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Data compression for quantum machine learning
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The advent of noisy-intermediate scale quantum computers has introduced the exciting possibility of achieving
quantum speedups in machine learning tasks. These devices, however, are composed of a small number of
qubits and can faithfully run only short circuits. This puts many proposed approaches for quantum machine
learning beyond currently available devices. We address the problem of compressing classical data into efficient
representations on quantum devices. Our proposed methods allow both the required number of qubits and depth
of the quantum circuit to be tuned. We achieve this by using a correspondence between matrix-product states and
quantum circuits and further propose a hardware-efficient quantum circuit approach, which we benchmark on the
Fashion-MNIST dataset. Finally, we demonstrate that a quantum circuit-based classifier can achieve competitive
accuracy with current tensor learning methods using only 11 qubits.
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I. INTRODUCTION

The rapid development of quantum computers has spurred
proposals for quantum speedups in many fields, not least
for applications in machine learning. One direction can be
summarized as quantum-enhanced machine learning, where
quantum algorithms are applied to classical data [1]. Explo-
ration in this direction has led to various quantum machine
learning algorithms [2–7]. In certain settings, the use of fault-
tolerant quantum computers provides a provable advantage
over classical approaches [8,9]. However, the significant re-
source cost of these methods makes finding practical methods
for noisy intermediate-scale quantum (NISQ) devices a signif-
icant priority. A recurring problem is the loading of classical
data into quantum machine learning algorithms. A typical
approach is to represent the data as a quantum state, which
can be done in multiple ways. For example, one could encode
a black and white image by mapping the classical bits with
value 0 and 1 to the corresponding qubit (quantum bit) states
of the quantum computer [10,11]. While conceptually simple
and easy to implement with a single layer quantum circuit,
even modestly sized images with hundreds of pixels—such
as Fashion-MNIST [12]—would be well beyond the qubit
capabilities of current devices. By leveraging quantum en-
tangling operations, it is also possible to encode the image
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in a state of a logarithmic number of qubits [13,14]. For
the same example of Fashion-MNIST, this requires a much
more manageable 10 qubits, but the resulting circuit is too
deep for the current fidelity of gates and qubit coherence
times. In parallel, tensor network methods have been applied
to basic data compression and machine learning tasks with
near state-of-the-art performance [15–18]. These methods
represent quantum states as a product of tensors with cutoff
parameters—bond dimensions—that allow for systematic ap-
proximations of the quantum state by limiting the quantum
entanglement. Importantly, a large class of these tensor net-
works known as matrix-product states (MPS) [19,20], can
be directly mapped to quantum circuits with a depth that
scales polynomially in the number of qubits and the bond di-
mension [21–25]. This contrasts with the exponential scaling
with number of qubits for exact parametrizations of generic
states. In this work, we resolve the problem of the loading
of classical data by introducing a quantum data-encoding
scheme that provides control over both the number of qubits
and the quantum circuit depth. We achieve this in two steps.
First, we exploit the mapping between matrix-product states
and quantum circuits to map each image into an MPS. We
control the depth of the corresponding circuit via the bond
dimension of the MPS, and we control the number of qubits
by splitting the image into patches (where each patch is en-
coded as an independent MPS). We test this encoding by
using an MPS-based classifier on the Fashion-MNIST dataset.
This MPS-based approach can already then be directly im-
plemented on a quantum computer. Second, we propose a
hardware-efficient quantum circuit compression, which simi-
larly allows for control over both the number of qubits and the
circuit depth. In this case, however, the compression method
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is not limited by the entanglement of the quantum state in the
same way as MPS. We demonstrate that a hardware-efficient
quantum circuit classifier can achieve competitive accuracy
on the Fashion-MNIST dataset using only 11 qubits. These
two efforts together provide a scalable method to tune classi-
fication accuracy on quantum devices according to available
hardware.

II. IMAGE CLASSIFICATION USING
MATRIX-PRODUCT STATES

In this section, we describe the MPS approach for ma-
chine learning, including the data-encoding scheme and the
classifier. We focus on the task of image classification on
the Fashion-MNIST dataset, which contains 60 000 training
images and 10 000 test images from ten label classes. In our
experiments, we resize the default Fashion-MNIST images
using a bilinear interpolation from 28×28 to 32×32 to facili-
tate the patching procedure that we introduce in the following
section.

