions and parameters that we comprise in

( ) ({ ( )} { ( )} ( )) ( )Q Q Q Q= b b b bÎ Îx x x x, , . 20s l f, , 

Exponential functions in (19) are used to ensure the values of loss/storage obtained for any choice ofΘ are
always positive. Let us note that if we denote by  the composition of (18)with (19), we can succinctly write the
parameterisation of S as in (14).

The formulation of WM aswell as the expression forΘ are discussed in appendix A. It is worthmentioning
thatwhenΘ is selected as discussed in appendix B, then the ( )bGlog s, ʼs, ( )bGlog l, ʼs and f that we obtain via (11)

Figure 1. 2D Setting. Left: setting for the known geometry.Middle: example of a random level-set function (dimensionless). Right:
unknown diseased (blue) region characterised via the truncation of the level-set function.
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areGaussian RFswhich have beenwidely used tomodel spatial variability of physical properties inmany other
applications (Matérn 1986, Stein 1999, Lasanen et al 2014).

Before we proceed to discuss the Bayesian approach that we employ to inferΘ (and henceGs andGl via (14)),
let us illustrate the proposed parameterisation using the 2D geometry from figure 1 (left).We reiterate that the
geometry of the cortex andmedulla are assumed to be available fromprior information, but the approach can be
extended to infer these regionswithin the EKI algorithm. In themiddle panel offigure 1we provide an example
of aGaussian RF that we generate as described in appendix B and that we use as the level-set function, f, in
definition (17). In addition, we employ a threshold valueκ= 1.75 to obtain the cystic region,Ωd, that we display
in blue colour infigure 1 (right). Additional Gaussian RFs are generated to characterise the (log) storagemodulus
within each of the regions. Thesefields, with plots shown infigure 2, correspond to (from left to right)Gs,b,Gs,c,
Gs,m andGs,d. If we use these functions, together with the level-set function from figure 1 in expression (16), we
finally obtain the storagemodulus from figure 2 (bottom).

3.2. The re-parameterised inverse problem
In appendix Bwe discuss in detail the prior that we choose for the parameters comprised inΘ. The prior on the
stiffness properties is defined by

( ) ( )Qº # S ,

where # denotes the push-forwardmeasure of  under the parameterisationmap  . In practical terms this
means that the prior, ( ) S , that we define on S (see (13)) can be simply characterised using samples from ( )Q
mapped under  , i.e.

( ) ⟹ ( ) ( ) ( )( ) ( ) ( ) ( ) ( )Q Q Q~ = = ~ G GS S, .j j
s

j
l

j j

Wecan apply the Bayesian framework on the problemparameterised in terms ofΘ. In otherwords, we seek the
posterior

( ∣ ) ( ( )) ( ) ( )† † Q Q Q= - G -⎡
⎣

⎤
⎦

 
Z

d d
1

exp
1

2
, 211 2 2

whereZ is the normalisation constant similar to the one defined in (8) andwherewe have defined the parameter-
to-measurementsmap

◦ ( )º . 22  

In (21)wehave used the likelihood implied by (6)with S parameterised as in (14). It can be shown (e.g. see
Dunlop et al 2020) that

Figure 2.Parameterisation. Top: examples of random fields used to characterise the storagemodules [kPa] on each anatomical region.
Bottom: a random storagemodulus [kPa] computedwith the proposed parameterisation.
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( ∣ ) ( ∣ )† †Q= # S d d .

Hence, if we compute a sampling approximation of the Bayesian posterior on the re-parameterised problem,
samples from the posterior on the stiffness properties can be computed bymeans ofmapping those samples
under  .

In this workwe approximate the posterior ( ∣ )†Q d bymeans of the EKI algorithm initially introduced in
Iglesias et al (2013), Iglesias (2016) for solving generic inverse problems.Herewe briefly introduce the algorithm
and refer the reader to the recent work of Iglesias andYang (2021) for further details andmotivation of EKI from
the Bayesian tempering setting for inverse problems.

The underlying framework of the EKI algorithm thatwe display in algorithm1 is to approximate, via an
ensemble of J particles/samples, a sequence of intermediate distributions between prior and posterior:

( ) ( ) ( ) ( ) ( ∣ )†Q Q Q Q Qº    º+     d .N0 1 1

Each of these intermediate distributions ( )Qn is approximatedwith aGaussian distributionwhich is, in turn,
characterised by an ensemble of particles { }( )Q =

j
j
J

1.
The EKI algorithm starts with an ensemble of samples from the prior which are updated at each iteration of

the algorithm. The number of iterations is determined adaptively as suggested in Iglesias andYang (2021) in
order to provide stable transitions between intermediate distributions. Upon convergence, the EKI produces an
ensemble that approximates the posterior.

Algorithm1.EKI algorithm

Input : (1) †d : measurements; (2)Γmeasurements’ error covariance;

(3) { }( )Q =
j

j
J

0 1: initial ensemble consisting of samples from the prior.
Output: { }( )Q =

j
j
J

1: posterior ensemble.

Set =s 00

while <s 1n do

(1)Prediction step.Evaluate

( ) ( ( )) { } ( )( ) ( ) ( )Q Q= = Î ¼j J, 1, , , 23n
j

n
j

n
j   

and define ( )= å =n J j
J

n
j1

1  .

(2)Compute regularisation parameter an:

( )† ( ) åa = G -
=

-

M J
d

1 1
n

j

J

n
j

1

1 2 2* 

if +
a

s 1n
1

n*
then

Set a =
-n s

1

1 n
, =+s 1;n 1

else

Set a a=n n*, = +
a+s sn n1
1

n
.

end 3

Analysis step.Define Cn
, QCn

 by

( )( )

( )( )

( ) ( )

( ) ( )Q Q

=
-

å - -

=
-

å - -

=

Q
=

C
J

C
J

1

1
,

1

1
.

n j
J

n
j

n n
j

n
T

n j
J

n
j

n n
j

n
T

1

1

   

 





where ( )Q Q= å =n J j
J

n
j1

1 , and update each ensemblemember:

( ) ( )
{ } ( )

( ) ( ) † ( ) ( )a a hQ Q= + + S - +
Î ¼
+

Q -C C

j J

d ,

1, , , 24
n

j
n

j
n n n n

j
n n

j
1

1  

where ( )( )h ~ SN 0,n
j .

+ n n1

end

At every iteration of the scheme, themain computational cost of EKI is in the prediction stepwhich consists
in evaluating the parameter-to-measurementmap for each of the ensemblemembersΘ( j). This evaluation
involves (see equation (23)) (i) computing the stiffness properties ( )( ) ( )Q=S j j and (ii) tissue displacements

( )( ) ( )= Sj j  . The latter involves solving equation (1)while the former, as discussed in appendix A, requires
solving one additional PDE for each of the storage and the lossmodulus defined on the constituents ofΩ aswell
as the level-set function. If we denote by H the total cost incurred by one evaluation of the parameter-to-
measurementmap andNit the iterations needed to achieve convergence, then the total cost of EKI is
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= N J .EKI it H 

To the best of our knowledge, this work constitutes the first application of EKI to time-harmonicMRE. For
quasi-staticMRE, however, the recent work ofNapoli et al (2021) used aKalmanfilter algorithm to assimilate
data from robotic sensors. Their algorithmic frameworkwas entirely different to the Bayesian inversion setting
proposed here andwithout the use of the level-set based parameterisation of stiffness properties.

