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ABSTRACT
Machine learning techniques have received growing attention as an alternative strategy for developing general-purpose density functional
approximations, augmenting the historically successful approach of human-designed functionals derived to obey mathematical constraints
known for the exact exchange-correlation functional. More recently, efforts have been made to reconcile the two techniques, integrating
machine learning and exact-constraint satisfaction. We continue this integrated approach, designing a deep neural network that exploits the
exact constraint and appropriate norm philosophy to de-orbitalize the strongly constrained and appropriately normed (SCAN) functional.
The deep neural network is trained to replicate the SCAN functional from only electron density and local derivative information, avoiding the
use of the orbital-dependent kinetic energy density. The performance and transferability of the machine-learned functional are demonstrated
for molecular and periodic systems.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0111183

I. INTRODUCTION

The density functional theory (DFT) of Hohenberg, Kohn, and
Sham1,2 allows for efficient computation of material properties by
avoiding the complicated many-electron wave function in favor
of the computationally convenient electron density when solving
the electronic structure problem. Due to its useful accuracy and
efficiency, DFT has become the most widely used computational
approach for solving electronic structure problems in chemistry and
condensed matter physics.

In the Kohn–Sham (KS) formulation of DFT, the majority
of the energy is calculated exactly, leaving only a small portion

of the energy, known as the exchange-correlation (XC) energy, to
be approximated. There has been extensive research on improving
approximations to the XC energy, and the resulting functionals are
roughly categorized into a hierarchy of increasing complexity and
expected accuracy.3 The meta-generalized gradient approximations
(mGGAs), the highest category that depends only on semi-local
ingredients, are becoming increasingly popular for allowing high
accuracy at a favorable computational cost. The mGGA functionals
commonly consist of a per-particle XC energy density, ϵxc, built from
three ingredients: the electron density, n(r), its gradient, ∣∇n(r)∣,
and the kinetic energy density τ(r) = 1/2∑ occ.

i ∣∇φi(r)∣2, where
φi are the occupied KS orbitals. Although less common, density
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functionals depending on the density Laplacian ∇2n(r) instead of
(or in addition to) τ are also included at the mGGA level. The
total XC energy for the system is calculated by multiplying this per-
particle XC energy density by the local electron density n(r) and
integrating over all space,

E xc = ∫ drϵ mGGA
xc (n(r), ∣∇n(r)∣, τ(r),∇2n(r))n(r), (1)

= ∫ drF mGGA
xc (n(r), ∣∇n(r)∣, τ(r),∇2n(r))n(r)ϵ LDA

x (r), (2)

where F mGGA
xc is the XC enhancement factor, and ϵ LDA

x (r)
= −(3/4π)(3π2n)1/3 is the exchange energy per-particle of the uni-
form electron gas of electron density n. Note the XC energy density
is exc = nϵxc.

The kinetic energy density, τ, is commonly used in mGGAs
to recognize different chemical environments through iso-orbital
indicator variables,4–6 and as a component of the spherically aver-
aged exchange hole expansion.7 Although theoretically convenient,
τ introduces an implicit dependence on the KS orbitals, which
brings some complications. (1) It reduces computational efficiency
in molecular codes, as the contraction of basis function derivatives
required for τ is more costly than that required for GGA quantities.
For Fourier transform-based periodic codes, the performance cost is
worse still, as τ cannot be constructed for derivatives of the density
alone (as would be preferable) and, instead, derivatives of the basis
functions are required. (2) It prevents the functional being used in
orbital-free DFT calculations. (3) Evaluation of the XC potential for
τ-dependent functionals requires either optimized effective poten-
tial (OEP) techniques8,9 or a generalized KS scheme.10–12 Although
a generalized KS treatment can be computationally convenient,
the effective XC potential operator of a τ-dependent mGGA is no
longer a multiplicative function, vxc(r), and is, instead, a non-local
operator, v̂ xc.

Despite the potential advantages offered avoiding the use of
orbital-dependent ingredients such as τ, ∇2n(r) remains a less
explored ingredient and its physical significance for the XC energy
is unclear. Recently, Mejia-Rodriguez and Trickey13,14 replaced τ(r)
with functions of∇2n(r) in many mGGA XC functionals to recover
similar (but not identical) performance to the parent function-
als. This suggests an intriguing but unclear relationship between
τ(r) and ∇2n(r), although an explicit relationship remains elusive
despite significant effort.15

Machine learning (ML) has proven to be a powerful tool for
building complicated non-linear mappings for which little theoret-
ical guidance exists. It has proved successful in building complex
models across a wide variety of fields including robotics,16,17 pat-
tern recognition,18,19 drug design,20–22 and gaming.23 Within DFT
research, there has been a recent practice of applying ML to con-
struct density functionals. Synder et al. used an ML approximation
to construct an orbital-free non-interacting kinetic energy func-
tional Ts[n] for spinless fermion systems.24,25 Brockherde et al.
used ML to learn the Hohenberg–Kohn (HK) map between electron
density and external potential to give a mechanism that bypasses
solving the KS equations.26 Several other works have focused on
the XC potential problem.27–30 Specifically, interesting for this paper
is the recent work of Dick and Fernandez-Serra, in which they
use machine-learning techniques to self-consistently determine an

mGGA similar to the Strongly Constrained and Appropriately
Normed (SCAN) functional5 that satisfies some of the exact con-
straints.31 A perspective surveying the current state of ML in com-
putational chemistry and materials science was recently published
by Westermayr et al. in Ref. 32.