A. Data encoding

A standard way to encode classical images in a quantum
system is the so-called flexible representation of quantum
images (FRQI) [13,26], in which N pixels are encoded using
log2 N + 1 qubits. Each N-pixel grayscale image is viewed
as a flattened N-dimensional vector (p0, . . . , pN−1) with pixel
values pi ∈ [0, 1]. This vector is then encoded to the following
quantum state:

|ψ〉 = 1√
N

N−1∑
x=0

|x〉
(

cos
π px

2
|0〉 + sin

π px

2
|1〉

)
. (1)

The first log2 N qubits, which we refer to as address qubits,
label the pixel locations, i.e., the computational basis states
|x〉 correspond to binary representations of the location in
the N-dimensional array; see Fig. 1(a) for a schematic. The
remaining qubit, which we refer to as the color qubit, encodes
the pixel value or brightness. This encoding is similar to
amplitude encoding [10,14,27], but the use of the color qubit
allows for an absolute intensity scale for the image which is
lost due to normalization of the state in amplitude encoding.
Several quantum image processing algorithms that exhibit
quantum speed-ups also rely on FRQI [28,29]. By convention,
we enumerate the pixels following a snake pattern as depicted
in Fig. 1(a). The FRQI uses quantum entanglement between
the address and color qubits. For a generic image, this will re-
quire a circuit depth polynomial in N [13,25]. Although FRQI
uses only log2 N + 1 qubits to encode an N-pixel image, the
hardware requirements shift from the qubits to the gates. To
address the circuit depth, we instead use an approximate com-
pressed representation based on matrix-product states (see
Appendix A for a brief review on MPS). The bond dimension,
χ , of the MPS limits the quantum entanglement and thus
controls the accuracy of the approximation, as illustrated in
Fig. 1(c). Importantly, there exists a direct mapping between
MPS and sequential quantum circuits [21–25], as outlined in
Appendix A. The circuit depth scales linearly in the number
of qubits and polynomially with χ . The FRQI can thus be
coupled with the MPS approximation to reduce the circuit

FIG. 1. (a) Our encoding scheme consists of splitting the image
into patches, each of which is encoded in a quantum superposi-
tion state consisting of address qubits and a color qubit, as defined
in Eq. (1). (b) In the MPS learning protocol, each patch is sep-
arately encoded into an MPS consisting of tensors with physical
dimension 2 corresponding to address (circle) qubits and the color
(square) qubit. These MPS are concatenated and contracted with
an MPS-based classifier (purple) with fixed bond dimension. An
additional dimension 10 classifer leg, represented by three lines, is
used to classify the Fashion-MNIST images. (c) An example encoded
Fashion-MNIST image with bond dimension χimg = 4 for different
numbers of patches, compared with the original uncompressed im-
age. (d) The compressed image as a single single patch with varying
bond dimension χimg = 1, 2, 4, 8.

depth to O(poly(χ ) log2 N ). To control the number of qubits,
we can divide our image into patches and encode each patch
independently using the FRQI (see Fig. 1). If we split the
image into Np patches, then the encoding scheme requires
(�log2 N/Np� + 1)Np qubits. Taking Np = N means each pixel
is encoded in a single qubit, as considered in Refs. [15,30].
The encoded image is a product state of N qubits in the states
|ψx〉 = cos π px

2 |0〉 + sin π px

2 |1〉. We refer to this as the single-
pixel limit. This patching procedure allows us to interpolate
between the FRQI limit and the single-pixel limit.

B. The MPS classifier

To classify the different images, we train an MPS classifier
[15,16] with dimension 2 physical legs and a single additional
dimension L “label” leg, where L is the number of labels
(L = 10 for Fashion-MNIST). We contract each image MPS
with the classifier MPS; the element with largest amplitude
in the resulting length L vector is the predicted label. This
contraction method is shown in Fig. 1(b). In our experiments
we use the Adam optimizer [31] with learning rate 10−4 and
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FIG. 2. (a) The test accuracy for classification using MPS as a
function of the image bond dimensions χimg for fixed classifier bond
dimension χclass = 10. Each curve corresponds to a different number
of patches; see Fig. 1. We report the average of the best 100 test
accuracies to limit stochastic effects. The numbers in parentheses in
the legend are the required number of qubits on a quantum computer.
The dashed red line shows the single pixel limit, which is an exact
encoding of the image with χimg = 1. (b) The test accuracy as a
function of the classifier bond dimension χclass, for fixed image bond
dimension χimg = 4.