3.3.Measures of uncertainty
Aswe discussed earlier, samples fromΘ (either from the prior or the approximate posterior computed via EKI)
can bemapped, via (14), into samples of the corresponding distributions of the physical propertiesGs andGl. In
otherwords, we have the following samples

( ) ( ) ( )( ) ( ) ( )Q= = ¼G G j J, , 1, , , 25s
j

l
j j

fromwhichwemay compute the samplemean and variance (forα ä {s, l})defined by

( ) ( ) ( ) ( ( ) ( )) ( )( ) ( )å ås= =
-

-a a a a
= =

a
G

J
G

J
G Gx x x x x

1
and

1

1
, 26

j

J
j

G
j

J
j

1

2

1

2

respectively.Whenwe use samples of the prior (or posterior), the expressions in (26) converge, as J→∞ , to the
mean and the variance of the prior (or posterior) distribution.We reiterate that EKI produces aGaussian
approximation of the posterior. Although the posterior is, in general, non-Gaussian, there is numerical evidence
fromother applications that EKI can accurately approximate the posteriormean and variance (Iglesias 2014,
Iglesias et al 2018,Matveev et al 2021).

Similarly, for each xäΩweuse our samples, { ( )}( )
a =G xj

j
J

1 to approximate equal tail (1− α)100%credible
intervals (Gelman et al 2004), i.e. intervals that contain the unobserved properties (at that given x)with (1− α)
100%posterior probability. In addition, the level-set parameterisation ofΩd (see equation (17)) allows us to
compute the posterior probability that a point x, within the tissue, belongs to the diseased tissue region.More
specifically, we define

( ) ( ( ) ) ( )kº >P fx x , 27

which can be approximated by

( ) ( ) ( )( ) å
=

WP
J

x x
1

, 28
j

J

1

j

where  ( )( )W xj is the indicator function ofΩ( j) defined by

 ( ) ( )
( )

( )
( ) =

Î W
Ï WW

⎧
⎨⎩

x

x
x

1 ,

0 ,
29

j

j
j

andΩ( j) is given by (17)with ( )( ) ( )Q=f j WM
f
j instead of f. Here ( )Q f

j is one of the components of the jth
posterior ensemble of the parameterΘ( j) (see equation (20)). Further details on how to arrive at (28) from (27)
can be found inMatveev et al (2021), where a similar quantity was defined for the probability defects in
compositesmaterials.

4.Numerical experiments

In this sectionwe test the proposed Bayesian inversion algorithmusing synthetic data. The use of synthetic data
allows us to demonstrate accuracy and the cost of themethod in a transparent way.

In section 4.1we specify settings of the forwardmodel for the experiments. Results of 2D experiments are
presented in section 4.2while in section 4.3 results of 3D tests are given.

For the 2D case, in the supplementarymaterialwe look in depth on how the ensemble size (section 1 of the
supplementarymaterial), the level ofmeasurement errors (section 2 of the supplementarymaterial), and the
choice of prior (section 3 of the supplementarymaterial) affect the outcomes of our inversion algorithm.
Furthermore, in section 4 of supplementarymaterial the proposed EKI-based inversion forMRE is extended to
account for segmentation errors/uncertainties, which is accompanied by illustrative numerical experiments. In
section 5 of supplementarymaterialwe compare the performance of the proposed level-set based EKI inversion
with the standard implementation of the LFEmethod encoded in the software packageMREWave provided by
theMayoClinic, andwe show the superiority of the proposedmethod.

The code for the 2D experiments can be downloaded fromhttps://github.com/Marco-Iglesias-
Nottingham/EKI-for-MRE.
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4.1. Forwardmodelling settings
The forwardmodel that we use for our numerical experiments is given by equation (1), whereG andλ are
parameterised in terms ofGs andGl via (11)–(12). For all our experimentsMRE vibration frequencywas 60 Hz,
and parameters employedwere:

w p r n= = =-2 60 rad, 10 kg m and 0.499.3 3

Weconsider the following boundary conditions (see e.g. Ciarlet 1988, Alberty et al 2002):

[ ( · ) [ ( ) ]] ( )l  +  +  = ¶WGu I u u n 0, on 30T
N

( )= ¶WMu u , on , 31D D

where it is assumed that the boundary ofΩ, denoted by∂Ω, can bewritten as∂Ω= ∂ΩN ∪ ∂ΩD, onwhichwe
may impose natural (for simplicity traction-free) andDirichlet boundary conditions, respectively. In
equation (31)M is a d× dmatrix that we use to constrain some of the components ofu(x) on∂ΩD, while the
other components satisfy the traction-free condition.

It is worth noticing that these boundary conditions are chosen for the sake of simplicity in demonstrating the
proposed approach for Bayesian inversion inMRE.Wenote that in real settings, boundary conditionswill be
unknownbut observed displacements (fromMRImeasurements) could be used to specifyDirichlet boundary
values on a specified boundary. In addition, while we have selected a common choice of 60 Hz for the value of
frequency, since the proposed EKI approach uses the (forward) viscoelasticmodel in a black box fashion,
different choices of frequency should not, in principle, affect the outcomes of the inversion provided (i) the same
level of noise is employed and (ii) tissue displacements are observed on a sufficiently dense grid (see equation (2))
so the the underlyingwavelength can be resolved.

For the 2D experiments of section 4.2 the domain is [ ]W = 0, 0.12 m 2 withDirichlet boundary,∂ΩD, given
by thehorizontal edge at y= 0.12m.For the 3D experiments reported in section 4.3weuseΩ= [−4.57× 10−2m,
4.57× 10−2m]× [−6.9× 10−2m, 6.9× 10−2m]× [0, 3.0× 10−2m] and∂ΩD givenby two faces of the
hexahedron; one face defined by y= 6.9× 10−2mand the other one by x=−4.57× 10−2m. For both 2Dand3D
settings, we (i)define thematrixM so that only the y-component isfixed on∂ΩD and (ii) set themagnitude ofuD
equal to 10−6m.

The forwardmodeling setting is implemented using Finite ElementsMethod via theMATLAB toolbox
pdetool.We use the built-in commandgenerateMesh to produce ameshwith 40 692 and 47 646 elements
in 2D and 3D, respectively. The 2Dmesh that we use is too fine to be visualised but the 3Dmesh thatwe use is
displayed in the supplementarymaterial. As discussed in appendix A.1, stiffness properties (loss and storage
modulus) are produced on regular grids with 100× 100 and 70× 70× 30 cells for the 2D and 3D case,
respectively. Hence, the resolution of the images of stiffness properties that we produce in 2D and 3D are
1.2 mm× 1.2 mmand 1.97 mm× 1.36 mm× 1 mm, respectively. These properties are then interpolated on
themesh computed bygenerateMesh to compute displacements viapdetool. It is important to emphasize
that the resolution used for the stiffness properties is not the same as the resolution of the (synthethic)MRE
displacement data that we generate for our experiments (see below).

4.2. 2DExperiment
Infigure 3we plot the ‘ground truth’fields for the storage, †Gs , and lossmodulus, †Gl , for our experiments. The
diseased region consists of two randomly distorted diskswithin the cortex. The (log) storage/lossmodulus
within each region areGaussian RFs that we producewith the procedure outlined in section 3.1. The specific
choice of parameters for theWhittle–Matern parameterisation (see appendix A) are shown in table 1. Themean
of the randomfield for each region (i.e.m in table 1)were chosen to approximate the biomechanical properties
of the kidney tissue types (medulla and cortex) and cysts alongwith the background tissue surrounding the
kidney in the human body. Additional parameters (e.g. length scales variance and smoothness) have been chosen
in order to add a realistic degree of the spatial variability to stiffness properties of anatomical regions of the
kidney.