The SCAN functional5 has proven to be effective for describing
a wide variety of systems,33 such as liquid water and ice,34 semi-
conductor materials,35 and metal oxides,36 as well as for key prop-
erties of correlated materials like cuprates.37–39 SCAN’s success is
credited to its adherence to all of the known exact-constraints
applicable to a meta-GGA functional, along with the philosophy
of using “appropriate norms” to set free parameters with minimal
empiricism. These appropriate norms are provided by the systems
for which a semi-local density functional approximation can be
expected to be highly accurate, that is, the total energies of systems
with highly localized exchange-correlation holes.5

In light of this dual success of both constraint-driven design
and ML techniques, a question arises. Is the philosophy of exact
constraints and appropriate norms compatible with ML for func-
tional design? Growing evidence that exact constraint adherence can
improve ML transferability suggests it is. Indeed, earlier works from
Hollingsworth et al. show that enforcing coordinate scaling con-
straints can improve machine-learned functionals.40 Nagai et al.41

recently introduced a method to analytically impose constraints on
the asymptotic behavior of an ML XC functional, finding generally
improved accuracy. More recently, Kirkpatrick and co-workers42

developed a functional DM21 (DeepMind21) that includes specific
training to approximately obey two classes of constraints on systems
with fractional electrons, which are fractional charge systems and
fractional spin systems.42

In our work, we explore this idea of exact constraints and
appropriate norms satisfaction by training a deep artificial neural
network (ANN) to reproduce the XC enhancement factor of the
SCAN functional using ∇2n(r) instead of τ(r), a similar goal to
the SCAN-L functional.14 The de-orbitalization of SCAN stands as
a convenient application for exploring the idea of constraint sat-
isfaction in ML functionals, with SCAN-L providing an analytical
benchmark for the task.

The ML models will be trained to perform the transformation,

F SCAN
xc (n(r), ∣∇n(r)∣, τ(r)),

↓

F SCAN−ML
xc (n(r), ∣∇n(r)∣,∇2n(r)).

(3)

We approach this mapping of orbital-free ingredients onto the
SCAN XC enhancement factor by using two different ML mod-
els adhering to different numbers of exact conditions. A similar
transformation could be made considering energy densities directly,
although we do not do so here. While setting the energy density as
the objective directly would naturally bias training toward energet-
ically important regions, it is simpler to engineer exact constraint
adherence into the enhancement factor. One model is a single totally
connected ANN trained for Eq. (3) directly, termed the “combined
model.” The other model is built as two complementary exchange-
and correlation-like ANNs designed to obey exact spin-scaling con-
straints, termed the “spin-scaled model.” We also impose the general
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Lieb–Oxford bound43 on these models to create models that also
satisfy this constraint.

II. EXACT CONSTRAINTS
Although the exact XC functional remains unknown, it is

known to obey many mathematical conditions, commonly called
the “exact constraints” of XC functionals. Currently, 17 exact con-
straints5 are known to apply at the semi-local functional level. These
can be broken down as conditions for the exchange energy: (1) nega-
tivity, (2) spin-scaling,44 (3) uniform density scaling,45 (4) the slowly
varying density gradient expansion (to fourth order),46 (5) non-
uniform density scaling,47,48 and (6) a tight bound for two-electron
densities.43,49 For correlation: (7) non-positivity, (8) the slowly vary-
ing density gradient expansion (to second order),50 (9) uniform
density scaling to the high-density limit,45 (10) uniform density scal-
ing to the low-density limit,45 (11) zero correlation energy for any
one-electron spin-polarized density, and (12) nonuniform density
scaling.47,48 Finally, there are constraints known for the exchange
and correlation together: (13) size extensivity, (14) the general
Lieb–Oxford bound,43,51,52 (15) weak dependence upon relative spin
polarization in the low-density limit,53,54 (16) static linear response
of the uniform electron gas,55 and (17) the Lieb–Oxford bound for
two-electron densities.43

A subset of the 17 constraints is amenable to an ML model. The
first of these is the behavior of the exchange energy under constraint
(3): uniform density scaling,

nγ(r) = γ3n(γr), (4)

where γ is a positive real number. The exact exchange energy is
known to scale as

E x[nγ] = γE x[n], (5)

under this transformation. The effect of this condition on kernel
ridge regression models was investigated by Hollingsworth et al.
in Ref. 40 for Hooke’s atom model systems, concluding that its
inclusion improved the ML functional performance. This constraint
can be imposed by restricting the model to only take specific
dimensionless quantities as input, although we do not do so here.

Constraint (2), the spin-scaling relation for exchange energy,

E x[n↑, n↓] =
E x[2n↑] + E x[2n↓]

2
, (6)

is simple to enforce for ML exchange models by requiring separate
exchange and correlation models, and that the same exchange model
handles each spin channel independently.