batch size 128—see Appendix B. In Fig. 2(a) we show the test
accuracy obtained when using our MPS data compression for
various numbers of patches and bond dimensions χimg, where
we fixed the classifier bond dimension χclass = 10. We achieve
performance comparable with state-of-the-art tensor network
methods, but at a fraction of the hardware requirements. In
particular, Ref. [16] achieved test accuracy of approximately
88% on the Fashion-MNIST dataset by assigning a single
qubit to each pixel, which would cost 784 qubits using the
original 28×28 images. As shown in Fig. 2, we can achieve
similar accuracy with relatively shallow circuits (i.e., bond
dimension 2–3) and only 64 qubits, corresponding to the 2×4
patch case. Additionally, we find that increasing both the bond
dimensions χimg (number of gates) and the number of patches
(number of qubits) improves the test accuracy. Notably, the
accuracy as a function of the image bond dimension plateaus
at a different point for each number of patches. This suggests
that the number of patches (and number of qubits) is important
for improving the accuracy. Since our method allows us to
tune both parameters, it allows us to find an optimal compres-
sion of the image that respects the limitation of the device.
Figure 2(b) shows the dependence of the test accuracy on

the classifier bond dimension χclass, for a fixed χimg. We find
that beyond χclass = 10 increasing the bond dimension has a
relatively small impact on the classification accuracy for most
choices of patching. We similarly observe that increasing the
number of patches increases the accuracy in all cases.

III. CLASSIFICATION USING QUANTUM CIRCUITS

In this section, we describe an approach to quantum
machine learning based on parameterized quantum circuits
[32–34]. We use sequential circuits to both encode the classi-
cal data and to implement the classifier. The sequential circuit
structure is inspired by the preceding MPS approach but is
specifically tailored for the local and pairwise connectivity of
many quantum computer realizations, and so we refer to them
as hardware-efficient.

A. Quantum data encoding

When mapping the MPS-based approach of the previous
section to a quantum circuit, we are left with a circuit depth
that scales polynomially with χ . This is because the mapping
entails a sequence of multiqubit gates where each gate acts
on �log2 χ� + 1 qubits, which must subsequently be decom-
posed into the two-qubit gates and rotations implemented on
physical devices (see Appendix A). We propose an alternative
circuit structure for encoding the classical data as a quantum
state, which consists of Mimg layers of sequentially arranged
two-qubit gates, as shown in Fig. 3(a). These gates are pa-
rameterized and optimized such that the resulting state has
maximal fidelity with the exact encoding of the state. Note
that since the pixel values are implicitly contained in the
probabilities for measuring each of the computational basis
states, the optimization can in principle be performed without
computing overlaps of states on the quantum computer. We
open-source these processed circuits at Ref. [35].

In Fig. 3(b), we display a sample scaled 32×32 image
compressed using the sequential ansatz for Mimg = 1, 2, and
3, using the FRQI encoding on 11 qubits. We can addition-
ally include the patching procedure to control the number
of qubits used. However, due to the computational cost of
simulating the quantum circuits, we restrict ourselves to a
single patch Np = 1. We use the Adam optimizer to obtain
the optimal circuit compression. The sequential circuit struc-
ture that we use is a subclass of MPS with bond dimension
χ = 2Mimg [21–25], as explained in Appendix A. To generate
entanglement entropy S ∼ log χ requires exponentially fewer
parameters in our quantum circuit. Conversely, for the same
number of parameters, our quantum circuits generate more
entanglement.