To generate synthetic data, we use †Gs and
†Gl to solve the forwardmodel with the settings described in

section 4.1. The displacement fields, denoted byu† are evaluated on a regular gridwithM= 80× 80= 6400
equally distributed points. Therefore, the resolution of the syntheticMREdata for the 2D case is
1.5 mm× 1.5 mm. Following the notation from section 2.1, ( )† † †= ¼u uu , ,M M1 corresponds to the noise-free
predictions of the forwardmodel for the ground truth.We note that †uM comprises evaluation of the x
(horizontal) and y (vertical) components of real and imaginary parts of †uM . Synthetic datad† are obtained by
adding η†∼N(0,Σ) to †uM (see equation (3)). For simplicity we consider the case inwhichΣ is a diagonalmatrix
Σ= diag(Σ1,K,ΣM)which corresponds to the situationwhere observational errors are uncorrelated.
Furthermore, wemodel the variance of eachmeasurement via
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( ∣ ∣) ( ∣ { } { } ∣) ( )† † †a aS = + - = ¼= =u u u m Mmax min 1, , , 32m m m m
M

m m
M

1
2

2 1 1
2

whereα1 andα2 are parameters that we select to control the level of noise/measurement error that we add to our
synthetic data. Thefirst part of the error in the right-hand side of (32) enables us to specify noise as a percentage
of the noise-freemeasurements.With the second term,we control an additive error proportional to the
amplitude of the deformation.

In practical settings the parametersα1 andα2 can be informed by the precision of themeasurement device
(i.e. theMRI scanner) used.When these parameters are unknown, they can be included as part of the unknown
thatwewish to infer within the Bayesian framework (Gelman et al 2004). For simplicity, here we assume that
these parameters are known. For thefirst set of experiments we chooseα1= 0.025which corresponds to 2.5%of
noise (or SNR= 40) and a very smallα2= 5× 10−4 simply to avoid zero entries in the diagonal ofΣ.With these
choices ofmeasurement error, the horizontal and vertical components of the real part (denoted by dre

x and dre
y )

aswell as the imaginary part (dim
x and dim

y ) of the synthetic datad† are displayed infigure 4.
The selection of the prior for the parameterΘ that we infer via the EKI algorithm is discussed in appendix B,

wherewe also look at how to select this prior in practical settings.We use (24) tomap prior samples fromΘ into
samples for the prior on the storage and lossmodulus (Gs,Gl) and show the plot of a few representative samples
in the top and top-middle rows offigure 5. A few prior samples for the lossmodulus are presented in the
supplementarymaterial. For the sake of validation, we have selected the prior onΘ in such away that the
corresponding prior samples for (Gs,Gl) display a very large degree of variability and, hence, uncertainty in the

Figure 3.Comparing the ground truth (left)with prior (centre) and posterior (right)means for storage (top), †Gs [kPa] and loss
(bottom)modulus, †Gl [kPa].

Table 1.Parameters for theWhittle–Matern parameterisation of each †
a bGlog ,

(loss:α = l, storage:α = s) defined on each region, i.e. background (β = b), cortex
(β = c), medulla (β = m) and disease (β = d).

α β

σ

[log (Pa)] m [kPa] Lx [m] Ly [m] ζ

s b 0.04 3.8 1.2 × 10−2 1.2 × 10−2 2

s c 0.1 1.6 1.8 × 10−2 1.8 × 10−2 2

s m 0.05 2.5 4.2 × 10−3 1.2 × 10−2 2

s d 0.2 0.212 1.2 × 10−2 6.0 × 10−3 2

l b 0.02 2.2 1.2 × 10−2 1.2 × 10−2 2

l c 0.03 1.8 1.8 × 10−2 1.8 × 10−2 2

l m 0.015 2.8 4.2 × 10−3 1.2 × 10−2 2

l d 0.035 3.25 1.2 × 10−2 6.0 × 10−3 2
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values of the storage/lossmodulus of each region. Importantly, our aim is to include as little prior information
as possible of the true storage/loss in order to validate the capability of EKI to capture the true valueswithin the
posterior uncertaintymeasures. Similarly, our prior accounts for a substantial range of scenarios for the
presence of disease. Indeed, figure 5 shows that the prior include samples inwhich the disease region has various
random shapes and locations aswell as samples without disease.

Using an ensemble size of J= 104 samples from the prior, we compute themean and the variance for the
loss/storagemodules via (26). The priormeans for the loss/storagemodulus are shown in themiddle panels of
figure 3. The log of the prior variance for loss and storage are shown in the top-left and top-middle offigure 6.
Using (28)we compute the (prior) probability of a presence of disease at any given point (x, y). The
corresponding probabilitymap is shown in the top-right panel offigure 6wherewe see that our prior
assumption is that, in average (from all samples), no disease is present.

We apply the EKI framework from algorithm1 using synthetic data, the prior ensemble (with J= 104

particles), and covarianceΣ as described earlier. Convergence is achieved after 7 iterations. Some of the
posterior samples for the storage are shown in themiddle-bottom and bottom rows offigure 5. Some posterior
samples for the lossmodulus are displayed in the supplementarymaterial.We can visually appreciate that these
posterior samples have all similarmean storage/lossmodulus to that of the true storage/loss (seefigure 3). There
is, however, some noticeable differencesmainly in the disease region displayed on each of these posterior
samples.While all capture well the true disease region (see figure 3), some display a disease region in the upper-
left area of the cortexwhich does not appear in the true storage/loss. Nonetheless, the posteriormean and
variance, displayed in the right panels offigure 3, reveal that algorithm 1 recovered the kidney properties very
accurately. The posteriormeans for the storage and loss provide very good estimates of the true storage and loss,
respectively (see left panels offigure 3).Moreover, formost regionswithin the domain, the posterior variances
for storage/loss are substantially smaller than those of the prior. The higher posterior variance around tissue
boundariesmeans that there is a larger uncertainty in recovery of the properties near the boundaries and of the
boundaries themselves. Also, the higher variance in the upper-left section of the cortex is consistent with the
small disease region that some of the posterior samples showwithin this area of the kidney.

The posterior diseased tissue probability, given in the bottom-right panel offigure 6, shows remarkably
accurate prediction of the true disease regionwithin the high posterior probability area predicted by the EKI
algorithm.Note that the disease region in the upper-left of the cortex that is shown in some of the samples, but
that is not present in the true storage/loss, has only very low posterior probability values.

Figure 4. Synthetic displacementsmeasurements [μm] computed using the ground truth ( )† †G G,s l .
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Figure 7 shows the graph of the true storagemodulus computed for (x, y)äΩwithfixed y= 0.065 m.We
superimpose the graph of themean aswell as the%95 credible interval (CI) computed using the prior samples.
We can see that whilemost of the true values are containedwithin the prior CI, there is substantial amount of
prior uncertainty in the storagemodulus. In contrast, the corresponding posterior CI computed using the EKI
samples (right panel offigure 7) is concentrated around the true values.Moreover, the posteriormean provides a
very good approximation to the truth as themiddle-top panel offigure 3 already confirmed. In addition, in the
right panel offigure 7we have highlighted (in yellow) the area corresponding to the presence of the disease
region.We recall that this region appears within the cortex. Although there is no knowledge of the presence of
the disease region (cyst)within the prior values of storagemodulus assigned to the cortex, we can observe that
the level-set parameterisation is able to reconstruct, within the posterior CI, the sharp interface between the
values of healthy cortex and those for the disease region. This showcases the advantages of the proposed EKI-
based approachwith respect to the existing approaches that often produce overly-smoothed stiffness properties
with nowell-defined boundaries between healthy and diseased tissue.

While themain focus of this paper is to infer spatial variability of the storage and lossmodulus (i.e.Gα,β)
within each sub-region ofΩ, it is useful to estimate the average/mean values of each of these properties. As
discussed in appendix A, the average values of theGα,βʼs are among the set of parameters comprised inΘwhich
we infer via the EKI algorithm.Wehave selected uniformpriors on these values (see appendix B) onwide
intervals that contain the corresponding average values for the storage/lossmodulus of the ground truth (see
values ofm in table 1). The posterior distribution for each of these values is one of the direct outcomes of the EKI

Figure 5. First and second rows: prior samples for the storagemodulus [log (kPa)]. Third and fourth rows: posterior samples for the
storagemodulus [log (kPa)].
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algorithm. Infigure 8we plot the prior (dashed red) and posterior (dash-dotted blue) densities (here the
posterior is approximated from samples viaksdensity inMATLAB) as well as the corresponding value of the
ground truth (shown as a vertical solid line).We observe how from auniform (uninformed)prior, the posterior
produces Gaussian approximations concentrated around the truth. Inmost cases the truth is capturedwell
within the posterior and in other cases the truth is on the tail of these posteriors.

