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Abstract

Magnetic resonance elastography (MRE) is an MRI-based diagnostic method for measuring
mechanical properties of biological tissues. MRE measurements are processed by an inversion
algorithm to produce a map of the biomechanical properties. In this paper a new and powerful
method (ensemble Kalman inversion with level sets (EKI)) of MRE inversion is proposed and tested.
The method has critical advantages: material property variation at disease boundaries can be
accurately identified, and uncertainty of the reconstructed material properties can be evaluated by
consequence of the probabilistic nature of the method. EKI is tested in 2D and 3D experiments with
synthetic MRE data of the human kidney. It is demonstrated that the proposed inversion method is
accurate and fast.

1. Introduction

Magnetic resonance elastography (MRE) McGrath (2018) is an MRI-based diagnostic method used to measure
mechanical properties of biological tissues. Changes in these properties, in particular elasticity, can be associated
with disease such as cancer (Sinkus et al 2000, Venkatesh et al 2008, Li et al 2011, Sakai et al 2016) and fibrosis
(Yin et al 2007, Singh et al 2015). The two main classes of MRE are dynamic or harmonic (Muthupillai et al
1995), and static or ‘quasi-static’ methods (McGrath et al 2012). In dynamic MRE mechanical waves are
produced in the tissue using a vibrating driver, while in static MRE the whole tissue volume is compressed. In
each case, the resulting displacement field is measured with motion encoding gradients used to detect the
displacements as phase-shifts in the MRI images received by the scanner. These images are then processed by an
inversion algorithm to produce a map of the biomechanical properties of the tissue, typically referred to as an
elastogram. Dynamic MRE is now being widely used for clinical applications in the liver (Singh et al 2015,
Mathew and Venkatesh 2018), and there is growing interest in applying the method in a wide range of organs
including the spleen and kidney (Venkatesh et al 2013), brain (Hiscox et al 2016), lung (Marinelli et al 2017), and
muscle (Kennedy etal 2017).

The main elasticity parameter of interest in dynamic MRE is the shear elastic modulus, which varies by
several orders of magnitude across different tissues and between the healthy and diseased state. Most soft tissues
have material properties that are intermediate between those of solids and fluids, and can be characterised by
viscoelastic constitutive material models. The complex shear modulus G summarises the shear viscoelasticity:
the real component, or storage modulus G, defines the solid-like shear elasticity and the imaginary component,
or loss modulus G}, defines the fluid-like shear viscosity. In this context, an inversion algorithm is employed to
infer G;and G, from MRI measurements of tissue displacements.

A variety of inversion algorithms have been explored for MRE (see e.g. Van Houten et al 1999, Papazoglou
etal 2008, Doyley 2012, McGarry et al 2013, Ammari et al 2015, Fovargue et al 2018, McGarry et al 2019 and
references therein). One of the more widely used methods is direct inversion (DI), or algebraic inversion
(Papazoglou et al 2008). Other methods include local frequency estimation and iterative based methods
(Manduca et al 1996, Van Houten et al 1999, Manduca et al 2001, Hu and Shan 2020). The quality and accuracy
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of calculated elastograms is limited by the assumptions and mathematical methods employed. For example, in
direct or algebraic inversion, typically the assumption of local tissue homogeneity is made (Sinkus et al 2005),
and this can lead to large errors in the elastograms at the boundaries between tissues with very different
underlying elastic properties. Also, algebraic inversion involves numerical differentiation of imaging data, which
can amplify imaging-related noise. Iterative methods, on the other hand, avoid differentiation of data by posing
the inversion as a least-squares problem that is solved numerically. Since this problem is inherently unstable (or
ill-posed), regularisation strategies are needed in order to compute a stable reconstruction of the stiffness
properties. However, most existing regularisation strategies produce over-smoothed properties which cannot
accurately reconstruct the interface between healthy tissue and malignancies. While iterative methods can be
equipped to address the instabilities (or ill-posedness) of the inversion in MRE, these methods are
computationally more costly than those used in DI. Consequently, alarge body of work has been devoted to
improving the computational efficiency of iterative methods by using a domain decomposition (subzone)
method (Van Houten et al 1999, McGarry et al 2013, 2019).

Most existing approaches, either direct or iterative, for inversion in MRE are developed within deterministic
frameworks which do not account for the uncertainty in the produced elastograms. This uncertainty arises from
the unavoidable presence of measurement noise as well as the fact that the solution to the inversion problem in
MRE may not be unique. In other words, multiple elastograms may be consistent with the same measured data.
While rigorous theoretical work on uniqueness in MRE reconstructions is very limited (Higashimori 2007),
existing work has proven uniqueness under idealised mathematical hypotheses that are not likely to be satisfied
in relevant settings for MRE (i.e. for stiffness properties in the presence of malign tissues).

In this work we propose a new inversion framework for MRE via the ensemble Kalman inversion (EKI)
algorithm developed in Iglesias et al (2013), Iglesias (2016), Iglesias and Yang (2021), and that has been
successfully used for tomography and detection in various applications including geophysics (Tso et al 2021) and
engineering (Simon et al 2018, Iglesias et al 2018, Matveev et al 2021). The proposed EKI algorithm for MRE is
derived from the Bayesian approach for inverse problems (Kaipio and Somersalo 2005, Stuart 2010). Therefore,
contrary to most existing inversion algorithms for MRE, where a single estimate is produced with no known
measure of its uncertainty, the proposed EKI-based framework provides a full characterisation of the posterior
probability distribution of the inferred tissue properties. From this distribution we are able to compute measures
of the uncertainty of the storage and loss modulus such as the (pointwise) variance and credible intervals as well
as the probability for the presence of anomalies within the tissue under investigation.

In contrast to DI approaches which rely on the assumption of local homogeneity (i.e. piecewise constant
stiffness properties) or standard iterative methods which often produce over-smoothed elastograms, our
approach characterises the storage and loss modulus G, and G, via spatially-varying (fully heterogeneous)
random functions that may display abrupt changes in the presence of unknown anomalies (e.g. tumours or
cysts). We allow for these potential abrupt changes by encoding a level-set parameterisation (Iglesias et al 2016,
Dunlop etal 2017, Chada et al 2018) within the EKI algorithm which enables us to statistically identify well-
defined boundaries between normal and anomalous tissue.

Here we implement and test the proposed EKI-based MRE inversion framework using an underlying
forward model based on a standard isotropic linear viscoelastic model (Fovargue et al 2018, Sinkus et al 2005, Li
etal 2021) that we program in MATLAB via the PDE toolbox pdetool. Nonetheless, since one of the
advantages of the EKI framework is that the forward model is used in a black-box fashion, the proposed EKI-
based algorithm can be easily used with other acoustic wave propagation solvers.

Weillustrate capabilities of the proposed EKI-based MRE approach via synthetic (virtual) MRE experiments
of thekidney in 2D and 3D. We demonstrate that the proposed EKI-algorithm for MRE produces reliable
probabilistic estimates of the stiffness properties of the tissue (including sharp discontinuities from the presence
of disease) together with measures of uncertainty that can provide practitioners with a valuable tool for decision
making under the presence of inherent uncertainties in the stiffness properties of biological tissue.

In section 2 we introduce a standard formulation for harmonic MRE—a linear viscoelastic PDE problem
which is the forward model in this paper. We then we formulate the MRE inverse problem and briefly review
some of the existing methods for solving this, including an explanation of the Bayesian approach to inverse
problems which we exploit in this paper. The key for success of the Bayesian approach lies in an appropriate
parameterisation of the quantities of interest (i.e. stiffness properties of the tissue) which is proposed in section 3.
We illustrate the proposed Bayesian approach on 2D and 3D experiments in section 4. Concluding remarks are
in section 5. Appendices provide technical details about the parametrisation and the prior used. Supplementary
material contains additional experiments demonstrating how the accuracy of the proposed approach depends
on (i) choice of the prior ensemble (including ensemble size), (ii) level of measurement noise, and (iii)
segmentation uncertainties.
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2. Bayesian reconstruction of stiffness properties

In this section we formulate the forward and inverse problems for MRE (section 2.1). We discuss some of the
existing inversion approaches which have been used for MRE (section 2.2), and outline the Bayesian approach
(section 2.3).