B. Quantum circuit classifier

To classify the encoded images, we similarly use a
hardware-efficient sequential circuit with Mclass layers, as
shown in Fig. 3(a). It is possible to directly implement the
MPS classifier in Sec. II B as a quantum circuit but with
two undesirable features. The first is that, similarly to the
state, the circuit will consist of multiqubit gates set by the
bond dimension. The second is that this approach requires
projections for some of the qubits. The result is that the
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FIG. 3. (a) The quantum circuit encoding and classification
scheme using 11 qubits. We compress each image using Mimg layers
of sequential circuits consisting of two-qubit gates. The address and
color qubits are indicated by circles, and a square, respectively, sim-
ilar to Fig. 1. We classify each image with Mclass layers of sequential
two-qubit gates (the case Mimg = Mimg = 2 is shown for illustration).
Before the final readout, three additional trainable two-qubit gates
are added. (b) Compression of a selected image using Mimg = 1, 2, 3,
compared with the uncompressed image.

number of shots (runs of the circuits) required to accurately
measure the classification outcome scales exponentially with
the number of qubits used. To classify the images we measure
the four right-most qubits in Fig. 3(a). Of the 16 = 24 bit
string outcomes, the first 10 correspond to the classes for our
images. The classification is made by taking the bit string with
highest probability. Note that following our sequential layers
we include three additional gates before measuring, as shown
in Fig. 3(a). These ensure that information can propagate from
the bottom color qubit to all measured qubits. For Mclass � 3
these extra gates are not required but improve the accuracy of
the classification.

We report the test accuracy achieved on the Fashion-
MNIST dataset using our quantum circuit approach in Fig. 4.
As we increase the number of layers in the encoded image
state Mimg, we see a significant increase in the classification
accuracy. We additionally include the results for the exact
state encoded using FRQI, which are quickly approached by
increasing the layers in the image encoding. Moreover, as a
function of Mclass the accuracy appears to plateau for small
values. This shows that with only a modest number of layers
in both the state and the classifier we can achieve competitive
classification accuracy. This demonstrates that our method
facilitates effective classification with resource requirements
that are realistic for NISQ quantum computers. We also note
the dashed red line in Fig. 4, which corresponds to an MPS ex-
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FIG. 4. The test accuracy using hardware-efficient quantum cir-
cuits for image compression and classifier on the Fashion-MNIST
dataset. We again report the average of the best 100 converged
iterations to limit stochastic effects. The accuracy is plotted against
the number of layers Mclass in the quantum circuit classifier. We show
the results the images compressed using Mimg = 1, 2, 3, compared
with the exact uncompressed images. For reference, we show the
accuracy we achieve for the χimg = 4 single patch MPS case with
χclass = 16.

periment with χclass = 16 and χimg = 4. The circuit contains
far fewer parameters but nonetheless achieves competitive
accuracy for the Mimg = 3 case.

IV. DISCUSSION

In this paper, we proposed encoding and compression
schemes for processing classical data on NISQ devices. Our
approach provides the control over the required physical re-
sources, namely the number of qubits and the circuit depth.
Furthermore, we demonstrated that using hardware-efficient
circuits for both the data encoding and classifier, we can
achieve competitive accuracy on the Fashion-MNIST dataset.
Having established the capabilities of hardware-efficient cir-
cuits on image classification problems, the protocol we use in
our MPS experiments provides a straightforward method to
scale accuracy to hardware availability. We note that the in-
vestigation of patching for the quantum circuit case would be
significantly more difficult on a classical computer; the clock-
time required to compress the full dataset then subsequently
optimize the highly entangled sequential circuit is prohibitive.
For a small number of layers, MPS-based methods could be
used, but these also become infeasible as the number of layers
increases. However, the patching can be efficiently imple-
mented on a near-term quantum device. The quantum circuits
are shallow representations capable of efficiently encoding
long range entanglement. We contrast the circuits with ma-
trix product states, which are ideally suited to encode locally
entangled states. It is interesting to consider whether quan-
tum advantages can be achieved exploiting different ways of
encoding entanglement, depending on the learning task and
dataset. A natural extension of our work is to consider various
other circuit and MPS structures, such as brickwall-patterned
circuits, MERA [36], and higher-dimensional variants. One
could also consider hybrid architectures where neural
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networks act as autoencoders that preprocess the inputs to the
quantum architecture. We also note that although the best im-
age recognition methods on Fashion-MNIST typically achieve
performances of 96% [37,38], they require several million
parameters, which we contrast with the several thousand that
large MPS and hardware efficient circuits would require. Fur-
thermore, while we discussed two methods for classification,
our image compression scheme can be used more generally.
Improvements to the quantum classifier, for instance by incor-
porating additional structure or matching the connectivity of
NISQ devices, remain interesting open questions. Addition-
ally, as with any quantum optimization problem, a realistic
algorithm should take into account the effects of gate errors
and decoherence. Nevertheless, the approach we introduce al-
lows for practical machine learning tasks to be performed with
realistic quantum resources, requiring as few as 11 qubits. The
encoded Fashion-MNIST images can be used as a quantum
dataset for benchmarking quantum classifiers. By providing
control over the number of qubits and circuit depth, we have
introduced a flexible image encoding approach for the NISQ-
era and beyond.
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APPENDIX A: MATRIX-PRODUCT STATES