Constraint (14), the general Lieb–Oxford bound on the XC
enhancement factor, states that

0 ≤ F xc(r) ≤ 2.215. (7)

These bounds can be enforced on ML models by including a
post-processing step that maps the ML model output, denoted as
ANN(r), to the desired domain, e.g.,

F ML
xc (r) =

2.215
1 +ANN(r)2 . (8)

Note that in Eq. (8), ANN(r) is an auxiliary quantity within the
model, and the neural network output alone is, therefore, not an
appropriate XC enhancement factor by itself. A similar approach can
be applied to impose constraint (6), the tight bound for the exchange
enhancement factor Fx(r) ∈ [0, 1.174], if the exchange and corre-
lation models are separated. Conveniently, such post-processing
also enforces constraints (1) and (7), non-positivity, by constraining
Fxc ≥ 0. It appears more challenging to enforce the exact constraints
outside this subset in ML models. For example, while enforcing the
second (and fourth)-order gradient expansions for correlation (and
exchange) is relatively straightforward in analytical functionals, the
ML design contains thousands of parameters, which cannot be fully
controlled. Thus, it is non-trivial to enforce such gradient expansion
constraints on the model a priori. Despite this, the nature of super-
vised training against methods that obey such constraints (such as
SCAN) will result in the trained model effectively learning the con-
straints to some degree. However, without the rigorous enforcement
described above, it is unclear how well such adherence will transfer
out of the training domain.

III. INPUT DOMAIN
Identifying the input domain is a critical part of the ML model

design as a model’s performance can be strongly dependent upon the
nature of its inputs. Since our central interest is to replace the kinetic
energy density τ(r) dependence, we will only consider orbital-free
ingredients. Four density inputs were initially identified,

rs = (
3

4πn
)

1/3
−Wigner − Seitz radius, (9)

s =
∣∇n∣

2(3π2)1/3n4/3 − Reduced density gradient, (10)

ζ =
n↑ − n↓
n↑ + n↓

− Spin polarization, (11)

q =
∇

2n
4(3π2)2/3n5/3 − Reduced density laplacian. (12)

The Weigner–Seitz radius is the radius of a sphere, which,
on average, contains one electron for a uniform density n. The
reduced density gradient introduces inhomogeneity, which mea-
sures how fast and how much the density varies on the scale of the
local Fermi wavelength 2π/kF, where k F = (3π2n)1/3 is the Fermi
wavevector. The reduced density Laplacian also measures the den-
sity inhomogeneity and can distinguish bonds, in contrast to the
reduced gradient, which vanishes at the middle of the bond.15 The
above dimensionless ingredients are preferred for XC functionals
rather than using the density variables directly as the correct uni-
form coordinate density-scaling behavior can be satisfied with them
in conventional XC functionals.45 We note that the ML exchange
models, here, break the formal scaling limits, in practice, as we sup-
ply density information to the exchange model through rs, thereby
violating the exchange coordinate-scaling condition.

Further exploration revealed that including additional ingredi-
ents directly from the SCAN exchange and correlation functionals
(see supplemental material of Ref. 5) could improve the model
performance,
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ϵ0
c(rs, s, ζ) − Single orbital correlation, (13)

ϵ1
c(rs, s, ζ) − Slowly varying correlation, (14)

g x(s) − Exchange inhomogeneity, (15)

h 0 = 1.174 − Single orbital exchange, (16)

h1 = 1.065 −
0.065

(1 + 10s2/81
0.065 )

− X second order gradient expansion.

(17)
These additional inputs are combinations of the original den-

sity ingredients and do not provide any new information directly.
However, their inclusion makes learning more efficient, as it reduces
the manipulations that the network must learn. This limits depen-
dence on the network to only learning τ-dependent aspects, rather
than requiring it to learn every detail of the SCAN functional.

The possible range of the input parameters is very different
from the desired range of the model outputs: 0 ≤ F ML

xc ≤ 2.215. For
example, the domain of rs and s is [0,+∞), while q is (−∞,∞). Such
a mismatch in the magnitude of input and output is known to be
challenging for ML models. To correct for this, we pre-processed the
unbounded inputs using the hyperbolic tangent function, tanh(x),56

to smoothly map the unbounded quantities to (−1,+1). With
pre-processing, the inputs are defined as

r̃s = tanh(rs), (18)

s̃ = tanh(s), (19)

q̃ = tanh(q). (20)

Finally, we pre-process ζ as

ζ̃ =
1
2
[(1 + ζ)4/3

+ (1 − ζ)4/3
], (21)

to ensure the model is a symmetric function of spin polarization,
following the spin-scaling of the exchange energy44,57 of the uniform
electron gas.2 The inputs of Eqs. (13)–(17) are unprocessed as their
ranges are already correctly bounded. Note that the pre-processed
variables [Eqs. (18)–(21)] are only supplied to the network and are
not used to generate the additional inputs of Eqs. (13)–(17).