In the supplementarymaterialwe study the effect of the ensemble size, J, as well as the level ofmeasurements
error/noise on the uncertaintymeasures that we compute using the EKI algorithm. In particular, we investigate
the use of different choices of the parametersα1 andα2 in (32).

4.3. 3D experiments
In this section, we demonstrate the capabilities of EKI for inferring stiffness properties in the 3D forwardmodel
implemented as described in section 4.1. As for the 2D case, we assume that the kidney consists of cortex and

Figure 6.Top-left: prior (log) variance for the storagemodulus [log (kPa2)]. Top-middle: Prior (log) variance for the lossmodulus [log
(kPa2)]. Bottom-left: posterior (log) variance for the storagemodulus [log (kPa2)]. Top-middle: posterior (log) variance for the loss
modulus [log (kPa2)]. Top-right: prior probability for the disease region. Top-right: posterior probability for the disease region.

Figure 7. Left: Slice (at y = 0.065 m) of the graph of the true storage (red), priormean (dotted black) and prior 95% credible intervals
(shaded region). Right: slice (at y = 0.065 m) of the graph of the true storage (red), posteriormean (dotted black) and posterior 95%
credible intervals (shaded region). The area highlighted in yellow corresponds to the location of the disease region.
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medulla that is immersed in a host/backgroundmedia or tissue.We also assume that these regions are known
and have the geometry shown infigure 9which is obtained from an in vivoMR imaging of the kidney of a healthy
volunteer, with signal thresholding performed to segment themedulla and cortex of the kidney. The ground
truth for the storage and lossmodulus are given on the top andmiddle-bottompanels offigure 10. These are,
again, GaussianRFs that we produce as described in section 3.1with parameters specified in appendix B and
implemented as discussed in appendix A.1.We have added twodisconnected regionswithin the cortex of the
kidneywith anomalous values corresponding cystic lesions. Two views of these cystic regions are given in red at
the top panels offigure 11.We have defined a sharp discontinuity in the storage values between the cyst and

Figure 8.Prior (dashed red) and posterior (dash-dotted blue)densities (dimensionless) for the loss (top) and storage (bottom)
modulus on each of the sub-regions ofΩ. The corresponding value of the ground truth is shown as a vertical solid line.

Figure 9. 3DExperiments. Setting for the known kidney geometry.
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cortex regions. Note, the small dark blue region at the boundary of the cyst is simply an artifact from the
interpolation employed for the visualisation tool.

We use the ground truth for the storage and loss, suitably interpolated on thepdetool-generated 3Dmesh
(tetrahedral elements), to produce displacements by solving equation (1) in the 3Ddomain.Note that for this

Figure 10.Top: true storagemodulus [kPa]. Top-middle: posteriormean for the storagemodulus [kPa].Middle-bottom: true loss
modulus [kPa]. Bottom: posteriormean for the lossmodulus [kPa].
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case, the complex displacement field, †uM , has three components which are all used for the inversion. For

simplicity, we use the nodes of thepdetool 3Dmesh as the evaluation points, { } =xm m
M

1, for these
displacements. Synthetic datad† are computed by addingGaussian noise to the displacements as described for
the 2D case.We consider only the case with relatively smallmeasurement errors and sowe employα1= 0.025
andα2= 5× 10−4 in (32). Sincewe use a non-uniformmeshwith tetrahedral elements, we report the resolution
of the syntheticMREdata in terms of the lengths of the shortest (2 mm) and longest (4 mm) edges in themesh.

The choice of priors is done analogous to that of the 2D case (see also appendix B). Some prior samples for
the storage are shown in the supplementarymaterial, where, as for the 2D case, we note that our choice of prior
yields a large degree of variability across samples, not only in terms of storage/lossmodulus values but also in the
shape and location of the disease region.

For the 3D case, the computational cost of each evaluation of the parameter-to-outputmap is substantially
larger than for the 2D setting in the previous experiments. Even thoughwe employ a relatively coarse finite
element approximation, with approximately 47 000 elements compared to the 40 000 used in 2D, for solving the
forwardmodel (equation (1)), the parametrisation,  , which involves solving additional PDEs (see
equation (A1), from appendix A) requires a larger resolution that, in turn, increases the overall computational
cost of EKI. As discussed in appendix A.1, we use 104 cells for the numerical approximation of the
parameterisation in 2Dwhile 147 000 cells are employed for the 3D case. Due to the increased computational
cost of each run of the parameter-to-outputmap, we consider only an ensemble of J= 2500 particles. Our

Figure 11.Top: views of the location of the true cystic region (in red). Bottom: the region (in red) for which the posterior probability
within the cyst is greater than 90%.
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experiments in section 4.2 (see also supplementarymaterial) provided evidence that with such an ensemble size,
the EKI algorithmproduces robust and reliable posterior estimates of uncertainty.

The plots of the posteriormeans for storage and loss that we obtain via EKI are displayed at the top-middle
and bottompanels offigure 10. The corresponding posterior variances are shown infigure 12. Similar to the 2D
experiments we note that higher uncertainty (variance) is obtained at the boundary of the cystic region.

In the bottompanels offigure 11we show the regions (in red) that corresponds to the volumes inwhich the
posterior probability (computed via (28)) is greater than 90%.While the posteriormean shows a very good
approximation to the values and variability of the storage/lossmodulus, the disease regionwas also inferred
accurately. It is quite remarkable how the EKI algorithm is able to capture the true location of the cyst within the
region of high posterior probability (see bottompanelsfigure 11).

It is worth noticing that the variance of the small cyst is larger (see figure 12) than that of the small cyst in the
2D example (see figure 6). This explains why the size of the region of high probability corresponding to this cyst
is smaller than the true (small) cyst (see figure 11). A possible reason for the larger uncertainty in the 3D case is
that for each slicewe employed, due to the computational burden of the 3D case, a lower resolution (70× 70)
compared to the resolution used for the 2D examples (100× 100).

Despite the reconstructions results from this section expect the 2D results to bemore accurate than the 3D
case because each slice of the 3D set has a lower resolution than the single slice used in the 2D example. However,
it appears that the posteriormean estimates of the cyst (see figure 10) seem to capture the size of the cyst very
accurately and quite similar to those in the 2D case. But, there is larger uncertainty in the 3D estimates which
explains why the regionwith probability greater than 90% is smaller than the true cyst.

5. Conclusions

Anew and powerfulmethod forMRE inversion has been introduced based on the EKI algorithm that uses RFs to
accurately characterise spatially varying storage/lossmodulus. In contrast to existing iterative approaches which
often yield overly-smoothed elastograms, the EKI algorithm is equippedwith a level-set parameterisation that
allows the accurate inference of sharp interfaces between healthy and diseased tissue. Furthermore, EKI does not
require differentiation of datawhich, due to the amplification of imaging-related noise, can lead to artifacts
which are detrimental to the diagnostic capabilities ofMRE. In addition, uncertainty of the reconstructed
material properties can be quantified thanks to the probabilistic nature of themethod. Since the forward
viscoelasticmodel is encodedwithin the EKI algorithmonly in a black box fashion, it can be easilymodified to
accommodate anymaterial constitutivemodel (e.g. in a futurework poroelasticmaterials could be explored).
Also, the illustrative experiments shown here represent kidneyMREdata but EKI could equally well be used for
any other application such as brain or liver. Here themethod has been shown to detect a renal cyst, but such
uncertaintymeasures could be used by clinical practitioners to accurately compute and assess diseasemargins

Figure 12. Log of the posterior variance for the loss (left) and storage (right)modulus.
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such as for cancer, e.g. tumours in the kidney. Also, the accurate assessment of tumourmargins is important for
many organs, e.g. prostate, in terms of prognosis and determining the likelihood of secondary disease outside of
the primary site, and for brain tumours where the precise location of diseasemargins is important for surgery
planning.While prior information on anatomical zones of the cortex andmedulla as informed by non-
elastography-basedMRI data (e.g. T1- or T2-weighted imaging) is included in thismethodology, the
methodology can also be used in organswithout such anatomical definitions. For example, the liver does not
have such anatomical boundaries, but liver fibrosis can be found by thismethod to high accuracy andwithout
prior information. The precise location and extent of liver fibrosis are important when staging the progression of
disease or therapy response, and also for biopsy planning.