2.1. Forward and inverse problems for MRE

This section introduces the standard formulations for harmonic MRE, we refer the reader to Li et al (2021),
Sinkus et al (2005), Jiang et al (2011), Ammari et al (2015), Fovargue et al (2018) (and references therein) for
further details. Our aim is to describe deformation of a tissue occupying a physical domain 2 C R? (d = 2, 3) via
excitation of a harmonic wave with angular frequency w. The tissue is assumed to be isotropic and to have
density p. A linear viscoelastic model is employed in which the amplitude of the tissue displacement, denoted by
u(x), x € €, is governed by the following PDE (see e.g. Landau and Lifschitz 1986, Ciarlet 1988, Jiang et al 2011,
Ammari etal 2015, McGrath 2018, Jiang et al 2020 and references therein):

pwiu 4+ V- [G(Vu + (Vu))] + VAV - u) = 0, in Q, (1)

where A\(x) and G(x) are the (complex) first and second Lame parameters, respectively. Equation (1) has to be
accompanied by some boundary conditions (see e.g. Ciarlet 1988, Jiang et al 2011, Ammari et al 2015, Jiang et al
2020 and also section 4.1 here).

For the MRE setting we note that wis a known/controlled variable, while tissue density, p, is assumed to be
that of water (i.e p ~ 10° kg m ). Once we specify the tissue stiffness properties characterised via S(x) = (G(x),
A(x)), the forward problem consists of solving equation (1) supplemented with appropriate boundary
conditions. We can formulate the forward problem in terms of the so-called forward map denoted by F:

S=(G, N) = F(S) = uy = (uxy), ..., u(xy)), )

which for every admissible pair (G, ) of stiffness properties returns the solution to (1) evaluated at M points,
denoted by Xjy = {x,,} X_|. We define these points so that we can subsequently confront our modeling
solutions with observed data collected on a given mesh/grid. In expression (2) we have removed the explicit
dependence of S = (G, A) on x to emphasize that it is the forward map. Furthermore, note that F is a nonlinear
operator that, in general, cannot be expressed in a closed form.

With the aid of the forward map, we pose the following inverse problem for MRE: given a complex vector,
d', of noisy MRI measurements of tissue deformation (measured on X,,) find tissue stiffness properties
§" = (G, \"). Akey underlying assumption in formulating this inverse problem is that d" are measurements of
displacements u}fw simulated according to (1) using the truth (i.e. ST = (G', \)). One often assumes, for
example, that

d' =uj, + 7' = FSH + 1, (3)

where 7' is an unknown measurement error /noise. One fundamental property of this inverse problem is that it
isill-posed in the sense of continuity (Engl et al 1996, Kaipio and Somersalo 2005). In other words, one can find a
sequence of stiffness properties {S, };° | so that the sequence F(S,) converges to F(S") while S,, does not
converge to S'. Furthermore, the solution to the inverse problem may not be unique and, hence, multiple
solutions (stiffness properties) maylead to the same observed data. Even in the idealised case where the
measurement noise is absent, existing theoretical work ensures uniqueness only under very specific and often
unrealistic conditions (e.g. for smooth stiffness properties Higashimori 2007). Thus, there is a need to quantify
uncertainty of the reconstructed stiffness properties that we produce via solving the inverse problem.

2.2. Existing inversion approaches
Direct inversion (DI) is one of the most commonly used inversion methodologies for MRE (see e.g. Sinkus et al
2005, Papazoglou et al 2008). The following outlines the main idea of DI and notes that that there are many
variants of DI including those that use weak formulations of (1).

In the context of the forward map defined earlier, DI neglects measurement errors and seeks a direct solution
of the nonlinear equation (3), i.e.

df = F(SH), “)

to find §*. Among the numerous DI approaches to solve (4) there is a class of methods that use df = u}, (suitably
interpolated) instead of u in equation (1) to solve for ST (Sinkus et al 2005, Papazoglou et al 2008). Since d" is

. . . . . . . T .
corrupted by noise, employing DI often requires application of filtering/smoothing on d' so that it can be used
within the model equations that involve derivatives of the displacement field. The assumption of local
homogeneity of the tissue properties Sinkus et al (2005) can cause significant errors in the elastograms at the
boundaries between tissues having very different elasticity properties, and the errors at tissue boundaries can be

3
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accentuated by smoothing. Further, the required differentiation can amplify imaging-related noise. Another
weakness of DI is that its results are not accompanied by quantification of their uncertainty.

Iterative Inversion (II) methods for MRE (see e.g. Van Houten et al 1999, McGarry et al 2013, Ammari et al
2015, McGarry et al 2019) are the other popular approach to solving the MRE inverse problem. Il methods pose
the inverse problem in terms of optimisation of a least-squares functional, e.g.

$* = arg min||d" — F(S)|[?, )
ses

where § is a suitable space of admissible solutions. Because the inverse problem posed via (5) is also ill-posed as
described above, an additional regularisation term, typically the squared norm of S on some functional space, is
often included in the right hand side of (5) to ensure stability in computations of an optimiser. The review
Fovargue et al (2018) describes various Il approaches with the use of different regularisation terms and their
effect on the accuracy of the reconstructions of stiffness properties.

There are three fundamental limitations in Il approaches for MRE. First, since the most natural approach to
compute (5) is via a gradient-based or Newton-type method, derivatives of the forward map and their
corresponding adjoints must be computed. This can be a limitation when using commercial software for the
forward model which may not give direct access to the linearised equations and their respective adjoints. Of
course, one can always employ black-box optimisation tools based on, for example, automatic differentiation at
the expense of higher computational cost and possible loss of accuracy. Second, existing IT approaches for MRE
do not provide a measure of uncertainty in the estimates that they produce. The third limitation is that most
standard regularisation terms used in II enforce a degree of smoothness in the reconstructed stiffness properties
which is not consistent with the abrupt changes that these properties display in the presence of diseased tissue
(Fovargue et al 2018). In effect, overly-smooth reconstructed properties do not enable us to accurately estimate
the interface between healthy and diseased tissue which is, in turn, detrimental to the diagnostic capability of
MRE. However, there are II methods for MRE, such as the use of total variation regularisation (Zhang et al 2012)
and modelling stiffness properties via the truncation oflevel-set functions (Li et al 2012), that take into to
account possible abrupt changes in stiffness properties.

In this work we propose a new approach for solving the MRE inverse problem based on the Bayesian
formulation of inverse problems and appropriate parametrisation of the considered MRE inverse problem. This
approach allows us to recover sharp interfaces and to quantify uncertainties of estimates of the elastic properties
of interest.

2.3.The Bayesian approach
In the Bayesian approach the stiffness properties comprised in § are unknown random functions on which we

specify a joint prior distribution P(S). We assume that the observed datad” is a realisation of a random variable d
defined by

d=FS) +n=uy+n (©)

where nis an unknown random error which follows a Gaussian distribution with zero mean and covariance &
(thatis n ~ N(0, X)) which, in practice, can be informed by the precision of the measurement device used.