Having identified the input domain, a training dataset con-
sisting of 20 atoms was generated by using accurate spherical
Hartree–Fock Slater-type orbitals58–60 containing open- and closed-
shell atoms (He, Li, Be, B, C, N, O, F, Ne, Na, P, Cl, Ar, K, Cr,
Cu, Cu+, As, Kr, Xe) with s, p, and d valence shells. Spherical
Hartree–Fock Slater-type orbitals were chosen to match the data
used to fit parameters in SCAN, although we expand the set of atoms
significantly beyond the rare gas atoms used to fit SCAN. The ener-
getically important region of the atomic density is typically between
0 and 4 a0 or bohr, and the density of each atom was, therefore,
sampled in shells of decreasing sample density for models, with
1300 radial points uniformly sampling in r < 1 bohr (core), 800 in
1 ≤ r < 4 bohr and 500 in the tail region 4 ≤ r < 10 bohr.

These atomic training data were augmented with densities from
the “appropriate norm” systems used in SCAN’s construction. The
first norm is the one electron hydrogen atom, which is used to
ensure that SCAN is one-electron self-correlation-free (constraint

11). The second and third norms are the jellium surface densities for
rs = 2, 3, 4, and 6,61,62 and the converged SCAN orbitals of the com-
pressed argon dimer with nuclear separations of 1.6, 1.8, and 2.0 Å,
which were used to fix SCAN’s interpolation function parameters.5
We restrict the training dataset to only these appropriate norms and
avoid including chemically bonded systems, such that any result-
ing chemical bonding shown by the trained model is a prediction
arising from underlying transferable physics rather than simple fit-
ting. While increasing the domain of the training data is expected
to give the resulting ML models higher accuracy for a wider range
of problems, our intent, here, is to observe how exact constraint sat-
isfaction can transfer knowledge from minimal training data onto
diverse problems.

IV. NEURAL NETWORK ARCHITECTURE
AND TRAINING

In this work, all the networks were built on the basis of the
ML framework Tensorflow.63 For the models, the non-linearity in
the mapping is acquired by using sigmoid,64 tanh, and exponential
linear unit (elu)65 activation functions, chosen as commonly used
continuously differentiable activation functions. Ensuring smooth
activation functions was found to be essential for obtaining reason-
able XC potentials, as discussed below. The dataset was randomly
divided into a training (80%) set and a validation (20%) set, using
the train-test split feature of sci-kit learn.66 Hyper-parameter search-
ing identified a three-layered model with sigmoid to sigmoid to
tanh activation functions as preferable for the combined model,
while a two-layered model with tanh to elu activation functions
was preferred for the spin-scaled model. The network weights and
biases were optimized by stochastic gradient descent with the Adam
optimizer67 using a learning rate of 0.005. The training dataset is
comprised of samples of Fxc(r) from the DFT quadrature grid. A
gradient step is applied after each sample for a stochastic gradient
descent. The optimized model was chosen as that which minimizes
the error for the validation set, generally found after one complete
pass of the training data.

A. Combined model
Figure 1(a) presents a schematic for the simple neural network

(NN) architecture, termed the “combined model.” As the name sug-
gests, the combined model receives inputs constructed from total
density (n↑ + n↓) as the features and targets SCAN’s exchange-
correlation enhancement factor. Different numbers of hidden layers
and neuron counts were tested, with a three-layered model with
100, 50, and 20 neurons in the respective layers found to perform
best.

For the combined model, the loss function to be optimized in
the learning process is defined as

L combined =
1
N

N

∑
i
(F ML

xc − F SCAN
xc )

2
, (22)

where N is the number of training data points, thus minimizing
the mean square difference between the SCAN XC enhancement
factor and the learned XC enhancement factor. The Lieb–Oxford
bound for the combined model is introduced as a post-processing
mechanism following the explanation in Eq. (8).
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FIG. 1. ML model architecture and workflow for (a) combined and (b) spin-scaled models. For the combined model, total density (n↑ + n↓) is given as the input. In the
spin-scaled model, the upper architecture is for the exchange model learning, while the lower is the correlation-like model. Spin-scaling is satisfied in the exchange model
represented by (2nσ), where σ =↑↓ spin channels.

B. Spin-scaled model
The spin-scaled model follows a more complex architecture

that allows it to obey the spin-scaling exact constraint by treating
exchange and correlation separately, as discussed above. The overall
architecture for the spin-scaled model is presented in Fig. 1(b). The
spin-scaled model is comprised of two separate networks, one for
exchange and the other for correlation. These networks are trained
separately and later combined to form the complete model. Training
is, therefore, carried out as a two-step process.

