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Abstract
Small gene effects involved in complex/omnigenic traits remain costly to analyse using current
genome-wide association studies (GWAS) because of the number of individuals required to return
meaningful association(s), a.k.a. study power. Inspired by field theory in physics, we provide a
different method called genomic informational field theory (GIFT). In contrast to GWAS, GIFT
assumes that the phenotype is measured precisely enough and/or the number of individuals in the
population is too small to permit the creation of categories. To extract information, GIFT uses the
information contained in the cumulative sums difference of gene microstates between two
configurations: (i) when the individuals are taken at random without information on phenotype
values, and (ii) when individuals are ranked as a function of their phenotypic value. The difference
in the cumulative sum is then attributed to the emergence of phenotypic fields. We demonstrate
that GIFT recovers GWAS, that is, Fisher’s theory, when the phenotypic fields are linear (first
order). However, unlike GWAS, GIFT demonstrates how the variance of microstate distribution
density functions can also be involved in genotype–phenotype associations when the phenotypic
fields are quadratic (second order). Using genotype–phenotype simulations based on Fisher’s
theory as a toy model, we illustrate the application of the method with a small sample size of 1000
individuals.

1. Introduction

Identifying the association between phenotypes and
genotypes is the fundamental basis of genetic anal-
yses. In the early days of genetic studies, beginning
with Mendel’s work at the end of the 19th cen-
tury, genotypes were inferred by tracking the inheri-
tance of phenotypes between individuals with known
relationships (linkage analysis). In recent years, the
development of molecular tools, culminating in high-
density genotyping and whole genome sequencing,
has enabled DNA variants to be directly identified and
phenotypes to be associated with genotypes in large
populations of unrelated individuals through asso-
ciation mapping. Genome-wide association studies
(GWAS) have become the method of choice, largely
replacing linkage analyses, because they are more
powerful for mapping complex traits, that is, they can

be used to detect smaller gene effects, and they pro-
vide a greater mapping precision as they depend on
population-level linkage disequilibrium rather than
close family relationships. For example, the 2021
NHGRI-EBI GWAS catalogue currently lists 316 782
associations identified in 5149 publications describ-
ing GWAS results [1]. Additionally, extensive data col-
lection has been initiated through efforts such as the
UK Biobank [2], Generation Scotland [3] and NIH All
of Us research programme (https://allofus.nih.gov/)
with the expectation that large-scale GWAS will elu-
cidate the basis of human health and disease and
facilitate precision medicine.

While genomic technologies used to generate data
have rapidly advanced within the last 20 years, the
statistical models used in GWAS to analyse the data
are still predominantly based on Fisher’s method
published than 100 years ago [4, 5]. Using probability
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density functions (PDFs) and in particular the normal
distribution, Fisher’s method partitions genotypic
values by performing a linear regression of the phe-
notype on marker allelic dosage [6]. The regression
coefficient estimates the average allele effect size, and
the regression variance is the additive genetic variance
due to the locus [7]. While Fisher’s method has been
improved, for example using conditional probability
linked to potential prior knowledge of genetic systems
(Bayes’ method) [8, 9], the overall determination
of genotype–phenotype mapping is still grounded
on PDFs. However, the use of PDFs become prob-
lematic in the case of complex/omnigenic traits as
they require large scale-study or equivalently, large
sample size.

The results obtained by GWAS have demonstrated
that complex traits are driven by a vast number of
tiny-effect loci, namely a vast number of genes each
with tiny-effect, and not by a handful of moderate-
effect loci as initially thought. In turn, this has led to a
re-conceptualisation of the genetic basis of complex
traits from being polygenic (handful of loci/genes)
to omnigenic (vast number of loci/genes) [10–16].
Although the omnigenic paradigm is central to fur-
ther our understanding of biology, there is a practical
issue concerning the extraction of information to
relate genotype to phenotype in this case. Indeed,
tiny-effect loci (i.e., very small gene effects) necessi-
tate a remarkably large population to extract infor-
mation. Figure 1 exemplifies the limit of GWAS with
a restricted sample size of 1000 individuals. This
issue regarding the need for large sample sizes was
present, but dismissed, in Fisher’s seminal work [4]
as he assumed an ‘infinite population’ from the start
to use the normal distribution density function in
the continuum limit. This assumption allowed him
to provide a method able to extract, in theory, the
genetic information required to map any genotype to
phenotype.