While thework presented demonstrates an initial exploration of themethodology with simulated data, it
convincingly represents the ready applicability of the technique to real acquired 3DMREdata. The application
of EKIwith acquired datawould require the use ofmeasured displacements as boundary conditions for the
forwardmodel which herewe prescribed for the sake of illustration.However, when boundary conditions are
also subject to noise, the EKI framework can be extended to incorporate these uncertainties within the inversion
algorithm (Iglesias et al 2018). Finally, additional sources ofmodeling errors are likely to arise when dealingwith
realistic settings. Fortunately, the Bayesian setting inwhich the EKI algorithm is derived, enable us to account,
and possibly infer those errors within the inversionmethodology (Calvetti et al 2018).

Further validation of the proposedmethod should be performedwith real data obtained under control
conditions, i.e. where a ground truth can bewell defined (e.g. using gel phantoms). Such experiments will allow
us to compare outcomes of the EKI algorithmobtained based on real data and on simulated data related to the
used experimental set-up. This comparisonwould enable us to establish (and possibly incorporate within the
inversion) additional sources of uncertainties arising from inherent errors in themodels that are used to describe
MREdata. Experiments with real acquired data are also needed to further validate, potentially improve or even
reformulate ourmodeling assumptions. Indeed, recall that our inversion framework comprises numerous
assumptions on the (i) the forward (visco-elastic)model, (ii) the random field characterisation of stiffness
properties combinedwith the level-set parameterisation of diseased tissue, and (iii) the priors that we have
selected for the parameters within those parameterisations. If it will be required, alternative characterisations of
stiffness properties and/or other type of edge-preserving (e.g. total variation) priors could be usedwithin the
Bayesian setting.Having real data from controlled experiments would enable us to compare, e.g. via Bayesian
model comparison techniques (Gelman et al 2004), themodeling assumptions that best explain the data and
thus themodeling settings that provide uswith an accurateMRE characterisation of the elastic properties of
biological tissue.
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AppendixA.Whittle–Matern parameterisations

In this appendixwe introduce themapping WM that we use in (19) to parameterise the level-set function f (that
determines the cyst region), as well as the storage and lossmodulus,Gs,β andGl,β ( { }b Î = b c m t, , , ), for
each constituent of the geometry under consideration.

Let us consider first the 3D case (d= 3). Forfixedαä {s, l} and b Î , we define the function (random
field) ( )a bG xlog , as a solution of the fractional stochastic PDE:
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where I is the identity operator,Γ is the gamma function andω(x) is a (generalised) random function.
Furthermore, ζ is a parameter that controls the smoothness of the function a bGlog , ,σ is an amplitude scale,

mlog is themean value of a bGlog , , and Lx, Ly and Lz are (positive)numbers that describe intrinsic length-scales
along the x, y and z directions, respectively. In (A1) ( )L L Ldiag , ,x y z

2 2 2 denotes a 3× 3 diagonalmatrix with the

vector ( )L L L, ,x y z
2 2 2 on its diagonal.

For the case d= 2, in equation (A1)we replace thematrix ( )L L Ldiag , ,x y z
2 2 2 with ( )L Ldiag ,x y

2 2 and the
product LxLyLzwith LxLy.

After we define appropriate boundary conditions for (A1), we can solve this PDE problem tofind ( )a bG xlog ,

provided the following input parameters are specified:

( ) ( )s z wQ ºa b m L L L, , , , , , . A2x y z,

In otherwords, equation (A1) (together with suitable boundary conditions)defines themapping WM :

( ) ( )Q Q =a b a b a bGlog . A3WM
, , ,

Note that all the terms in the right-hand side of (A2) should be labeled to reflect the particular choice ofα andβ.
While such a labeling is omitted for clarity in the notation, we shall understand that every function ( )a bG xlog , is
parameterised by a unique set of inputs comprised inΘα,β. The selection of these parameters is discussed in
appendix B.

Themotivation for using the parameterisation (A3) stems from thework of Lindgren et al (2011). They
showed that ifω(x) is aGaussianwhite noise, then the function ( )a bG xlog , is aGaussian RFwithmean mlog
and covariance operatorwithMatern auto-correlation function (Matérn 1986, Stein 1999, Lasanen et al 2014):
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Alternativemethods to the SPDE formulation in (A1) can be used to represent Gaussian RFs. For example,
one can represent such fields in terms of their Karhunen–Loeve expansion. However, the advantage of our
formulation is that it enables us to easily include hyperparameters, such as the intrinsic length scales, within the
EKI framework. Inferring these parameters have been shown to be essential for the accurate inference of physical
properties within the Bayesian framework (Dunlop et al 2017,Matveev et al 2021).

Althoughwe introduce the parameterisation in terms of the functions a bGlog , , the same parameterisation is
employed for the level-set function f as indicated in (19).

A.1. Numerical implementation
Weconsider only the case inwhich the smoothness parameter, ζ, is a positive even integer so that (A1) can be
computed using standard numericalmethods as proposed in Lindgren et al (2011). To this end, we use a bespoke
MATLAB implementation of the cell-centered finite differencemethod (Russell andWheeler 1983).We employ
regular grids of 100× 100 and 70× 70× 30 cells for the examples in 2D and 3D, respectively.We use Robin
boundary conditions which have been shown in Lasanen et al (2014) to be optimal in terms of reducing
boundary effects. For a given set of inputsΘ, we use our numerical implementation of (A1) to compute
numerical approximations of functions a bGlog , ʼs and f (i.e. this corresponds to the numerical approximation of

( )QWM ). The next step is to compute the storage/lossmodulus over the entire domainΩ. This is done via the
mapping (see equation (18))which is defined via equation (16). Even though our implementation of (A1)
computes eachGα,β over the entire domainΩ, we recall that only the values ofGα,β on the corresponding region
of the tissue are utilised (e.g.Gs,c is used only for the cortex). Once the storage and lossmodulus ( ) ( )Q=G G,s l 
have been numerically approximated (for a givenΘ) on our regular grid inwhich (A1)was solved, we proceed to
interpolate these functions on the finite element grid that we then use for solving (1) as discussed in section 4.1.

A.2. Fixed parameters
For simplicity, for each choice ofα andβwe keep the amplitude scale,σ, and the smoothness parameter, ζ,
constant. Thismeans thatwe leave these out of the inference schemewhile we focus on inferring length scales Lx,
Ly, Lz aswell asω(x) andm. The values that we use forσ corresponding to theΘα,βʼs are shown in table B1. These
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σʼs are selected so that the values of the (prior) random samples of storage and lossmodulus (obtained by
exponentiation of (A3)) belong to a reasonable and physically-consistent range. Accordingly, we choose the
smoothness parameter ζ so that these samples exhibit a realistic amount of spatial variability.Wefind that the
value ζ= 2 results in samples of reasonably smooth (e.g. at least continuous) functions (see top panels of
figure 2). This level of smoothness is suitable to reflect the fact that, within the same tissue type, the stiffness
properties are not expected to drastically change unless there is a cyst/anomaly (whichwe characterise as a
separate region via the level-set function). For the level set function, f, we chooseσ= 1 and ζ= 4which, together
with our selection of thresholdκ= 1.75, yieldκ-levels that provide (visually)well-defined interfaces between
normal and diseased regions (seemiddle and right panels offigure 1).