This separation by spin channel reduces the input
domain for the exchange network to six features for exchange,
{r̃sσ , s̃σ , q̃σ , g xσ , h 0σ , h1σ}, separately generated for each spin σ. The
exchange network is trained first to minimize the mean square
difference with the SCAN exchange enhancement factor defined as

L exchange =
1
N

N

∑
i
(F ML

x − F SCAN
x )

2
, (23)

with the spin-scaled exchange enhancement factor,

F ML
x =

Fx(2n↑)e LDA
x (2n↑) + F x(2n↓)e LDA

x (2n↓)
2e LDA

x (n↑ + n↓)
. (24)

As the exchange energy must be invariant to the permutation of spin
labels, the same exchange network is used for both spin channels
and should be trained on both spin channels of the training data.
The exchange network has two layers with 80 and 40 neurons at the
first and second layers, respectively, and the activation functions are
tanh and exponential linear unit (elu).65

The correlation energy is not subject to the same spin-scaling
constraint and is handled by a separate model. This second model
takes a reduced set of the total density (n↑ + n↓) input variables suit-
able for correlation: {r̃s, s̃, q̃, ζ2, ϵ 0

c , ϵ1
c}. This second network has the

same hyperparameters as the exchange network.

TABLE I. Deviation of the spin-scaled exchange network total exchange energy
(hartrees) from the SCAN exchange functional against which it was trained. Calcu-
lated for the set of spherical atom densities and the molecules of the G3 test set.
Mean error (ME) and Mean absolute error (MAE) are presented, and full data are
given in supplementary material. Here, “LO” abbreviates “Lieb–Oxford.”

No LO bound LO bound

Atoms ME −0.147 −0.541
MAE 0.153 0.543

G3 ME −0.209 −0.448
MAE 0.209 0.448

The loss function for the second network is

L correlation =
1
N

N

∑
i
[F ML

c − (F SCAN
xc − F ML

x )]
2
, (25)

where F ML
x is the output of the previously trained exchange network.

This second network is, therefore, not a true model of SCAN corre-
lation as the loss function of Eq. (25) drives it to compensate for
deficiencies in the exchange network, although correlation effects
will dominate if the exchange network is accurate. Table I shows the
deviation of the LO bounded and un-bounded exchange networks
(to be discussed below) in total exchange energy from SCAN for the
spherical atoms, which were part of the training and test sets, and the
molecules of the G3 set, which were not in the training set. From this,
we see that deviation is typically <1% for both networks, although
the bounded model deviates more significantly than the unbounded,
indicating that good exchange models have been learned.

Finally, the total enhancement factor is obtained by summing
the exchange network and second network enhancement factors as

F spin− scaled
xc = F ML

x + F ML
c . (26)

The Lieb–Oxford bounds for the spin-scaled model are intro-
duced separately for exchange and the correlation parts as they are
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trained separately. For the exchange part, we follow similar mecha-
nism as explained in Eq. (8), where the bound is introduced to the
exchange enhancement factor as

F ML− bound
x (r) =

1.174
1 +ANN(r)2 . (27)

Here, we choose a tight bound of 1.174 for the exchange.
For correlation, we introduce the bound by modifying the loss

function to include an additional penalty term,

L bound
correlation =

1
N

N

∑
i
{[F ML

c − (F SCAN
xc − F ML

x )]
2

+ μ × relu[F ML
xc − 2.215]}, (28)

where μ value is chosen to be 20, and relu is the rectified linear
unit.68 Here, we see that if the total XC enhancement factor is smaller
than the tight bound 2.215, the penalty term is zero, whereas any
value of the total XC enhancement factor greater than 2.215 will
incur a penalty. This total loss function is minimized to satisfy the
Lieb–Oxford bound introduced in the ML model. It is possible that
the loss functions used here may be prone to over-fitting. Such
error could be mitigated by including additional penalty terms on
the smoothness of the model, or including dropout layers into the
network during training.

V. RESULTS AND DISCUSSION
A. Atomic performance

Figure 2 shows the SCAN and ML-model XC enhancement for
the silicon atom, which was not part of the training set. Figures 2(a)
and 2(b) show combined and spin-scaled models, respectively,

FIG. 2. XC enhancement factor plots for the test silicon atom, which was not
included in the training set for (a) combined model and (b) spin-scaled model with-
out Lieb–Oxford bound, while (c) and (d) represent the same as (a) and (b) with
Lieb–Oxford bound. All models are compared against SCAN functional. Density
was obtained from accurate spherical HF orbitals.58–60

without the Lieb–Oxford bound, while Figs. 2(c) and 2(d) include
the Lieb–Oxford bound constraint. All the ML models show good
agreement with the SCAN’s XC enhancement factor for this system.
The combined model without the Lieb–Oxford bound shows slightly
less variation in the energetically important region between r = 0 and
r = 4 bohr.

During training, we did not target the total XC energy directly,
in favor of learning the XC enhancement factor of an existing mGGA
instead. This switch toward learning the XC enhancement factor, a
local property, has three benefits. Most importantly, it reduces the
complexity of the training by avoiding summing the derivatives of
many training points in a numerical integration batch. Second, far
more training, data are available for a given functional’s local XC
enhancement factor than for total XC energies, as every point in the
all-space integration of any system can now be considered a train-
ing point. We note that all training points were weighted equally.
As some points contribute more to the total energy than others
learning the XC energy density directly would implicitly bias train-
ing toward energetically important regions, such as core densities,
and away from less important regions, such as asymptotic densi-
ties. Third, this avoids the introduction of a gauge freedom in which
many different energy density functions can integrate to the same
total energy, which could result in learning a model that gives rea-
sonable total energy, but poor local accuracy to the SCAN energy
density. Despite this training against the local XC enhancement fac-
tor, it will be shown that the models are successful in recovering
the total XC energy for the training atom sets, predicting the global
property from local training.