The aim of the Bayesian approach is to approximate the so-called posterior distribution P(S|d") which from
Bayes’ rule is given by Stuart (2010):

P(s|d") = %P(d*lS)IP’(S), @
where P(d'|S) is the likelihood of the measurements d" and Z is the normalising constant defined by
Z= f P(dT|S)P(d(S)). (8)
S
From the Gaussian assumption on nand (6), it follows that d|S ~ N (F(S), X). Hence, the likelihood is given by

P(dlS) oc exp [—% [271/2(d" ]'"(S))Hz]- €

Once we specify the prior P(S), we can use (9) in (7) which yields the sought posterior P(S|d") up to the
normalisation constant Z. Unfortunately, since F is a nonlinear operator, Z cannot be computed in closed-
form. Therefore, P(S|d") must be approximated via sampling strategies, where the goal is to compute a collection
of samples, S¥) ~ P(S|d") (j= 1, ..., ]), from which Monte Carlo estimates can be computed. These include the
sample mean, variance as well as credible intervals for the stiffness properties (at each point x in the

computational domain €2). Another relevant quantity is the maximum a posteriori (MAP) estimate which is
defined by
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Syap = argmax P(S|d") = arg max {exp[—l [S-12(d" - ]:(S))HZ]IF’(S)}, (10)
ses Ses 2

and which corresponds to the most likely estimate of stiffness properties of the posterior estimate.

Computing the MAP (i.e. maximising the posterior) is equivalent to an Il approach (i.e. minimising the
squared data misfit 4 regularisation term) (Kaipio and Somersalo 2005), where the regularisation term is
determined by the choice of prior. The work of Mohammadi et al (2021) uses the so-called total variation prior
to compute the MAP for a simple 2D MRE problem. Although they use the Bayesian setting to derive the
approach, they do not characterise the full posterior distribution which, as stated before, is required to quantify
uncertainty of all possible positions. On the other hand, a Markov Chain Monte Carlo approach was recently
used in Jiang and Qian (2020) to fully characterise the posterior for inversion in a MRE setting. This approach,
however, was used in a very simplified case in 2D, where the stiffness properties were piecewise constant and the
interface between healthy and diseased tissue was assumed known. The Bayesian approach that we present here
approximates the full Bayesian posterior of stiffness properties in 2D and 3D settings where the location of those
interfaces are unknown and inferred via the proposed approach. Moreover, within each region, we allow for the
inference of highly heterogeneous properties.

In the next section we parameterise the stiffness properties (the first and second Lame parameters), which is
needed in order to allow for sharp discontinuities in tissues and high heterogeneity of the properties, and we
specify the priors on the parameterisation introduced.

3. Parameterisation of the Bayesian inverse problem

Our main objective here is to define a parameterisation of the stiffness properties S = (G, A). As outlined in the
introduction, the second Lame parameter (or shear modulus) can be written as

G(x) = G + iG(x), an

where Gy(x) and G(x) are the storage and loss modulus, respectively. While a similar expression holds for A(x),
here we assume that the complex part of this function is negligible (see e.g Sinkus et al 2005 for a physical
justification) and use the standard relation (Sinkus et al 2005)

Ax) = 252 (12)

in terms of the storage modulus and the Poisson’s ratio denoted by v. We employ the standard assumption of
near-incompressibility of biological tissues and hence Poisson’s ratio is close to that of fluid, v &~ 0.5 (Ammari
etal 2015, McGrath 2018).

Using these assumptions, the stiffness properties (G, A) can be characterised by the storage and loss modulus
$x) = (G(x), Gi(x)). (13)

The framework subsequently developed is focused on inferring S from (13), but it is crucial to emphasise that the
proposed method is quite general and can be applied to any set of physical properties of interest (e.g. v, A, p).
In the next subsection we introduce a parameterisation

$ = (G, G) = P(©), (14)

in terms of an auxiliary function ®. This parameterisation enables one to (i) incorporate anatomical information
of the tissue under investigation and (ii) infer storage and loss moduli that are highly heterogeneous and could
potentially exhibit sharp discontinuities at the borders of diseased tissue. The parameterised inverse problem is
then solved via the Bayesian approach in section 3.2.

3.1. Parameterisation of stiffness properties

In order to introduce the parameterisation we use the example of its application to the kidney as described in
section 4, but the framework can be tailored to any other MRE settings. The kidney is modelled as being divided
into two regions comprised of the medulla and cortex which we denote by 2,,, and 2, respectively. The domain
of interest can be represented as

Q=90 U Q9% U Q, (15)

where (2} is the background medium surrounding the kidney (see figure 1 (left) for a 2D example).

In order to account for (and subsequently infer) the presence of diseased tissue (e.g. a cystic lesion within the
kidney), we introduce the set 2; C 2. U €2,,,. Let us now express the storage and loss moduli in terms of a
collection of functions defined on each of the sections of the domain of interest. More specifically, we assume
that for the multi-index « € {s, [}:
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Figure 1. 2D Setting. Left: setting for the known geometry. Middle: example of a random level-set function (dimensionless). Right:
unknown diseased (blue) region characterised via the truncation of the level-set function.

Ga,c(x), x € Q\Qy,
Ga,m(x), x € Q,\ (2,
Go,d(x), x € Qy,
Gop(x), x € .

Ga(x) = (16)

For simplicity we assume that we know the geometry of the cortex and the medulla regions, €. and €2,,,, while we
focus on inferring the diseased region €2;. Although the extent of the diseased region 2, may be also available
from the MRI measures (e.g. T1-weighted or T2-weighted MRI images, or quanttative maps), we keep {2 as
unknown and hence demonstrate the flexibility of the proposed EKI approach to infer the geometry of unknown
regions. To this end, we assume that €;is unknown and parameterised via the level-set approach (Iglesias et al
2016, Dunlop etal 2017). That is

Qa={xecQ U U f® <K}, (17)

where fis the level-set function and « is a threshold. We note that the x-level corresponds to the interface
between diseased and healthy kidney tissue. While x can be subsequently inferred as part of the unknown, here
we simply assume it is fixed and specified beforehand.

For the experiments of subsequent sections, the geometry of the regions {2, and €2, is assumed known from,
for example, segmented images obtained via thresholding the signal of a T1-weighted MR image, here an ex vivo
kidney specimen. The practical case in which segmentation errors are present (and so uncertainties in the
geometry {).and §2,,,) can also be addressed within the proposed EKI level-set framework. This is done in section
4 of the supplementary material.

Itis worth mentioning that the use of level sets to model discontinuous stiffness properties in MRE has been
also proposed in (Li et al 2012) although in a framework that (i) can only be applied to piece-wise constant elastic
properties and (ii) is purely deterministic and hence does not provide uncertainty measures of the produced
estimates.

Expression (16) with Q; characterised via (17) defines a map, Q, such that

({ G lsen> {Giglaen, ) — S = (G, G) = QUG plsen> {G1slsen> ) (18)

where we have introduced the set of indices B = {b, ¢, d, m}. The map Q enables us to parameterise the
unknown stiffness properties S = (G,, G)) in terms of the loss and storage modulus on each sub-region of interest
(i.e. G, ), as well as the level-set function, f, which determines possible presence of an unknown disease region.
We further characterise each of these functions via Random Fields (RFs) that we generate using a Whittle—
Matern parameterisation, P"M, which we describe in appendix A. More specifically, we assume that (for

g e B)
Gip = exp[P"M(@,p)], Gip=exp[P"™M(@p)], [=P"™(Oy), (19)
where ©, 5, ©; 3and O are additional auxiliary functions and parameters that we comprise in
O = ({0, 5(X)}gen, 1O15(X)Jsen, OF(x)). (20)

Exponential functions in (19) are used to ensure the values of loss/storage obtained for any choice of @ are
always positive. Let us note that if we denote by P the composition of (18) with (19), we can succinctly write the
parameterisation of Sasin (14).

The formulation of P"M as well as the expression for @ are discussed in appendix A. It is worth mentioning
that when © is selected as discussed in appendix B, then the log(G; 5)’s, log(Gy g)’s and f that we obtain via (11)

6
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Figure 2. Parameterisation. Top: examples of random fields used to characterise the storage modules [kPa] on each anatomical region.
Bottom: arandom storage modulus [kPa] computed with the proposed parameterisation.

are Gaussian RFs which have been widely used to model spatial variability of physical properties in many other
applications (Matérn 1986, Stein 1999, Lasanen et al 2014).