Appendix B. The prior

As discussed in section 3.2, the proposed EKI approach forMRE consists of inferring, within the Bayesian
framework, the parametersΘα,β ( { }a bÎ Îs l, , ) andΘfwhich characterise, via the parameterisation WM
introduced in appendix A (see (19)), the storage/lossmodulus aswell as the level-set function that determines
the cystic region.We also recall that within the Bayesian frameworkwe need to specify a prior distribution,

( )Q , on those parameters which are comprised inΘ (see equation (20)). This prior is crucial for EKI as the
initial ensemble in algorithm1 consists of samples from this prior.

Let us assume that, under the prior, all the parameters comprised inΘ are independent so that

( ) ( ) ( ) ( ) ( ) Q Q Q Q=
b

b
b

b
Î Î

    . B1s l s, ,
 

We recall that each of theΘα,βʼs as well asΘshave the form given in (A2) but excludingσ and ζwhich are fixed
(sowe leave themout from the inference algorithm). For the sake of exposition, we focus only onΘα,β and
defineΘf by analogy.We use the following assumption of independence:

( ) ( ) ( ) ( ) ( ) ( ) ( )wQ =a b     m L L L , B2x y z,

where ( ) m , ( ) L ,...x , denote the priors ofm, Lx,..., andwhere, again, for clarity in the notationwe have omitted
the dependence on (α,β) for each of the priors in the right hand side of (B2).We nowproceed to define each of
these priors.

For each of our parametersΘα,β andΘf the correspondingω is chosen to beGaussianwhite noise (wedenote
this by ( ) ( )w = N I0, ).We reiterate that with this choice ofω, thework of Lindgren et al (2011) ensures that
theWhittle–Matern parameterisation fromappendix A yields samples a bGlog , and f that areGaussianwith
Matern covariance andmean mlog . This implies that theGα,β are log-normal RFswithmeanm. The prior
distributions for themeanm associatedwith theGα,βʼs are displayed in table B1.With this selection of priors on
mwe ensure that the average values for the prior random samples of loss/storagemodulus belong to an
acceptable range that is consistent with the values of biological tissue corresponding to each anatomical regions.
For the sake of demonstration, herewe have usedwide (uninformative) uniformpriors. In practice, however, we
can use any available knowledge (i.e. fromprevious studies or literature) to design other type of prior
distribution (not necessarily uniform) that better alignswith our prior knowledge of the anatomical tissue under
consideration.

For all choices of (α,β)we select the same prior distribution for the length scales Lx, Ly and Lz.We consider
the following

( ) [ ] ( ) [ ]
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= =

=
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L U D D L U D D

L U D D

20, 4 , 20, 4 ,
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whereDx,Dy andDz are the lengths of the edges/faces of the rectangular/tetrahedral domain. This selection is
motivated by the known fact (e.g. see Lasanen et al 2014) that values of a sample of aGaussian RFs (withMatern
covariance given by (A4)) have a correlation of approximately 0.1 at a distance of ( )z -L d8 2x in the x-
direction.With the prior from (B3), such a distance (in the 2D casewith our choice ζ= 2) is between 0.14 and
0.7. This variability of the prior length scales will allow us to characterise stiffness properties that can varymore
quickly in one particular direction. These can be observed in the top-middle rowpanels of figure 6 in the
supplementarymaterial. Indeed, for some of those prior samples of the lossmodulus, the background region
displays very long correlations in only one direction.

21

Phys.Med. Biol. 67 (2022) 235003 M Iglesias et al



ORCID iDs

Marco Iglesias https://orcid.org/0000-0002-8952-717X

References

Alberty J, CarstensenC, Funken SA andKlose R 2002Matlab implementation of thefinite elementmethod in elasticityComputing 69
239–63

AmmariH, Seo J K andZhou L 2015Viscoelasticmodulus reconstruction using time harmonic vibrationsMath.Model. Anal. 20 836–51
Calvetti D,DunlopM, Somersalo E and Stuart A 2018 Iterative updating ofmodel error for Bayesian inversion Inverse Prob. 34 025008
ChadaNK, IglesiasMA, Roininen L and Stuart AM2018 Parameterizations for ensembleKalman inversion Inverse Prob. 34 055009
Ciarlet PG1988Mathematical Elasticity. Vol.1 ThreeDimensional Elasticity—Mathematical Elasticity (Amsterdam: Elsevier)
DoyleyMM2012Model-based elastography: a survey of approaches to the inverse elasticity problem Phys.Med. Biol. 57R35–73
DunlopMM,Helin T and Stuart AM2020Hyperparameter estimation in BayesianMAP estimation: parameterizations and consistency

SMAI J. Comput.Math. 6 69–100
DunlopMM, IglesiasMA and Stuart AM2017Hierarchical Bayesian level set inversion Stat. Comput. 27 1555–84
EnglH,HankeMandNeubauer A 1996Regularization of Inverse Problems vol 375 (Berlin: Springer)
FovargueD,NordslettenD and Sinkus R 2018 Stiffness reconstructionmethods forMR elastographyNMRBiomed. 31 e3935
FovargueD,NordslettenD and Sinkus R 2018 Stiffness reconstructionmethods forMR elastographyNMRBiomed. 31
GelmanA,Carlin J B, SternH S andRubinDB2004BayesianData Analysis 2nd edn (Boca Raton, FL: CRCPress)
HigashimoriN 2007 Identification of viscoelastic properties bymagnetic resonance elastography J. Physics: Confer. Ser. 73 012009
Hiscox LV, JohnsonCL, Barnhill E,McGarryMD,Huston J, vanBeek E J, Starr JM andRobertsN 2016Magnetic resonance elastography

(MRE) of the human brain: technique, findings and clinical applications Phys.Med. Biol. 61R401–37
HuL and ShanX 2020 Enhanced complex local frequency elastographymethod for tumor viscoelastic shearmodulus reconstruction

Comput.Methods Programs Biomed. 195 105605
IglesiasM, LuY and Stuart AM2016ABayesian level setmethod for geometric inverse problems Interfaces and Free Boundaries 18 181
IglesiasM, ParkMandTretyakovMV2018Bayesian inversion in resin transfermolding Inverse Prob. 34 105002
IglesiasM, Sawlan Z, ScavinoM,Tempone R andWoodC2018 Ensemble-marginalized Kalman filter for linear time-dependent PDEswith

noisy boundary conditions: application to heat transfer in buildingwalls Inverse Prob. 34 075008
IglesiasM andYang Y 2021Adaptive regularisation for ensemble Kalman inversion Inverse Prob. 37 025008
IglesiasMA2014 Iterative regularization for ensemble data assimilation in reservoirmodelsComput. Geosci. 19 177–212
IglesiasMA2016A regularizing iterative ensemble Kalmanmethod for PDE-constrained inverse problems Inverse Prob. 32 025002
IglesiasMA, LawK JH and Stuart AM2013The ensemble Kalman filter for inverse problems Inverse Prob. 29 045001
Jiang Y, FujiwaraH andNakamuraG2011Approximate steady statemodels formagnetic resonance elastography SIAM J. Appl.Math. 71

1965–89
Jiang Y, FujiwaraH andNakamuraG2020 Erratum for ‘approximate steady statemodels formagnetic resonance elastography’ SIAM J.