Matrix-product states are an ansatz class where the coeffi-
cients of a full n-qubit state ψ are decomposed into products
of matrices. Explicitly,

|ψ〉 =
∑
{ jk}

∑
{αl }

B[1] j1
α1

B[2] j2
α1α2

. . . B[n] jn
αn−1

| j1, j2, . . . , jn〉, (A1)

where the jk ∈ {0, 1} indices are referred to as “physical”
indices and the α indices are referred to as “virtual indices.”
By convention, we refer to the dimension of the α indices as
the bond dimension χ . Without loss of generality, we may
assign any MPS a single bond dimension χ corresponding
to the largest bond dimension in the network (padding the
others with zeros). In the above expression, each tensor B[k]

for k = 2, . . . , n − 1 contains three indices, two virtual and
one physical. The boundary tensors B[1] and B[n] each contain
two indices. We will often use a diagrammatic notation for
tensor manipulations, where tensors are represented by sym-

FIG. 5. (a) Basic MPS diagrammatic notation. Connected tensors
represents summing over the index corresponding to the connected
legs. From left to right, a vector inner product, a matrix-vector
multiplication, and a matrix-matrix multiplication. (b) Converting
a general vector into an MPS. A generic vector with size 2N can
be viewed as an N index tensor. We convert each vector into a
product of matrices via a singular value decomposition, then truncate
the singular value matrix (the red tensor) to the desired number
of singular values (i.e., χ ). By repeatedly applying this procedure,
we decompose the original vector into a matrix-product state with
bond dimension χ . To return to the vector representation, we would
contract the MPS along the virtual indices α j (albeit with some loss
from the truncation).

bols and each index is represented by a leg. Two connected
legs represent summing over the corresponding index. See
Fig. 5(a) for more details.

A length 2n vector can always be decomposed into a
matrix-product state with n tensors; see Fig. 5(b). Decompos-
ing a vector in this way will guarantee that the tensors satisfy
the isometry condition

∑
jk

∑
αk

B[k] jk
αk−1αk

(
B[k] jk

α′
k−1αk

)∗
= δαk−1,α

′
k−1

. (A2)

An MPS with bond dimension χ where all the tensors satisfy
Eq. (A2) can be exactly mapped to a sequential quantum
circuit with unitaries acting on log χ + 1 qubits, as shown in
Fig. 6. For practical implementations, each unitary gate must
be further decomposed into single and two-qubit gates. For
a generic quantum gate acting on log2 χ + 1 qubits, this re-
quires O[poly(χ )] single and two-qubit gates [39], resulting in
a total cost of O[poly(χ )n] quantum operations. The mapping,
which is diagrammatically depicted in Fig. 6(a), is given by

B[k] jk
αk−1αk

= 〈αk, jk|U [k]|0k, αk−1〉, (A3)

where |0k〉 is a product state. We refer the reader to Ref. [25]
for more details. However, a sequential quantum circuit with
M layers of two-qubit gates can be viewed as an equivalent
sequential circuit with a single layer of M + 1 qubit gates
[see Fig. 6(b)]. This circuit, in turn, can be mapped to an MPS
with bond dimension χ = 2M . Every single-layer circuit thus
has an exact χ = 2 equivalence.

APPENDIX B: MPS TRAINING

As discussed in the main text, we train using the Adam
optimizer with learning rate 10−4 and a minibatch size of
Nb = 128. We trained for 3000 epochs for most cases (con-
vergence generally occurred well before this). In Fig. 7(b),
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FIG. 6. (a) The mapping between an MPS tensor and a unitary
matrix. The MPS tensors are used to define a unitary action on
an additional set of qubits initialized to a product state, where the
number of additional qubits depends on the bond dimension of the
MPS. (b) An MPS with bond dimension χ is equivalent to a quantum
circuit where each gate acts on log χ + 1 qubits. (c) Every M-layer
sequential quantum circuit with two qubit gates is a subset of the
set of sequential quantum circuit with (M + 1) qubit gates. Here, we
show the equivalence for M = 3.