Before we proceed to discuss the Bayesian approach that we employ to infer @ (and hence G, and G; via (14)),
let us illustrate the proposed parameterisation using the 2D geometry from figure 1 (left). We reiterate that the
geometry of the cortex and medulla are assumed to be available from prior information, but the approach can be
extended to infer these regions within the EKI algorithm. In the middle panel of figure 1 we provide an example
of a Gaussian RF that we generate as described in appendix B and that we use as the level-set function, f, in
definition (17). In addition, we employ a threshold value x = 1.75 to obtain the cystic region, {2, that we display
in blue colour in figure 1 (right). Additional Gaussian RFs are generated to characterise the (log) storage modulus
within each of the regions. These fields, with plots shown in figure 2, correspond to (from left to right) G, 4, G; .,
G, and G, 4. If we use these functions, together with the level-set function from figure 1 in expression (16), we
finally obtain the storage modulus from figure 2 (bottom).

3.2. The re-parameterised inverse problem
In appendix B we discuss in detail the prior that we choose for the parameters comprised in ®. The prior on the
stiffness properties is defined by

P(S) = P#P(®),

where P#P denotes the push-forward measure of IP under the parameterisation map P. In practical terms this
means that the prior, IP(S), that we define on S (see (13)) can be simply characterised using samples from P(®)
mapped under P, i.e.

0 ~ P(O) = SV = (G, G = P@D) ~ P(S).

We can apply the Bayesian framework on the problem parameterised in terms of ®. In other words, we seek the
posterior

P@©|d") = %exp[—% T2t — H(@))||2]JP’(@), Q1)

where Zis the normalisation constant similar to the one defined in (8) and where we have defined the parameter-
to-measurements map

H = FoP. (22)

In (21) we have used the likelihood implied by (6) with S parameterised as in (14). It can be shown (e.g. see
Dunlop et al 2020) that
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P(S|dh = P#P(O|d".

Hence, if we compute a sampling approximation of the Bayesian posterior on the re-parameterised problem,
samples from the posterior on the stiffness properties can be computed by means of mapping those samples
under P.

In this work we approximate the posterior P(®]d") by means of the EKI algorithm initially introduced in
Iglesias et al (2013), Iglesias (2016) for solving generic inverse problems. Here we briefly introduce the algorithm
and refer the reader to the recent work of Iglesias and Yang (2021) for further details and motivation of EKI from
the Bayesian tempering setting for inverse problems.

The underlying framework of the EKI algorithm that we display in algorithm 1 is to approximate, via an
ensemble of ] particles/samples, a sequence of intermediate distributions between prior and posterior:

By(®) = P(©®) — B(®) — -— Py, (@) = P(O]d).

Each of these intermediate distributions B,(®) is approximated with a Gaussian distribution which is, in turn,
characterised by an ensemble of particles { @) }52 -

The EKT algorithm starts with an ensemble of samples from the prior which are updated at each iteration of
the algorithm. The number of iterations is determined adaptively as suggested in Iglesias and Yang (2021) in
order to provide stable transitions between intermediate distributions. Upon convergence, the EKI produces an
ensemble that approximates the posterior.

Algorithm 1. EKI algorithm

Input: (1) d': measurements; (2) I measurements’ error covariance;
3) {@E)j)} 5;1: initial ensemble consisting of samples from the prior.
Output: {©1)} 5:1: posterior ensemble.
Set so = 0
whiles, < 1do
(1) Prediction step. Evaluate

HP = HOP) = FPOY), je{l,...T}h (23)

and define H, = %Z]’-:, HE]).
(2) Compute regularisation parameter ,:

11 , ,
«_ 11 —172¢qt _ |2
o = r-t2d" — H})
L Dl
ifs, + % > 1then
Set o, = ﬁ) Snr1 =15
else
Set a, = Oéj) Snt1 = Sn + %
end 3
Analysis step. Define C, CO7 by

1 . — N —
It = T i () = H) () = HT,
1 . — . —
Cy?H = = IZLI(@E,]) - @,,)(H("]) - Hn)T~
where ®, = }Zj’:l quj), and update each ensemble member:
O =0 + CPCI + a, )l — MY + @),

je L ...}, (24)

where nﬁlj) ~ N (0, X).
n+1—n
end

Atevery iteration of the scheme, the main computational cost of EKI is in the prediction step which consists
in evaluating the parameter-to-measurement map H for each of the ensemble members @7, This evaluation
involves (see equation (23)) (i) computing the stiffness properties $¢ = P(@()) and (ii) tissue displacements
HD = F(SD). The latter involves solving equation (1) while the former, as discussed in appendix A, requires
solving one additional PDE for each of the storage and the loss modulus defined on the constituents of {2 as well
as the level-set function. If we denote by Cy the total cost incurred by one evaluation of the parameter-to-
measurement map H and N, the iterations needed to achieve convergence, then the total cost of EKI is
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Cexi = NitJCq.

To the best of our knowledge, this work constitutes the first application of EKI to time-harmonic MRE. For
quasi-static MRE, however, the recent work of Napoli et al (2021) used a Kalman filter algorithm to assimilate
data from robotic sensors. Their algorithmic framework was entirely different to the Bayesian inversion setting
proposed here and without the use of the level-set based parameterisation of stiffness properties.

3.3.Measures of uncertainty

As we discussed earlier, samples from © (either from the prior or the approximate posterior computed via EKT)
can be mapped, via (14), into samples of the corresponding distributions of the physical properties G;and G,. In
other words, we have the following samples

(G, Gy = P@W), i=1...7 (25)

from which we may compute the sample mean and variance (for « € {s, /}) defined by

] ]
Go(x) = 12 GV(x) and o (x) = ﬁZ(ij)(x) —- G.(%)?, (26)

j=1 — =

respectively. When we use samples of the prior (or posterior), the expressions in (26) converge, as ] — 0o , to the
mean and the variance of the prior (or posterior) distribution. We reiterate that EKI produces a Gaussian
approximation of the posterior. Although the posterior is, in general, non-Gaussian, there is numerical evidence
from other applications that EKI can accurately approximate the posterior mean and variance (Iglesias 2014,
Iglesias et al 2018, Matveev et al 2021).

Similarly, for each x € €) we use our samples, { G(Ej )(x)} §:1 to approximate equal tail (1 — a))100% credible
intervals (Gelman et al 2004), i.e. intervals that contain the unobserved properties (at that given x) with (1 — «)
100% posterior probability. In addition, the level-set parameterisation of {2 (see equation (17)) allows us to
compute the posterior probability that a point x, within the tissue, belongs to the diseased tissue region. More
specifically, we define

Px) =P(f(x) > k), 27)
which can be approximated by
1 ]
P(x) ~ —Z 1o (x), (28)
JiZ

where lli(x) is the indicator function of Q' defined by

1 x€ QU
Loi(x) = {O xd QO (29)

and Q7 is given by (17) with f() = PWM (G(fj)) instead of f. Here G(fj) is one of the components of the jth
posterior ensemble of the parameter O (see equation (20)). Further details on how to arrive at (28) from (27)
can be found in Matveev et al (2021), where a similar quantity was defined for the probability defects in
composites materials.

4. Numerical experiments

In this section we test the proposed Bayesian inversion algorithm using synthetic data. The use of synthetic data
allows us to demonstrate accuracy and the cost of the method in a transparent way.

In section 4.1 we specify settings of the forward model for the experiments. Results of 2D experiments are
presented in section 4.2 while in section 4.3 results of 3D tests are given.

For the 2D case, in the supplementary material we look in depth on how the ensemble size (section 1 of the
supplementary material), the level of measurement errors (section 2 of the supplementary material), and the
choice of prior (section 3 of the supplementary material) affect the outcomes of our inversion algorithm.
Furthermore, in section 4 of supplementary material the proposed EKI-based inversion for MRE is extended to
account for segmentation errors/uncertainties, which is accompanied by illustrative numerical experiments. In
section 5 of supplementary material we compare the performance of the proposed level-set based EKI inversion
with the standard implementation of the LFE method encoded in the software package MRE Wave provided by
the Mayo Clinic, and we show the superiority of the proposed method.