B. Molecular test sets
For the models trained against data from atomic systems, a

real challenge is to generalize to problems outside the training
domain. We examine this by looking at model accuracy for the
open- and closed-shell molecules of the G3 test set.69 The input
ingredients (density, and its gradient and Laplacian) and the SCAN
F SCAN

xc target for all molecular calculations were generated from self-
consistent SCAN orbitals in the 6-311++G(3df,3pd) basis set.70,71

All molecular calculations were carried out using the QUantum

TABLE II. Mean absolute difference (MAD) in kcal mol−1 for G3 set of 226 molec-
ular atomization energies.69 All SCAN G3 calculations were performed fully self-
consistently with the 6-311++G(3df,3pd) basis set70,71 in the QUEST program.72

The ML calculations were performed non-self-consistently from SCAN orbitals. The
ML models with Lieb–Oxford bound are denoted by “LO” within the table. Data are
reported as the mean absolute difference between the total energy calculated using
the ML model or SCAN-L and that calculated using the parent SCAN functional.

Difference to SCAN

ML models
Closed shell

(MAD)
Open shell

(MAD)
(G3)

(MAD)

Combined 7.49 7.89 7.69
Combined-LO 11.88 9.26 10.58
Spin-scaled 8.03 4.85 6.44
Spin-scaled-LO 7.66 5.66 6.66
SCAN-L 10.74 4.77 7.75
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TABLE III. Mean absolute error (MAE) in kcal mol−1 for G3 set of 226 molecular
atomization energies.69 Errors are given relative to standard reference values for the
G3 set.

Reference comparison

ML models
Closed shell

(MAE)
Open shell

(MAE)
(G3)

(MAE)

Combined 7.80 5.17 6.48
Combined-LO 13.24 7.26 10.25
Spin-scaled 8.55 3.73 6.14
Spin-scaled-LO 11.14 6.35 8.75
SCAN 6.53 6.23 6.49
SCAN-L 7.26 4.55 5.91

Electronic Structure Techniques (QUEST) program.72 A dense
numerical integration grid was used to ensure SCAN calculations
were properly converged, defined in QUEST72 as a Lebedev angu-
lar grid of degree 4173 and an LMG radial grid with an accuracy
threshold of 10−15.74

The mean absolute difference or error in atomization energy
for the G3 set is summarized in Tables II and III for open-shell,
closed-shell, and total collections. Table II shows errors relative to
atomization energies calculated by using the parent SCAN func-
tional to illustrate model fidelity. Table III shows errors relative
to standard reference total energies for the set to illustrate the
models’ chemical accuracy. Overall, all models showed comparable
performance giving accuracy close to the SCAN functional (MAE
6.53 kcal mol−1). In particular, enforcing the correct spin-scaling
relation in the ML models improved accuracy for the open-shell sys-
tems, although this was accompanied by a small reduction in accu-
racy for the closed-shell systems. Introduction of the Lieb–Oxford
bound to the combined model deteriorated performance for both

open- and closed-shell systems. This unexpected poor performance
suggests that enforcing the Lieb–Oxford bound through Eq. (8) does
not seem to be a successful strategy.

It is possible that the reduced performance found is a result
of locally imposing the Lieb–Oxford bound on the model. As
the Lieb–Oxford bound is a constraint defined for the total XC
energy, imposing it as a constraint on the integrated energy may be
more successful; however, this would require a significantly differ-
ent training scheme. We found that, in practice, the Lieb–Oxford
bound was obeyed by the unbounded models for all training and test
examples as a result of having been trained on Lieb–Oxford bound
obeying examples. It is unclear how general this adherence is across
general densities, however, in contrast to the bounded models for
which the Lieb–Oxford bound is obeyed by construction.

Although such post-processing is theoretically convenient, the
results from the G3 set and lattice constant below show that it sig-
nificantly limited model learning during training. We understand
this as an effect of the non-linear normalization of Eqs. (8) and (27).
These two equations present challenging task of requiring the ANN
to learn an unbounded function and requiring the ANN to be very
large when the target Fxc(Fx) is small. The spin-scaled model per-
forms better than the combined model because the number to return
(1.174) is relatively smaller compared to 2.215 for the combined
model and, hence, the error is smaller. An alternative solution for
enforcing this constraint could be to simply truncate the range of
the network output,

F ML
xc = max(0, min(2.215, ANN(r))), (29)

and

F ML
x = max(0, min(1.174, ANN(r))), (30)

FIG. 3. Exchange-correlation enhancement factor plotted along the bond axis for O2 (open-shell) and CO (closed-shell) from (a) combined model and (b) spin-scaled model
without Lieb–Oxford bound. (c) and (d) are the same as (a) and (b) but for models including Lieb–Oxford bound. The gray vertical lines mark atomic positions.
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however, this may introduce undesirable discontinuities in the par-
tial derivatives of the model, transferring into a non-physical XC
potential.