FIG. 7. (a) The training accuracy as a function of the image
bond dimension. (b) The accuracy as a function of classifier bond
dimension.

FIG. 8. (a)–(c) Cross-entropy loss across training for the quan-
tum circuit classifier. We show classifiers with Mclass = 2, 6, and 12,
respectively. In each case, we show Mimg = 1, 2, and 3. (d) Training
accuracy for the quantum circuit classifier. Each curve corresponds
to a different Mimg.

we show the training accuracy as a function of the bond
dimension and patch size.

For training, we made use of the Jax library [40]. We used
Pytorch [41] to load and transform the datasets. For training,
we used a log softmax cross entropy loss function with L2

regularization. Given the classifier output vectors and their
corresponding labels within a minibatch (together denoted by
{(s, t )}), the loss function is defined by

L({(s, t )}) = − 1

Nb

∑
(s,t )

log

(
eCst∑
j eCs j

)
+ λ

2Nb

∑
wi

w2
i , (B1)
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where the sum is over all tuples of classifier output s and
the correct label t for the corresponding image. In the above
equation, s j is the jth element of vector s, wi are the weights
in the classifier MPS, C is a constant used to avoid vanishing
gradients, and Nb is the minibatch size. In our experiments,
we set λ = 10−4 and C = 1. We initialized our classifier MPS
using stacked identity matrices with Gaussian noise centered
at 0 with width 10−4. For the most part, the choice of initial-
ization had minimal impact on the training, but the random
noise needed to be sufficiently small to prevent exploding
loss functions stemming from exponential buildup due to the
sequential nature of a tensor network. This was occasionally
an issue in training as well; we resolved it by factoring out
the norm of the tensor network as needed, since we ultimately
only cared about the relative values of the output prediction
vector. The training accuracy is shown in Fig. 7(b). We note
that the plot is not monotonic. The classifier MPS reaches a
point of maximal accuracy. For short matrix-product states,
this leads to overtraining. For longer matrix-product states,
this leads to some degree of overtraining, but eventually the
variations in the Adam optimizer build until the output ex-
plodes (again because of the sequential nature of an MPS,
a small change in the tensors will build exponentially). The
degree of overtraining in the longer matrix-product states
is thus somewhat variable; we note that the test accuracy
in Fig. 2 is much cleaner, and ultimately is the important
property.

APPENDIX C: QUANTUM CIRCUIT TRAINING

Our quantum circuit classifiers are sequential circuits of
two-qubit gates, where each gate is a 4×4 unitary parameter-
ized by 15 parameters as exp(− i

2

∑
ρ,γ∈{0,1,2,3} θρ,γ σ̂ ρ ⊗ σ̂ γ ),

with the matrices σ̂ 0 = I, σ̂ 1 = σ̂ x, σ̂ 2 = σ̂ y and σ̂ 3 = σ̂ z.
We set θ0,0 = 0 to fix the phase degree of freedom of the gate.
An input image state |ψ〉img is classified by feeding it to a
circuit classifier Û , then measuring a subset of qubits L, which
we call the label qubits. We denote the remainder of qubits in
the system by S . The measurements yield a probability vector
s, with elements given by

siL =
∑

iS

|〈iLiS |Û |ψ〉|2, (C1)

where iS and iL denote the bitstrings corresponding to the
computational basis states for the respective qubit sets. Note
that the probability is normalized, i.e.,

∑
iL

siL = 1. The pre-
diction is given by arg maxiLsiL . Because Fashion-MNIST
contains 10 label classes, we use four label qubits. This out-
puts a 24 = 16 length vector, and we disregard the final six
bitstrings. In training our circuit model, we used the same loss
function as in Eq. (B1). We did not use any regularization
(λ = 0) and chose C = N (the number of pixels). We use
minibatch size Nb = 100 for 1600 epochs and train using the
Adam optimizer with learning rate 8×10−4. The loss and
training accuracy are displayed in Fig. 8 for several values
of Mclass.
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