The code for the 2D experiments can be downloaded from https://github.com/Marco-Iglesias-
Nottingham/EKI-for-MRE.
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4.1. Forward modelling settings

The forward model that we use for our numerical experiments is given by equation (1), where G and A are
parameterised in terms of G;and G; via (11)—(12). For all our experiments MRE vibration frequency was 60 Hz,
and parameters employed were:

w=2r60rad, p=100kgm> and v = 0.499.
We consider the following boundary conditions (see e.g. Ciarlet 1988, Alberty et al 2002):
MV - wI + G[Vu + (Vu)]]n =0, on 00y (30)
Mu = up, on 0, (31)

where it is assumed that the boundary of §2, denoted by 02, can be written as 9€2 = 0Qx U 0€2p, on which we
may impose natural (for simplicity traction-free) and Dirichlet boundary conditions, respectively. In
equation (31) Misad X d matrix that we use to constrain some of the components of u(x) on 9€2p, while the
other components satisfy the traction-free condition.

Itis worth noticing that these boundary conditions are chosen for the sake of simplicity in demonstrating the
proposed approach for Bayesian inversion in MRE. We note that in real settings, boundary conditions will be
unknown but observed displacements (from MRI measurements) could be used to specify Dirichlet boundary
values on a specified boundary. In addition, while we have selected a common choice of 60 Hz for the value of
frequency, since the proposed EKI approach uses the (forward) viscoelastic model in a black box fashion,
different choices of frequency should not, in principle, affect the outcomes of the inversion provided (i) the same
level of noise is employed and (ii) tissue displacements are observed on a sufficiently dense grid (see equation (2))
so the the underlying wavelength can be resolved.

For the 2D experiments of section 4.2 the domain is 2 = [0, 0.12 m]? with Dirichlet boundary, 92, given
by the horizontal edge at y = 0.12 m. For the 3D experiments reported in section 4.3 we use 2 = [ —4.57 x 10~ *m,
457 %10 ?m] x [ —6.9 X 10 *m,6.9 x 10 *m] x [0,3.0 x 10 *m]and 9 given by two faces of the
hexahedron; one face defined by y = 6.9 x 10> m and the other one by x = —4.57 x 10~ m. For both 2D and 3D
settings, we (i) define the matrix M so that only the y-component is fixed on 9€2p and (ii) set the magnitude of up
equalto 10 °m.

The forward modeling setting is implemented using Finite Elements Method via the MATLAB toolbox
pdetool. Weuse the built-in command generateMesh to produce a mesh with 40 692 and 47 646 elements
in 2D and 3D, respectively. The 2D mesh that we use is too fine to be visualised but the 3D mesh that we use is
displayed in the supplementary material. As discussed in appendix A.1, stiffness properties (loss and storage
modulus) are produced on regular grids with 100 x 100and 70 x 70 x 30 cells for the 2D and 3D case,
respectively. Hence, the resolution of the images of stiffness properties that we produce in 2D and 3D are
1.2mm X 1.2 mmand 1.97 mm x 1.36 mm X 1 mm, respectively. These properties are then interpolated on
the mesh computed by generateMesh to compute displacements via pdetool. Itis important to emphasize
that the resolution used for the stiffness properties is not the same as the resolution of the (synthethic) MRE
displacement data that we generate for our experiments (see below).

4.2.2D Experiment

In figure 3 we plot the ‘ground truth’ fields for the storage, Gf, and loss modulus, G ZT, for our experiments. The
diseased region consists of two randomly distorted disks within the cortex. The (log) storage/loss modulus
within each region are Gaussian RFs that we produce with the procedure outlined in section 3.1. The specific
choice of parameters for the Whittle-Matern parameterisation (see appendix A) are shown in table 1. The mean
of the random field for each region (i.e. m in table 1) were chosen to approximate the biomechanical properties
of the kidney tissue types (medulla and cortex) and cysts along with the background tissue surrounding the
kidney in the human body. Additional parameters (e.g. length scales variance and smoothness) have been chosen
in order to add a realistic degree of the spatial variability to stiffness properties of anatomical regions of the
kidney.

To generate synthetic data, we use G, and G, to solve the forward model with the settings described in
section 4.1. The displacement fields, denoted by u” are evaluated on a regular grid with M = 80 x 80 = 6400
equally distributed points. Therefore, the resolution of the synthetic MRE data for the 2D case is
1.5mm x 1.5 mm. Following the notation from section 2.1, u, = (14, ..., uj;) corresponds to the noise-free
predictions of the forward model for the ground truth. We note that u},; comprises evaluation of the x
(horizontal) and y (vertical) components of real and imaginary parts of u},. Synthetic data d" are obtained by
adding n' ~N(,2)to ul,; (see equation (3)). For simplicity we consider the case in which ¥ is a diagonal matrix
3 =diag(¥y, ..., X)) which corresponds to the situation where observational errors are uncorrelated.
Furthermore, we model the variance of each measurement via
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Figure 3. Comparing the ground truth (left) with prior (centre) and posterior (right) means for storage (top), Gf [kPa] and loss
(bottom) modulus, Gf [kPa].
Table 1. Parameters for the Whittle-Matern parameterisation of each log Gl, 3
(loss: o = I, storage: o = s) defined on each region, i.e. background (3 = b), cortex
(8 = ¢), medulla (3 = m) and disease (3 = d).
o
a B [log (Pa)] m [kPa] Ly[m] L, [m] ¢
s b 0.04 38 12x 1072 1.2 x 1072 2
s c 0.1 1.6 1.8 x 1072 1.8 x 1072 2
s m 0.05 2.5 42 %1077 1.2 x107° 2
s d 0.2 0.212 12x 1072 6.0 x 107° 2
I b 0.02 2.2 12 %1072 1.2 x 1072 2
I c 0.03 1.8 1.8 x 1072 1.8 x 1072 2
! m 0.015 2.8 42 %1077 1.2 x 1072 2
1 d 0.035 3.25 1.2 x 1072 6.0 x 107> 2
S = (elugl)? + (ool max{uy} g — min{uy} il )? m=1,.., M, (32)

where «v; and v, are parameters that we select to control the level of noise/measurement error that we add to our
synthetic data. The first part of the error in the right-hand side of (32) enables us to specify noise as a percentage
of the noise-free measurements. With the second term, we control an additive error proportional to the
amplitude of the deformation.

In practical settings the parameters «; and «; can be informed by the precision of the measurement device
(i.e. the MRI scanner) used. When these parameters are unknown, they can be included as part of the unknown
that we wish to infer within the Bayesian framework (Gelman et al 2004). For simplicity, here we assume that
these parameters are known. For the first set of experiments we choose c; = 0.025 which corresponds to 2.5% of
noise (or SNR = 40) and a very small o, = 5 x 10~ * simply to avoid zero entries in the diagonal of ¥. With these
choices of measurement error, the horizontal and vertical components of the real part (denoted by d, and d,)

X

aswell as the imaginary part (d}, and d},, ) of the synthetic datad" are displayed in figure 4.
The selection of the prior for the parameter ® that we infer via the EKI algorithm is discussed in appendix B,
where we also look at how to select this prior in practical settings. We use (24) to map prior samples from @ into
samples for the prior on the storage and loss modulus (G, G;) and show the plot of a few representative samples
in the top and top-middle rows of figure 5. A few prior samples for the loss modulus are presented in the
supplementary material. For the sake of validation, we have selected the prior on ® in such a way that the

corresponding prior samples for (G;, G)) display a very large degree of variability and, hence, uncertainty in the
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Figure 4. Synthetic displacements measurements [ um] computed using the ground truth (G], G/").

values of the storage/loss modulus of each region. Importantly, our aim is to include as little prior information
as possible of the true storage/loss in order to validate the capability of EKI to capture the true values within the
posterior uncertainty measures. Similarly, our prior accounts for a substantial range of scenarios for the
presence of disease. Indeed, figure 5 shows that the prior include samples in which the disease region has various
random shapes and locations as well as samples without disease.