To better understand how faithfully the ML models are repro-
ducing the SCAN functional, Fig. 3 compares the XC enhancement
factor, Fxc, for the open-shell O2 and closed-shell CO molecules. We
see that all the models are accurate in the areas immediately around
the nuclei. This is expected from the good atomic performance as
these core regions are relatively unchanged by the covalent bond-
ing. The models deviate more severely around the bond center, with
all models underestimating F SCAN

xc . In these regions, ∣∇n∣ → 0 and
hence s→ 0, while the density n remains significant. Such regions
are under-represented in the training set, appearing only in small
regions at the center of the compressed Ar2 diatomic. This suggests
that the spin-scaling relation enforced in the spin-scaled model as
well as the Lieb–Oxford bound are insufficient to transfer learning
from a training set that does not include chemical bonding, onto
systems that are chemically bound. Further constraint satisfaction,
or inclusion of bonding data into the training set, is likely necessary
to improve model accuracy at these important points. We also note
that the combined model with no Lieb–Oxford bound exhibits sharp
spikes in Fxc in the bonding regions that are not seen for other ML
models or the SCAN functional.

C. Lattice constants of solids
The transferability of the ML functionals was further tested

by calculating the lattice constants of 20 solids from the LC20 test
set.75 This tests the model’s ability to generalize into further unseen
chemical environments in periodic systems, as well as requiring
description of the energy as a function of nuclear displacement. The
LC20 set is, therefore, a sensitive test of model transferability. The
equilibrium lattice constants were determined by a nine-point fit of
total energy per unit cell to the Vinet equation of state around the
SCAN equilibrium unit cell volume (V0) in a range of V0 ± 10%.77,78

Figure 4 compares LC20 results from ML models with the
SCAN and SCAN-L functionals. The SCAN results for lattice con-
stants are taken from Ref. 5 and SCAN-L results from Ref. 14.
The ML calculations were obtained non-self-consistently using
Perdew–Burke–Ernzerhof (PBE) densities, not SCAN densities as
was used for molecular calculations. This is because SCAN suffered
numerical instabilities in calculations using FHI-aims,76 with some
systems failing to converge. FHI-aims was used for periodic calcu-
lations rather than VASP (which was used for Refs. 5 and 14) as
all-electron calculations were required to obtain the required input
data for lattice constant calculations. We should, therefore, be aware
of a possible density-driven error for the ML models resulting from
the PBE densities on which they were evaluated, which could be
significant.

The results of Fig. 4 show that the ML models do not perform as
well for solids as they do for gas phase atoms and molecules, suggest-
ing difficulty in generalizing knowledge into this untrained domain.
The spin-scaled model performed significantly better than the com-
bined model both with and without enforcing the Lieb–Oxford
bound. Although the performance of ML models is poor compared
to SCAN and SCAN-L, they improve slightly on the PBE GGA51

(MAE 0.060 Å). Having said that, it suggests a similar conclusion
to the molecular tests; that the spin-scaling and the Lieb–Oxford

FIG. 4. Mean Absolute Error in predicted lattice constants (MAE, Å) for SCAN,
whose results are obtained from Ref. 5, SCAN-L, whose results are obtained from
Ref. 14, combined, combined with Lieb–Oxford bound (denoted “LO” within figure),
spin-scaled and spin-scaled with Lieb–Oxford bound for the LC20 set of 20 solids
with lattice constants ranging from 3.415 to 6.042 Å.75 The ML calculations were
performed using fixed self-consistent PBE densities generated using FHI-aims.76

bound are insufficient to transfer learning into the periodic sys-
tems. The choice to model the full XC enhancement factor may
also contribute to this poor transferability, rather than only training
the orbital dependent parts as in Ref. 13. Although some extended
character is present in the jellium surfaces, the training data are
predominantly isolated systems and, hence, extended systems are
under-represented. Inclusion of such information in the training
set, or adjusting the model to target τ directly, is likely necessary to
improve the model accuracy.

D. Exchange-correlation potential
The XC potential is defined as

v xc(r) =
δE xc

δn(r)
. (31)

This is constructed for the ML models from the partial derivatives of
the model with respect to its ingredients,

{
∂ϵ ML

xc

∂n(r)
,

∂ϵ ML
xc

∂∣∇n(r)∣
,

∂ϵ ML
xc

∂∇2n(r)
}, (32)

through repeated application of the chain rule. In practice, this is
achieved by using the back-propagation mechanism of the machine
learning framework.79 Here, the choice of the activation functions
for the neuron layers is critically important for obtaining a smooth
XC potential appropriate for well-converged self-consistent field
(SCF) calculations. When the activation functions are differenti-
ated during back-propagation, the use of activation functions with
discontinuous derivatives, such as the popular rectified linear unit
(relu),80 may introduce discontinuities into the XC potential that can
harm SCF convergence and computational efficiency. We, therefore,
used only smooth sigmoid, tanh, and elu activation functions within
the present models.