While one may assume an infinite population
mathematically, in practice this comes at a huge
cost. To give a ‘real-life’ example of the sample size
needed to study complex traits the best is to turn to
the phenotype ‘height’ in humans. The phenotype
height in humans is a classical quantitative trait that
has been studied for over a century as a model
for investigating the genetic basis of complex traits
[4, 17] and whose measured heritability is well known
[4, 18, 19]. However, this phenotype has remained
controversial [12] for a long time as current asso-
ciation methods were not been able to fully recover
the heritability measured [21, 22]. While different
reasons were put forward to explain this discrepancy
including, for example, too restricted sample sizes,
too stringent statistical tests or the involvement of
the environment [6, 23]; this point seems to have
been resolved only recently. Using a population con-
taining a staggering 5.3 million individuals a recent

study claims to have captured nearly all of the com-
mon single nucleotide polymorphisms (SNPs)-based
heritability [24].

This important study confirms that the precision
of current quantitative genetic methods to determine
omnigenic traits comes at an astronomical cost in line
with the assumptions used, namely the need for a
staggeringly large (near infinite) population. In this
context one may wonder whether such large-scale
study will ever be replicated in any other species and
in particular those near extinction where small sample
sizes need to be considered. Alternatively, one may try
to understand where the need for large sample sizes
comes from and determine whether it is possible to
extract information linking genotype to phenotype in
a different way.

There is a very good reason as to why large pop-
ulations will always be required for omnigenic phe-
notypes when GWAS is used. As mentioned above,
the reason is rooted in the fact that GWAS is mostly
based on frequentist probabilities a.k.a. PDFs. Indeed,
GWAS is based on statistics and, by definition, statis-
tics deals with the measurement of uncertainties [25].
To draw inferences from the comparison of large
datasets, a method that requires some understand-
ing of its accuracy, including ways of measuring the
uncertainty in data values, is needed. In this context,
statistics is the science of collecting, analysing, and
interpreting data, while PDFs defined through the
notion of relative frequencies, is central to determin-
ing the validity of statistical inferences. In practice,
the use of frequentist probabilities (or PDFs) and
the resulting categorisation of data is justified when
inaccuracy exists in experimental measurements. For
example, measuring a continuous phenotype such as
the height of individuals with a ruler with centimetre
graduations, that is, to the nearest centimetre, war-
rants the use of frequentist probability (or PDFs). In
this case, a frequency table of phenotypic values can
be defined through 1 cm-width bins or categories,
from which the PDFs of the phenotype height and of
the genotypes can be deduced to address the statistical
inferences. However, the precision available for the
inferences will always be, at best, given by the width
of categories created and linked to the experimental
precision achieved (1 cm in this case). Consequently,
if instead of using a ruler with centimetre graduations
one was using a ruler with millimetre graduations to
increase the precision in inferences, a larger sample
size would be required such as to match the new
1 mm-width of categories to reform the PDFs. The
trading between the sample size and the precision
achieved by GWAS is known as ‘study power’ and
its raison d’être is linked to the fact that the entire
field of probability, and therefore the PDFs, has been
conceptualised mathematically to represent the fact
that information on a system is limited. It is for
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Figure 1. Phenotype human height simulated using the real data from the GTEx project [28]. We recall that for diploid
organisms, such as humans, and for a binary (bi-allelic, A or a) genetic marker, any microstate (genotype) can only take three
values that we shall write as ‘+1’, ‘0’ and ‘−1’ corresponding to genotypes aa (red), Aa (grey) and AA (blue), respectively. In the
figures the letter, p, refers to the allele frequency and, σg, to the genetic variance. Table 1 provides a relation between the two
aforementioned variables. (A) Phenotype histograms for the three genotypes (microstates), showing the ‘+1’ state in red, ‘0’ state
in dark grey and the ‘−1’ state in blue. The overall phenotype distribution is in light grey at the back. The mean genotypic
(microstate) values are −a, d, and +a. In genetics, a and d, are defined as the gene effect and the dominance, respectively.
(B) Example of limitations linked to current GWA methods when the gene effect, a, changes by one order of magnitude from
a = 1 to a = 0.1 while the respective number of microstates does not. In this context, the three populations of genetic microstates
collapse, and their separation becomes very difficult to characterise unless the size of the population is increased to reduce the
width of categories. In this example, it is almost impossible to distinguish between a = 0.1 and a = 0.01. Note that in this case the
gene effect has been normalised by the phenotypic standard deviation of the population and there is no dominance (d = 0).
(C) Corresponding distributions of the different genetic microstates singled out based on the phenotype values they characterise.
The method of averages, or method of moments, advocated by Fisher suggests plotting a straight line as best fit between the three
distributions out of which the slope of the straight line is then indicative of genotype–phenotype association. However, the
method of averages discards the information that is available in the spreading of data for each genotype. The method we suggest
will make use of this information to describe genotype–phenotype association. Note that dominance can occur (d �= 0) at which
point and with the method of average a linear regression of the genotype means, weighted by their frequency, on the number of
alleles needs to be performed to provide a new intercept and slope (see [6]).