Using an ensemble size of = 10* samples from the prior, we compute the mean and the variance for the
loss/storage modules via (26). The prior means for the loss/storage modulus are shown in the middle panels of
figure 3. The log of the prior variance for loss and storage are shown in the top-left and top-middle of figure 6.
Using (28) we compute the (prior) probability of a presence of disease at any given point (x, y). The
corresponding probability map is shown in the top-right panel of figure 6 where we see that our prior
assumption is that, in average (from all samples), no disease is present.

We apply the EKI framework from algorithm 1 using synthetic data, the prior ensemble (with J = 10*
particles), and covariance 3 as described earlier. Convergence is achieved after 7 iterations. Some of the
posterior samples for the storage are shown in the middle-bottom and bottom rows of figure 5. Some posterior
samples for the loss modulus are displayed in the supplementary material. We can visually appreciate that these
posterior samples have all similar mean storage /loss modulus to that of the true storage/loss (see figure 3). There
is, however, some noticeable differences mainly in the disease region displayed on each of these posterior
samples. While all capture well the true disease region (see figure 3), some display a disease region in the upper-
left area of the cortex which does not appear in the true storage/loss. Nonetheless, the posterior mean and
variance, displayed in the right panels of figure 3, reveal that algorithm 1 recovered the kidney properties very
accurately. The posterior means for the storage and loss provide very good estimates of the true storage and loss,
respectively (see left panels of figure 3). Moreover, for most regions within the domain, the posterior variances
for storage/loss are substantially smaller than those of the prior. The higher posterior variance around tissue
boundaries means that there is a larger uncertainty in recovery of the properties near the boundaries and of the
boundaries themselves. Also, the higher variance in the upper-left section of the cortex is consistent with the
small disease region that some of the posterior samples show within this area of the kidney.

The posterior diseased tissue probability, given in the bottom-right panel of figure 6, shows remarkably
accurate prediction of the true disease region within the high posterior probability area predicted by the EKI
algorithm. Note that the disease region in the upper-left of the cortex that is shown in some of the samples, but
that is not present in the true storage/loss, has only very low posterior probability values.
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Figure 5. First and second rows: prior samples for the storage modulus [log (kPa)]. Third and fourth rows: posterior samples for the
storage modulus [log (kPa)].

Figure 7 shows the graph of the true storage modulus computed for (x, y) € Q with fixed y = 0.065 m. We
superimpose the graph of the mean as well as the %95 credible interval (CI) computed using the prior samples.
We can see that while most of the true values are contained within the prior CI, there is substantial amount of
prior uncertainty in the storage modulus. In contrast, the corresponding posterior CI computed using the EKI
samples (right panel of figure 7) is concentrated around the true values. Moreover, the posterior mean provides a
very good approximation to the truth as the middle-top panel of figure 3 already confirmed. In addition, in the
right panel of figure 7 we have highlighted (in yellow) the area corresponding to the presence of the disease
region. We recall that this region appears within the cortex. Although there is no knowledge of the presence of
the disease region (cyst) within the prior values of storage modulus assigned to the cortex, we can observe that
the level-set parameterisation is able to reconstruct, within the posterior CI, the sharp interface between the
values of healthy cortex and those for the disease region. This showcases the advantages of the proposed EKI-
based approach with respect to the existing approaches that often produce overly-smoothed stiffness properties
with no well-defined boundaries between healthy and diseased tissue.

While the main focus of this paper is to infer spatial variability of the storage and loss modulus (i.e. G,,5)
within each sub-region of €2, it is useful to estimate the average/mean values of each of these properties. As
discussed in appendix A, the average values of the G,, 5’s are among the set of parameters comprised in ® which
we infer via the EKI algorithm. We have selected uniform priors on these values (see appendix B) on wide
intervals that contain the corresponding average values for the storage /loss modulus of the ground truth (see
values of min table 1). The posterior distribution for each of these values is one of the direct outcomes of the EKI
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Figure 6. Top-left: prior (log) variance for the storage modulus [log (kPa?)]. Top-middle: Prior (log) variance for the loss modulus [log
(kPa?)]. Bottom-left: posterior (log) variance for the storage modulus [log (kPa%)]. Top-middle: posterior (log) variance for the loss
modulus [log (kPa?)]. Top-right: prior probability for the disease region. Top-right: posterior probability for the disease region.
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Figure 7. Left: Slice (at y = 0.065 m) of the graph of the true storage (red), prior mean (dotted black) and prior 95% credible intervals
(shaded region). Right: slice (at y = 0.065 m) of the graph of the true storage (red), posterior mean (dotted black) and posterior 95%
credible intervals (shaded region). The area highlighted in yellow corresponds to the location of the disease region.

algorithm. In figure 8 we plot the prior (dashed red) and posterior (dash-dotted blue) densities (here the
posterior is approximated from samples via ksdens ity in MATLAB) as well as the corresponding value of the
ground truth (shown as a vertical solid line). We observe how from a uniform (uninformed) prior, the posterior
produces Gaussian approximations concentrated around the truth. In most cases the truth is captured well
within the posterior and in other cases the truth is on the tail of these posteriors.

In the supplementary material we study the effect of the ensemble size, ], as well as the level of measurements
error/noise on the uncertainty measures that we compute using the EKI algorithm. In particular, we investigate
the use of different choices of the parameters «v; and o, in (32).

4.3.3D experiments
In this section, we demonstrate the capabilities of EKI for inferring stiffness properties in the 3D forward model
implemented as described in section 4.1. As for the 2D case, we assume that the kidney consists of cortex and
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Figure 8. Prior (dashed red) and posterior (dash-dotted blue) densities (dimensionless) for the loss (top) and storage (bottom)
modulus on each of the sub-regions of §2. The corresponding value of the ground truth is shown as a vertical solid line.

Z{cm)

Figure 9. 3D Experiments. Setting for the known kidney geometry.

medulla that is immersed in a host/background media or tissue. We also assume that these regions are known
and have the geometry shown in figure 9 which is obtained from an in vivo MR imaging of the kidney of a healthy
volunteer, with signal thresholding performed to segment the medulla and cortex of the kidney. The ground
truth for the storage and loss modulus are given on the top and middle-bottom panels of figure 10. These are,
again, Gaussian RFs that we produce as described in section 3.1 with parameters specified in appendix B and
implemented as discussed in appendix A.1. We have added two disconnected regions within the cortex of the
kidney with anomalous values corresponding cystic lesions. Two views of these cystic regions are given in red at
the top panels of figure 11. We have defined a sharp discontinuity in the storage values between the cyst and
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Figure 10. Top: true storage modulus [kPa]. Top-middle: posterior mean for the storage modulus [kPa]. Middle-bottom: true loss
modulus [kPa]. Bottom: posterior mean for the loss modulus [kPa].

cortex regions. Note, the small dark blue region at the boundary of the cyst is simply an artifact from the
interpolation employed for the visualisation tool.

We use the ground truth for the storage and loss, suitably interpolated on the pdet oo1-generated 3D mesh
(tetrahedral elements), to produce displacements by solving equation (1) in the 3D domain. Note that for this
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True cyst location True cyst location

Figure 11. Top: views of the location of the true cystic region (in red). Bottom: the region (in red) for which the posterior probability
within the cyst is greater than 90%.

case, the complex displacement field, u}rw, has three components which are all used for the inversion. For
simplicity, we use the nodes of the pdet ool 3D mesh as the evaluation points, {Xm}%: 1> for these
displacements. Synthetic data d" are computed by adding Gaussian noise to the displacements as described for
the 2D case. We consider only the case with relatively small measurement errors and so we employ o; = 0.025
and a, =5 x 10~ *in (32). Since we use a non-uniform mesh with tetrahedral elements, we report the resolution
of the synthetic MRE data in terms of the lengths of the shortest (2 mm) and longest (4 mm) edges in the mesh.