Figure 5 shows partial derivatives of the combined and spin-
scaled models with respect to input ingredients, compared against
the equivalent for the SCAN functional where they exist. Note
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FIG. 5. Derivatives of SCAN and ML model XC energy density (combined and spin-scaled) with respect to input ingredients for the silicon atom (not in the training set). ML
derivatives are represented by solid lines, while SCAN is dotted. Derivative components for (a)–(d) combined model without LO bound, (e)–(h) spin-scaled model without LO
bound, (i)–(l) combined model with LO bound, and (m)–(p) Spin-scaled model with LO bound. Columns (a), (e), (i), and (m) show derivative with respect to density, columns
(b), (f), (j), and (n) show derivative with respect to same-spin square gradient, columns (c), (g), (k), and (o) show derivative with respect to opposite-spin square gradient, and
columns (d), (h), (l), and (p) show derivative with respect to density Laplacian.
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that ϵ SCAN
xc (n, ∣∇n∣, τ) and ϵ ML

xc (n, ∣∇n∣,∇2n) are necessarily differ-
ent functions, even though ϵ ML

xc has been trained to reproduce ϵ SCAN
xc .

Hence, we should not expect their partial derivatives in n and ∣∇n∣ to
match. Figures 5(a)–5(d) show the combined model partial deriva-
tives for the test silicon atom, while Figs. 5(e)–5(h) show the same
for the spin-scaled model.

Figures 5(a), 5(e), 5(i), and 5(m) show that the density par-
tial derivative is comparable to SCAN for all models. All models
exhibit oscillations in this derivative, although these are less severe
for the spin-scaled models than the combined models. Figures 5(b)
and 5(c) and Figs. 5(j) and 5(k) for the combined model without
and with Lieb–Oxford bound constraint and Figs. 5(f) and 5(g) and
Figs. 5(n) and 5(o) for the spin-scaled model, again with and without
Lieb–Oxford bound, show the partial derivatives with respect to the
same spin and cross-spin gradient components. Finally, Figs. 5(d),
5(h), 5(i), and 5(k) show the Laplacian partial derivatives.

It is not clear to what degree the oscillations of the present par-
tial derivatives may affect the SCF performance of the ML models
without performing such calculations, which is beyond the scope
of this paper. We can reasonably expect the smoother spin-scaled
model to outperform the combined model in this regard, however, as
a result of the reduced oscillations seen in Fig. 5. The harmful impact
of such oscillations may be significantly damped if the regions they
occur in are not energetically important and the curvature mini-
mization method of Cancio, Wagner, and Wood81 could be explored
for controlling the potentials of Laplacian-dependent ML function-
als. We note that the SCAN functional is known to have problematic
oscillations in its XC potential, which reduce its computational effi-
ciency but generally do not prevent SCF convergence.82–86 The sim-
ilarity between the ML and SCAN partial derivatives of Fig. 5, there-
fore, suggests that self-consistency can likely be reached, although
this may be sensitive to the choice of starting guess orbitals if they
are different from the converged orbitals used in training.

VI. DISCUSSION
A broad goal of this work has been to explore how exact

constraint adherence can enhance the transferability of ML den-
sity functionals beyond a limited set of training data for which
their accuracy is theoretically well justified. For the semi-local meta-
GGA functionals, these are systems for which the XC hole remains
well localized (atoms and compressed non-bonding diatoms), or for
which the long-range parts of the X and C holes cancel (jellium).87,88

It is unclear to what extent our models’ overall fidelity to SCAN is
a limitation of this restricted training data, and to what extent it
reflects a fundamental difficulty in representing SCAN from orbital-
free ingredients. The success of the SCAN-L and related function-
als13 suggests that the former, although repeating the present study
with a significantly expanded training set that covers more of the
chemical space, could provide compelling evidence one way or the
other; however, it is beyond the present scope.

VII. CONCLUSION
We have explored how a philosophy of exact constraints and

appropriate norms can be combined with ML techniques in func-
tional design. We have shown a simple test of this idea as a
de-orbitalization of the SCAN functional, using the density Lapla-
cian, ∇2n(r), in place of kinetic energy density τ(r). Four ML

functionals were developed, enforcing a spin-scaling constraint, the
Lieb–Oxford bound, both, and neither. These models were trained
using a dataset with no chemical bonding, preferring the norms
appropriate for semi-local functionals.5 The model satisfying both
the spin-scaling constraint and the Lieb–Oxford bound generally
achieved a more balanced performance across the properties tested,
although performance was worse than that achieved by the analytical
SCAN-L de-orbitalization for solids. Given that the model perfor-
mance was generally improved when both constraints were imposed,
it is reasonable to believe that engineering in further constraints
can enhance the robustness of the ML models out of the training
domain.

SUPPLEMENTARY MATERIAL

Supplementary material contains: (1) Individual atomization
energy data for the AE6 test set, (2) Individual reaction barrier height
data for the BH6 test set, (3) Complementary plots for Fig. 3 showing
angle-averaged XC energy density, (4) Individual data for the error
in atomic and G3 exchange energies from the exchange component
of the spin-scaled model, and (5) Individual data for the error in the
G3 test set.
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