Appl.Math. 80 2001
Jiang Y andQian S-h 2020 Bayesian approach for recovering piecewise constant viscoelasticity fromMREdataActaMath. Appl. Sinica,

English Ser. 36 223–36
Kaipio J and Somersalo E 2005 Statistical andComputational Inverse Problems (Dordrecht: Springer)
Kennedy P,Macgregor L J, Barnhill E, JohnsonCL, PerrinsM,Hunter A, BrownC, van Beek E J R andRoberts N 2017MR elastography

measurement of the effect of passive warmupprior to eccentric exercise on thighmusclemechanical properties J.Magn. Reson.
Imaging 46 1115–27

Landau LD and Lifschitz EM1986Theory of Elasticity (Oxford: Pergamon)
Lasanen S,Huttunen JM J andRoininen L 2014Whittle–Matérn priors for Bayesian statistical inversionwith applications in electrical

impedance tomography Inverse Probl. Imaging 8 561–86
Li BN,ChuiCK,Ong SH,NumanoT,Washio T,HommaK, Chang S, Venkatesh S andKobayashi E 2012Modeling shearmodulus

distribution inmagnetic resonance elastographywith piecewise constant level setsMagn. Reson. Imaging 30 390–401
LiH, FléG, BhattM,QuZ,Ghazavi S, Yazdani L, BosioG, Rafati I andCloutier G 2021Viscoelasticity imaging of biological tissues and single

cells using shear wave propagation Front. Phys. 9 666192
Li S, ChenM,WangW, ZhaoW,Wang J, ZhaoX andZhouC 2011A feasibility study ofMR elastography in the diagnosis of prostate cancer

at 3.0TActa Radiol. 53 354–8
Lindgren F,Havard R and Lindström J 2011An explicit link betweenGaussian fields andGaussianMarkov randomfields: the stochastic

partial differential equation approach J. R. Statist. Soc.B 73 423–98

Table B1.Relevant prior information.U[a, b] denotes
the uniformdistribution on the interval [a, b].

α β σ [log (Pa)] ( ) m

s b 0.01 U[3.7 kPa, 4.6 kPa]
s c 0.03 U[0.9 kPa, 1.7 kPa]
s m 0.03 U[2.45 kPa, 3.8 kPa]
s d 0.1 U[0.15 kPa, 0.4 kPa]
l b 0.01 U[2.0 kPa, 2.9 kPa]
l c 0.03 U[1.1 kPa, 2.0 kPa]
l m 0.03 U[2.2 kPa, 2.9 kPa]
l d 0.01 U[3.1 kPa, 3.5 kPa]

22

Phys.Med. Biol. 67 (2022) 235003 M Iglesias et al

https://orcid.org/0000-0002-8952-717X
https://orcid.org/0000-0002-8952-717X
https://orcid.org/0000-0002-8952-717X
https://orcid.org/0000-0002-8952-717X
https://doi.org/10.1007/s00607-002-1459-8
https://doi.org/10.1007/s00607-002-1459-8
https://doi.org/10.1007/s00607-002-1459-8
https://doi.org/10.1007/s00607-002-1459-8
https://doi.org/10.3846/13926292.2015.1117531
https://doi.org/10.3846/13926292.2015.1117531
https://doi.org/10.3846/13926292.2015.1117531
https://doi.org/10.1088/1361-6420/aaa34d
https://doi.org/10.1088/1361-6420/aab6d9
https://doi.org/10.1088/0031-9155/57/3/R35
https://doi.org/10.1088/0031-9155/57/3/R35
https://doi.org/10.1088/0031-9155/57/3/R35
https://doi.org/10.5802/smai-jcm.62
https://doi.org/10.5802/smai-jcm.62
https://doi.org/10.5802/smai-jcm.62
https://doi.org/10.1007/s11222-016-9704-8
https://doi.org/10.1007/s11222-016-9704-8
https://doi.org/10.1007/s11222-016-9704-8
https://doi.org/10.1002/nbm.3935
https://doi.org/10.1002/nbm.3935
https://doi.org/10.1088/1742-6596/73/1/012009
https://doi.org/10.1088/0031-9155/61/24/R401
https://doi.org/10.1088/0031-9155/61/24/R401
https://doi.org/10.1088/0031-9155/61/24/R401
https://doi.org/10.1016/j.cmpb.2020.105605
https://doi.org/10.4171/IFB/362
https://doi.org/10.1088/1361-6420/aad1cc
https://doi.org/10.1088/1361-6420/aac224
https://doi.org/10.1088/1361-6420/abd29b
https://doi.org/10.1007/s10596-014-9456-5
https://doi.org/10.1007/s10596-014-9456-5
https://doi.org/10.1007/s10596-014-9456-5
https://doi.org/10.1088/0266-5611/32/2/025002
https://doi.org/10.1088/0266-5611/29/4/045001
https://doi.org/10.1137/100781882
https://doi.org/10.1137/100781882
https://doi.org/10.1137/100781882
https://doi.org/10.1137/100781882
https://doi.org/10.1137/20M1332062
https://doi.org/10.1007/s10255-020-0922-7
https://doi.org/10.1007/s10255-020-0922-7
https://doi.org/10.1007/s10255-020-0922-7
https://doi.org/10.1002/jmri.25642
https://doi.org/10.1002/jmri.25642
https://doi.org/10.1002/jmri.25642
https://doi.org/10.3934/ipi.2014.8.561
https://doi.org/10.3934/ipi.2014.8.561
https://doi.org/10.3934/ipi.2014.8.561
https://doi.org/10.1016/j.mri.2011.09.015
https://doi.org/10.1016/j.mri.2011.09.015
https://doi.org/10.1016/j.mri.2011.09.015
https://doi.org/10.3389/fphy.2021.666192
https://doi.org/10.1258/ar.2010.100276
https://doi.org/10.1258/ar.2010.100276
https://doi.org/10.1258/ar.2010.100276
https://doi.org/10.1111/j.1467-9868.2011.00777.x
https://doi.org/10.1111/j.1467-9868.2011.00777.x
https://doi.org/10.1111/j.1467-9868.2011.00777.x


ManducaA,Muthupillai R, RossmanP J, Greenleaf J F andEhmanRL 1996Visualization of tissue elasticity bymagnetic resonance
elastographyVisualization in Biomedical Computing edKHHöhne andRKikinis (Berlin, Heidelberg: Springer BerlinHeidelberg)
pp 63–8

ManducaA,Oliphant TE,DresnerMA,Mahowald J L, Kruse SA, Amromin E, Felmlee J P, Greenleaf J F and EhmanRL 2001Magnetic
resonance elastography: non-invasivemapping of tissue elasticityMed. Image Anal. 5 237–54

Marinelli J P, LevinDL, Vassallo R, Carter R E,Hubmayr RD, EhmanRL andMcGeeKP 2017Quantitative assessment of lung stiffness in
patients with interstitial lung disease usingMR elastography J.Magn. Reson. Imaging 46 365–74

Matérn B 1986 Spatial Variation, LectureNotes in Statistics, No. 36 (Berlin: Springer)
MathewRP andVenkatesh SK 2018 Imaging of hepatic fibrosisCurr. Gastroenterol. Rep. 20 45
MatveevMY, Endruweit A, LongAC, IglesiasMA andTretyakovMV2021Bayesian inversion algorithm for estimating local variations in

permeability and porosity of reinforcements using experimental dataCompositesA 143 106323
McGarryM, JohnsonCL, Sutton B P, VanHouten EEW,Georgiadis J G,Weaver J B and PaulsenKD2013 Including spatial information in

nonlinear inversionMR elastography using soft prior regularization IEEETrans.Med. Imaging 32 1901–9
McGarryM,VanHouten EEW, Solamen L, Gordon-Wylie S,Weaver J and PaulsenKD2019Uniqueness of poroelastic and viscoelastic

nonlinear inversionMR elastography at low frequencies Phys.Med. Biol. 64 075006
McGrathDM2018Magnetic resonance elastographyBiomechanics of Soft Tissues: Principles and Applications ed AAlMayah (Boca Raton:

CRCPress) pp 55–94
McGrathDM, FoltzWD,Al-MayahA,NiuC J andBrockKK2012Quasi-staticmagnetic resonance elastography at 7 T tomeasure the

effect of pathology before and after fixation on tissue biomechanical propertiesMagn. Reson.Med. 68 152–65
MohammadiN,DoyleyMMandCetinM2021 Finite element reconstruction of stiffness images inMR elastography using statistical

physical forwardmodeling and proximal optimizationmethods 2021 IEEE 18th Int. Symp. on Biomedical Imaging (ISBI) pp 200–3
Muthupillai R, LomasD J, RossmanP J, Greenleaf J F,Manduca A and EhmanRL 1995Magnetic resonance elastography by direct

visualization of propagating acoustic strainwaves Science 269 1854–7
NapoliME,Goswami S,McAleavey S A,DoyleyMMandHoward TM2021 Enabling quantitative robot-assisted compressional

elastography via the extendedKalman filterPhys.Med. Biol. 66 225014
Papazoglou S,HamhaberU, Braun J and Sack I 2008AlgebraicHelmholtz inversion in planarmagnetic resonance elastography Phys.Med.