The choice of priors is done analogous to that of the 2D case (see also appendix B). Some prior samples for
the storage are shown in the supplementary material, where, as for the 2D case, we note that our choice of prior
yields a large degree of variability across samples, not only in terms of storage/loss modulus values but also in the
shape and location of the disease region.

For the 3D case, the computational cost of each evaluation of the parameter-to-output map is substantially
larger than for the 2D setting in the previous experiments. Even though we employ a relatively coarse finite
element approximation, with approximately 47 000 elements compared to the 40 000 used in 2D, for solving the
forward model (equation (1)), the parametrisation, P, which involves solving additional PDEs (see
equation (A1), from appendix A) requires a larger resolution that, in turn, increases the overall computational
cost of EKI. As discussed in appendix A.1, we use 10* cells for the numerical approximation of the
parameterisation in 2D while 147 000 cells are employed for the 3D case. Due to the increased computational
cost of each run of the parameter-to-output map, we consider only an ensemble of ] = 2500 particles. Our
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Figure 12. Log of the posterior variance for the loss (left) and storage (right) modulus.

experiments in section 4.2 (see also supplementary material) provided evidence that with such an ensemble size,
the EKT algorithm produces robust and reliable posterior estimates of uncertainty.

The plots of the posterior means for storage and loss that we obtain via EKI are displayed at the top-middle
and bottom panels of figure 10. The corresponding posterior variances are shown in figure 12. Similar to the 2D
experiments we note that higher uncertainty (variance) is obtained at the boundary of the cystic region.

In the bottom panels of figure 11 we show the regions (in red) that corresponds to the volumes in which the
posterior probability (computed via (28)) is greater than 90%. While the posterior mean shows a very good
approximation to the values and variability of the storage/loss modulus, the disease region was also inferred
accurately. It is quite remarkable how the EKI algorithm is able to capture the true location of the cyst within the
region of high posterior probability (see bottom panels figure 11).

It is worth noticing that the variance of the small cyst is larger (see figure 12) than that of the small cyst in the
2D example (see figure 6). This explains why the size of the region of high probability corresponding to this cyst
is smaller than the true (small) cyst (see figure 11). A possible reason for the larger uncertainty in the 3D case is
that for each slice we employed, due to the computational burden of the 3D case, alower resolution (70 x 70)
compared to the resolution used for the 2D examples (100 x 100).

Despite the reconstructions results from this section expect the 2D results to be more accurate than the 3D
case because each slice of the 3D set has a lower resolution than the single slice used in the 2D example. However,
itappears that the posterior mean estimates of the cyst (see figure 10) seem to capture the size of the cyst very
accurately and quite similar to those in the 2D case. But, there is larger uncertainty in the 3D estimates which
explains why the region with probability greater than 90% is smaller than the true cyst.

5. Conclusions

A new and powerful method for MRE inversion has been introduced based on the EKI algorithm that uses RFs to
accurately characterise spatially varying storage/loss modulus. In contrast to existing iterative approaches which
often yield overly-smoothed elastograms, the EKI algorithm is equipped with a level-set parameterisation that
allows the accurate inference of sharp interfaces between healthy and diseased tissue. Furthermore, EKI does not
require differentiation of data which, due to the amplification of imaging-related noise, can lead to artifacts
which are detrimental to the diagnostic capabilities of MRE. In addition, uncertainty of the reconstructed
material properties can be quantified thanks to the probabilistic nature of the method. Since the forward
viscoelastic model is encoded within the EKI algorithm only in a black box fashion, it can be easily modified to
accommodate any material constitutive model (e.g. in a future work poroelastic materials could be explored).
Also, the illustrative experiments shown here represent kidney MRE data but EKI could equally well be used for
any other application such as brain or liver. Here the method has been shown to detect a renal cyst, but such
uncertainty measures could be used by clinical practitioners to accurately compute and assess disease margins
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such as for cancer, e.g. tumours in the kidney. Also, the accurate assessment of tumour margins is important for
many organs, e.g. prostate, in terms of prognosis and determining the likelihood of secondary disease outside of
the primary site, and for brain tumours where the precise location of disease margins is important for surgery
planning. While prior information on anatomical zones of the cortex and medulla as informed by non-
elastography-based MRI data (e.g. T1- or T2-weighted imaging) is included in this methodology, the
methodology can also be used in organs without such anatomical definitions. For example, the liver does not
have such anatomical boundaries, but liver fibrosis can be found by this method to high accuracy and without
prior information. The precise location and extent of liver fibrosis are important when staging the progression of
disease or therapy response, and also for biopsy planning.

While the work presented demonstrates an initial exploration of the methodology with simulated data, it
convincingly represents the ready applicability of the technique to real acquired 3D MRE data. The application
of EKI with acquired data would require the use of measured displacements as boundary conditions for the
forward model which here we prescribed for the sake of illustration. However, when boundary conditions are
also subject to noise, the EKI framework can be extended to incorporate these uncertainties within the inversion
algorithm (Iglesias et al 2018). Finally, additional sources of modeling errors are likely to arise when dealing with
realistic settings. Fortunately, the Bayesian setting in which the EKI algorithm is derived, enable us to account,
and possibly infer those errors within the inversion methodology (Calvetti et al 2018).

Further validation of the proposed method should be performed with real data obtained under control
conditions, i.e. where a ground truth can be well defined (e.g. using gel phantoms). Such experiments will allow
us to compare outcomes of the EKI algorithm obtained based on real data and on simulated data related to the
used experimental set-up. This comparison would enable us to establish (and possibly incorporate within the
inversion) additional sources of uncertainties arising from inherent errors in the models that are used to describe
MRE data. Experiments with real acquired data are also needed to further validate, potentially improve or even
reformulate our modeling assumptions. Indeed, recall that our inversion framework comprises numerous
assumptions on the (i) the forward (visco-elastic) model, (ii) the random field characterisation of stiffness
properties combined with the level-set parameterisation of diseased tissue, and (iii) the priors that we have
selected for the parameters within those parameterisations. If it will be required, alternative characterisations of
stiffness properties and/or other type of edge-preserving (e.g. total variation) priors could be used within the
Bayesian setting. Having real data from controlled experiments would enable us to compare, e.g. via Bayesian
model comparison techniques (Gelman et al 2004), the modeling assumptions that best explain the data and
thus the modeling settings that provide us with an accurate MRE characterisation of the elastic properties of
biological tissue.
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Appendix A. Whittle-Matern parameterisations

In this appendix we introduce the mapping P"M that we use in (19) to parameterise the level-set function f(that
determines the cyst region), as well as the storage and loss modulus, G, sgand G, 3 (8 € B = {b, ¢, m, t}), for
each constituent of the geometry under consideration.

Let us consider first the 3D case (d = 3). For fixed a € {s,1} and 3 € B, we define the function (random
field) log G, 3(x) as a solution of the fractional stochastic PDE:
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[I — V - diag(LZ, Lyz, L2)V1/2(log Ga,5(x) — logm)

y ro |7

= [2 LxLyLzazwd/zi] wx), x€, (A1)
I'(¢—d/2)

where I is the identity operator, I is the gamma function and w(x) is a (generalised) random function.

Furthermore, (is a parameter that controls the smoothness of the function log G, 3, o is an amplitude scale,

log m is the mean value of log G, g, and L,, L, and L, are (positive) numbers that describe intrinsic length-scales

along the x, y and z directions, respectively. In (A1) diag(L, L;, L) denotesa3 x 3 diagonal matrix with the

vector (L?

, L}%, L?) onits diagonal.

For the case d = 2, in equation (A1) we replace the matrix diag(L?2, Lyz, L) with diag(LZ, Lf) and the
product L,L,L, with L,L,.

After we define appropriate boundary conditions for (A1), we can solve this PDE problem to find log G, g(x)
provided the following input parameters are specified:

On,3 = (m, 0, ¢, Ly, Ly, L, w). (A2)

In other words, equation (A1) (together with suitable boundary conditions) defines the mapping P"M:

60,;3 = ,PWM(@(,Y,J) - 108 Ga',ﬁ' (A?’)