this reason that the normal distribution was known
before as the ‘error function’ or ‘law of errors’, where
the term ‘error’ is defined experimentally (see rulers
above). Accordingly, the creation of categories implies
that a sort of ‘imprecision’ is necessary.

While the notion of imprecision can be genuine
(see rulers above), the act of creating categories to use
PDFs when precision in experimental measurements
is available is not fully justified and can be seen as
an act of ‘wilful ignorance’. This is so because infor-
mation is lost by slotting different phenotypic values
into the same category. To exemplify this point let us
take an example, imagine a species close to extinction
(very small population, say 50 individuals) and that
it is possible to measure phenotypic values with very

high precision, for example, using highly advanced
imaging techniques or biosensing technologies [26].
In this case, each measured individual could return
a unique phenotypic value. Consequently, reform-
ing categories to reform and use PDFs would mean
embracing the relatively large width of categories
created leading to the impression that a large impre-
cision is present, even so such imprecision did not
exist in the first place. One may argue that PDFs,
such as the normal distribution in Fisher’s theory,
are not required since averages and variances can be
mathematically calculated directly from data without
the need to recreate PDFs. However, this argument
is not valid as averages and variances (and any other
moments) cannot be dissociated from PDFs, since

3



Phys. Biol. 20 (2023) 016001 C Rauch et al

they are the ontological parameters that define PDFs,
and that PDFs are used to determine statistical infer-
ences in the field of quantitative genetics. Conse-
quently, thinking in term of averages and variances
necessitate to conceptualise and hold valid PDFs, i.e.,
categories, to describe any system.

Therefore, there is a need to formulate new meth-
ods using the full information generated through
accurate and highly precise genotyping/phenotyping
when sample sizes are small which does not require
the categorisation of data. In fact, this problem
is equivalent to finding a way to resolve geno-
type–phenotype mapping by assuming a finite-size
population with phenotype values measured pre-
cisely enough to rule out the possibility that two
phenotype values are in the same category. Taking
this challenge as the starting point, a new and rela-
tively simple method for extracting information for
genotype–phenotype mapping can be defined. While
this method is remarkably simple when explained
in lay terms, its theoretical framework requires the
introduction of a new concept called ‘phenotypic
fields’. Phenotypic fields can also be defined within
the context of Fisher’s theory.

The remainder of this paper is organised as fol-
lows. In the first part, an intuitive approach to the
method genomic informational field theory (GIFT)
is presented in which one shall see that association
between datasets (i.e., genotype and phenotype) can
be analysed in specific way that do not involve the
use of means and variances necessarily, but pheno-
typic fields instead. This is followed by a second
part stating and explaining the necessary ingredients
from physics (entropy, energy and field) and how
they must be combined, to provide GIFT. Since GIFT
is not too difficult to model, we have relegated the
theoretical development of GIFT in the appendix A.
Finally (third part) one will demonstrate how Fisher’s
seminal theory can be re-transcribed using GIFT. In
particular one shall see that Fisher’s seminal intuition
corresponds to the simplest form of GIFT. Finally
(fourth part), one will compare GIFT to GWAS using
simulated genotype and phenotype to demonstrate
that GIFT outperforms GWAS.