Biol. 53 3147–58
Russell T andWheelerM1983 Finite element and finite differencemethods for continuous flows in porousmediaTheMathematics of

Reservoir Simulation edREEwing (Philadelphia, PA: SIAM) pp 35–106
SakaiN, Takehara Y, Yamashita S, OhishiN, KawajiH, SameshimaT, Baba S, SakaharaH andNambaH2016 Shear stiffness of 4 common

intracranial tumorsmeasured usingMRelastography: Comparisonwith intraoperative consistency gradingAm. J. Neuroradiol. 37
1851–9

SimonLD, IglesiasM, Jones B andWoodC2018Quantifying uncertainty in thermophysical properties of walls bymeans of bayesian
inversionEnergy Build. 177 220–45

Singh S et al 2015Diagnostic performance ofmagnetic resonance elastography in staging liver fibrosis: a systematic review andmeta-analysis
of individual participant dataClin. Gastroenterol. Hepatol. 13 440–51

Sinkus R, Lorenzen J, SchraderD, LorenzenM,DargatzM andHolzD 2000High-resolution tensorMR elastography for breast tumour
detection Phys.Med. Biol. 45 1649–64

Sinkus R, TanterM,Xydeas T, Catheline S, Bercoff J and FinkM2005Viscoelastic shear properties of in vivo breast lesionsmeasured byMR
elastographyMagn. Reson. Imaging 23 159–65

SteinML 1999 Interpolation of Spatial Data: SomeTheory for Kriging (Berlin: Springer)
Stuart A 2010 Inverse problems: a Bayesian perspectiveActaNumer. 19 451–559
TsoC-HM, IglesiasM,Wilkinson P,KurasO, Chambers J and Binley A 2021 Efficientmultiscale imaging of subsurface resistivity with

uncertainty quantification using ensemble Kalman inversionGeophys. J. Int. 225 887–905
VanHouten EEW, PaulsenKD,MigaM I, Kennedy F E andWeaver J B 1999An overlapping subzone technique forMR-based elastic

property reconstructionMagn. Reson.Med. 42 779–86
Venkatesh SK, YinMandEhmanRL 2013Magnetic resonance elastography of liver: technique, analysis, and clinical applications J.Magn.

Reson. Imaging 37 544–55
Venkatesh SK, YinM,Glockner J F, TakahashiN, Araoz PA, Talwalkar J A and EhmanRL 2008MRelastography of liver tumors:

preliminary resultsAmer. J. Roent. 190 1534–40
YinM, Talwalkar J A, Glaser K J,Manduca A,GrimmRC, RossmanP J, Fidler J L and EhmanRL 2007Assessment of hepatic fibrosis with

magnetic resonance elastographyClin. Gastroenterol. Hepatol. 5 1207–13
Zhang Y,Oberai AA, Barbone P E andHarari I 2012 Solution of the time-harmonic viscoelastic inverse problemwith interior data in two

dimensions Int. J. Numer.Methods Eng. 92 1100–16

23

Phys.Med. Biol. 67 (2022) 235003 M Iglesias et al

https://doi.org/10.1016/S1361-8415(00)00039-6
https://doi.org/10.1016/S1361-8415(00)00039-6
https://doi.org/10.1016/S1361-8415(00)00039-6
https://doi.org/10.1002/jmri.25579
https://doi.org/10.1002/jmri.25579
https://doi.org/10.1002/jmri.25579
https://doi.org/10.1007/s11894-018-0652-7
https://doi.org/10.1016/j.compositesa.2021.106323
https://doi.org/10.1109/TMI.2013.2268978
https://doi.org/10.1109/TMI.2013.2268978
https://doi.org/10.1109/TMI.2013.2268978
https://doi.org/10.1088/1361-6560/ab0a7d
https://doi.org/10.1002/mrm.23223
https://doi.org/10.1002/mrm.23223
https://doi.org/10.1002/mrm.23223
https://doi.org/10.1126/science.7569924
https://doi.org/10.1126/science.7569924
https://doi.org/10.1126/science.7569924
https://doi.org/10.1088/1361-6560/ac34b0
https://doi.org/10.1088/0031-9155/53/12/005
https://doi.org/10.1088/0031-9155/53/12/005
https://doi.org/10.1088/0031-9155/53/12/005
https://doi.org/10.3174/ajnr.A4832
https://doi.org/10.3174/ajnr.A4832
https://doi.org/10.3174/ajnr.A4832
https://doi.org/10.3174/ajnr.A4832
https://doi.org/10.1016/j.enbuild.2018.06.045
https://doi.org/10.1016/j.enbuild.2018.06.045
https://doi.org/10.1016/j.enbuild.2018.06.045
https://doi.org/10.1016/j.cgh.2014.09.046
https://doi.org/10.1016/j.cgh.2014.09.046
https://doi.org/10.1016/j.cgh.2014.09.046
https://doi.org/10.1088/0031-9155/45/6/317
https://doi.org/10.1088/0031-9155/45/6/317
https://doi.org/10.1088/0031-9155/45/6/317
https://doi.org/10.1016/j.mri.2004.11.060
https://doi.org/10.1016/j.mri.2004.11.060
https://doi.org/10.1016/j.mri.2004.11.060
https://doi.org/10.1017/S0962492910000061
https://doi.org/10.1017/S0962492910000061
https://doi.org/10.1017/S0962492910000061
https://doi.org/10.1093/gji/ggab013
https://doi.org/10.1093/gji/ggab013
https://doi.org/10.1093/gji/ggab013
https://doi.org/10.1002/(SICI)1522-2594(199910)42:4<779::AID-MRM21>3.0.CO;2-Z
https://doi.org/10.1002/(SICI)1522-2594(199910)42:4<779::AID-MRM21>3.0.CO;2-Z
https://doi.org/10.1002/(SICI)1522-2594(199910)42:4<779::AID-MRM21>3.0.CO;2-Z
https://doi.org/10.1002/jmri.23731
https://doi.org/10.1002/jmri.23731
https://doi.org/10.1002/jmri.23731
https://doi.org/10.2214/AJR.07.3123
https://doi.org/10.2214/AJR.07.3123
https://doi.org/10.2214/AJR.07.3123
https://doi.org/10.1016/j.cgh.2007.06.012
https://doi.org/10.1016/j.cgh.2007.06.012
https://doi.org/10.1016/j.cgh.2007.06.012
https://doi.org/10.1002/nme.4372
https://doi.org/10.1002/nme.4372
https://doi.org/10.1002/nme.4372

	1. Introduction
	2. Bayesian reconstruction of stiffness properties
	2.1. Forward and inverse problems for MRE
	2.2. Existing inversion approaches
	2.3. The Bayesian approach

	3. Parameterisation of the Bayesian inverse problem
	3.1. Parameterisation of stiffness properties
	3.2. The re-parameterised inverse problem
	3.3. Measures of uncertainty

	4. Numerical experiments
	4.1. Forward modelling settings
	4.2.2D Experiment
	4.3.3D experiments

	5. Conclusions
	Acknowledgments
	Ethical statement
	Appendix A.
	A.1. Numerical implementation
	A.2. Fixed parameters

	Appendix B.
	References