Note that all the terms in the right-hand side of (A2) should be labeled to reflect the particular choice of v and 5.
While such alabeling is omitted for clarity in the notation, we shall understand that every function log G, 3(x) is
parameterised by a unique set of inputs comprised in ©, g. The selection of these parameters is discussed in
appendix B.

The motivation for using the parameterisation (A3) stems from the work of Lindgren et al (2011). They
showed that if w(x) is a Gaussian white noise, then the function log G, g(x) is a Gaussian RF with mean log m
and covariance operator with Matern auto-correlation function (Matérn 1986, Stein 1999, Lasanen et al 2014):

ACF(x) = o I1x]17 Ko (||%]|)> (A4)

_
2" T(v)
where v = ( — d/2, K, denotes the modified Bessel function of the second kind of order v, and

x 2

2 2
_ Yy
Ixl = |= + e +

h
Sn

y

Alternative methods to the SPDE formulation in (A1) can be used to represent Gaussian RFs. For example,
one can represent such fields in terms of their Karhunen—Loeve expansion. However, the advantage of our
formulation is that it enables us to easily include hyperparameters, such as the intrinsic length scales, within the
EKI framework. Inferring these parameters have been shown to be essential for the accurate inference of physical
properties within the Bayesian framework (Dunlop et al 2017, Matveev et al 2021).

Although we introduce the parameterisation in terms of the functions log G,, 3, the same parameterisation is
employed for the level-set function fas indicated in (19).

A.1. Numerical implementation

We consider only the case in which the smoothness parameter, ¢, is a positive even integer so that (A1) can be
computed using standard numerical methods as proposed in Lindgren et al (2011). To this end, we use a bespoke
MATLAB implementation of the cell-centered finite difference method (Russell and Wheeler 1983). We employ
regular grids of 100 x 100 and 70 x 70 x 30 cells for the examples in 2D and 3D, respectively. We use Robin
boundary conditions which have been shown in Lasanen et al (2014) to be optimal in terms of reducing
boundary effects. For a given set of inputs ®, we use our numerical implementation of (A1) to compute
numerical approximations of functions log G,, 3’s and f(i.e. this corresponds to the numerical approximation of
PYM(@)). The next step is to compute the storage/loss modulus over the entire domain Q2. This is done via the
mapping Q (see equation (18)) which is defined via equation (16). Even though our implementation of (A1)
computes each G, gover the entire domain {2, we recall that only the values of G,, 3 on the corresponding region
of the tissue are utilised (e.g. G; . is used only for the cortex). Once the storage and loss modulus (G;, G;) = P(©)
have been numerically approximated (for a given ®) on our regular grid in which (A1) was solved, we proceed to
interpolate these functions on the finite element grid that we then use for solving (1) as discussed in section 4.1.

A.2. Fixed parameters

For simplicity, for each choice of aand 3 we keep the amplitude scale, o, and the smoothness parameter, ¢,
constant. This means that we leave these out of the inference scheme while we focus on inferring length scales L,,
L,, L as well as w(x) and m. The values that we use for o corresponding to the ®,, 5’s are shown in table B1. These
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o’sare selected so that the values of the (prior) random samples of storage and loss modulus (obtained by
exponentiation of (A3)) belong to a reasonable and physically-consistent range. Accordingly, we choose the
smoothness parameter ( so that these samples exhibit a realistic amount of spatial variability. We find that the
value ¢ = 2 results in samples of reasonably smooth (e.g. at least continuous) functions (see top panels of

figure 2). This level of smoothness is suitable to reflect the fact that, within the same tissue type, the stiffness
properties are not expected to drastically change unless there is a cyst/anomaly (which we characterise as a
separate region via the level-set function). For the level set function, f, we choose 0 = 1 and { = 4 which, together
with our selection of threshold k = 1.75, yield k-levels that provide (visually) well-defined interfaces between
normal and diseased regions (see middle and right panels of figure 1).

Appendix B. The prior

As discussed in section 3.2, the proposed EKI approach for MRE consists of inferring, within the Bayesian
framework, the parameters @, 3 (o € {s, I}, 3 € B)and Oywhich characterise, via the parameterisation pwM
introduced in appendix A (see (19)), the storage/loss modulus as well as the level-set function that determines
the cystic region. We also recall that within the Bayesian framework we need to specify a prior distribution,
P(®), on those parameters which are comprised in ® (see equation (20)). This prior is crucial for EKI as the
initial ensemble in algorithm 1 consists of samples from this prior.

Let us assume that, under the prior, all the parameters comprised in ® are independent so that

P©) = [] P®;p [] P©O,n)P(®)). (B1)
pseB BseB

We recall that each of the ®,, 5’s as well as ©, have the form given in (A2) but excluding o and { which are fixed
(so we leave them out from the inference algorithm). For the sake of exposition, we focus only on ®,, gand
define ®,by analogy. We use the following assumption of independence:

P(©,,5) = P(m)P(L)P(Ly)P(L)P(w), (B2)

where P(m), P(L,),..., denote the priors of m, L,,..., and where, again, for clarity in the notation we have omitted
the dependence on (o, ) for each of the priors in the right hand side of (B2). We now proceed to define each of
these priors.

For each of our parameters ®,,, ;and ©ythe corresponding wis chosen to be Gaussian white noise (we denote
thisby P(w) = N (0, I)). We reiterate that with this choice of w, the work of Lindgren et al (2011) ensures that
the Whittle-Matern parameterisation from appendix A yields samples log G, g and fthat are Gaussian with
Matern covariance and mean log . This implies that the G,, gare log-normal RFs with mean m. The prior
distributions for the mean m associated with the G, 4’s are displayed in table B1. With this selection of priors on
mwe ensure that the average values for the prior random samples of loss/storage modulus belong to an
acceptable range that is consistent with the values of biological tissue corresponding to each anatomical regions.
For the sake of demonstration, here we have used wide (uninformative) uniform priors. In practice, however, we
can use any available knowledge (i.e. from previous studies or literature) to design other type of prior
distribution (not necessarily uniform) that better aligns with our prior knowledge of the anatomical tissue under
consideration.

For all choices of (c, 3) we select the same prior distribution for the length scales L., L,and L,. We consider
the following

P(Ly) = U[Dy/20, Dy /41, P(L,) = U[D, /20, D, /4],
IP)(Lz) = U[Dz/zoy Dz /4]> (B3)

where D,, D, and D, are the lengths of the edges/faces of the rectangular/tetrahedral domain. This selection is
motivated by the known fact (e.g. see Lasanen et al 2014) that values of a sample of a Gaussian RFs (with Matern
covariance given by (A4)) have a correlation of approximately 0.1 at a distance of L, /8({ — d/2) in the x-
direction. With the prior from (B3), such a distance (in the 2D case with our choice { = 2) is between 0.14 and
0.7. This variability of the prior length scales will allow us to characterise stiffness properties that can vary more
quickly in one particular direction. These can be observed in the top-middle row panels of figure 6 in the
supplementary material. Indeed, for some of those prior samples of the loss modulus, the background region
displays very long correlations in only one direction.
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Table B1. Relevant prior information. Ula, b] denotes
the uniform distribution on the interval [a, b].

« I5) o [log (Pa)] P(m)
s b 0.01 U[3.7 kPa, 4.6 kPa]
c 0.03 U[0.9 kPa, 1.7 kPa]
s m 0.03 U[2.45 kPa, 3.8 kPa]
s d 0.1 U[0.15 kPa, 0.4 kPa]
1 b 0.01 U[2.0 kPa, 2.9 kPa]
1 c 0.03 U[1.1 kPa, 2.0 kPa]
1 m 0.03 U[2.2 kPa, 2.9 kPa]
1 d 0.01 U[3.1 kPa, 3.5 kPa]
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