2. Position of the problem and heuristic
presentation of GIFT a method

The practical issue regarding genotype–phenotype
mappings with current statistical methods concerns

the sample size needed to provide accurate/precise
information when complex/omnigenic traits are
involved. As stated in the introduction, this issue
stems from the creation of categories historically
linked to the notions of ‘imprecision’ or ‘error’ in
measurements. At the dawn of the 21st century we are
getting more precise in our measurements, and one
may wonder what sort of scientific/mathematical tool
we should be using if one were able to attain any level
of precision wanted in cases where the population size
studied is limited.

We recall here that for diploid organisms, such as
humans, and for a binary (bi-allelic, A or a) genetic
marker, any microstate (genotype) can only take three
values that we shall write as ‘+1’, ‘0’ and ‘−1’ cor-
responding to genotypes aa (homozygote), Aa (het-
erozygote) and AA (homozygote), respectively.

One way to proceed to develop a method embrac-
ing precision is to start by looking at how density
distribution functions are transformed when preci-
sion in phenotypic measurements increases. From
figure 2(A), the conclusion is obvious, the bar charts
are transformed into code bars, where each bar origi-
nates from a particular phenotype value representing
one individual from the population studied. This
result is expected since when the width of categories
decreases due to an increase in precision in measure-
ments, there will be a point where there can only be
one individual per category. To extract information
from the code bars represented by the bottom right
chart in figure 2(A), let us now wonder what it means
to have information on the phenotype as opposed to
have none.

To answer this question the best thing is to further
simplify the problem by considering the coloured
bars only and not their spacing. Imagine, therefore,
that a set of individuals has been genotyped and
that those individuals are picked at random. That is,
there is no information on any phenotype. Imagine
also that one decides to concentrate, for example,
on the genome position 1 000 000 on chromosome
4 for all the individuals since this genome position
happens to display a biallelic SNPs across the set of
individuals.

Thus, upon calling randomly but sequentially
individuals, the genotypic information obtained in
due course can be represented as a random string of
genotypes including ‘+1’, ‘0’ and ‘−1’ microstates
(representing homozygote-AA, heterozygote-Aa
and homozygote-aa). An example of such random
configuration is:

[−1,+1, 0,−1,−1,+1,+1, . . . ,−1,+1,+1, 0,−1, 0,+1, . . . , 0, 0,−1,+1, 0,+1,−1].
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Figure 2. (A) and (B) When applied to real data sets, current GWAS rely on probability distribution density functions (PDFs)
namely the creation of frequency plots (method of relative frequencies) via the grouping of phenotype values into categories
representing range of phenotype values ((A), top-chart). The same method (PDFs) is then applied to genotypes ((B), top chart).
The comparison of the two top charts in (A) and (B) demonstrates how genotype are associated with the phenotype, as in this
case any phenotype category can be decomposed using the underlying microstate categories. However, grouping data into
categories is legitimate so long that the width of the category is justified. The width of categories is justified provided that
imprecision exists in phenotype measurements. However, a method based on the notion of imprecision has limited value when
precision is available, and new methods are required in this case. Indeed, by increasing the precision in phenotype measurements
it is possible to envision, in a near future, the possibility to deal with genotype and phenotype under the form of ‘code bars’ ((A)
and (B), bottom-charts) as opposed to PDFs. The question is then, how can information be extracted from those ‘code bars’? (C)
To analyse the ‘code bar’ in the bottom charts of (A) and (B), we rewrite it as a string of microstates. The first thing to note is that
the way the microstates ‘+1’, ‘0’ and ‘−1’ appear in the string (a.k.a. configuration/ordering), is linked to the fact that: (i) the
genome position considered is associated with the phenotype and, (ii) phenotypic values are ranked as a function of their
magnitude. Accordingly, if the genome position considered is not associated with the phenotype, the configuration would appear
random (top string) as opposed to being ordered if a genotype–phenotype association exist (bottom string). (D) Thus, to
determine as to whether a genome position is associated with the phenotype, the best way is to plot the cumulative sum of
microstates and to compare it to the plot of its ‘scrambled’/random configuration. When the string is ordered, a curve will emerge
as shown by θ(i). On the contrary, when string is ‘scrambled’ a straight line is expected as shown by θ0(i). The straight line
resulting from scrambling of the string is expected as the presence probabilities of pulling ‘+1’, ‘0’ and ‘−1’ from the scrambled
string are constants in this case. The curve (ordered string) can be modelled by considering that the information about the
phenotype acts like a ‘field’ to change the configuration of microstates from being disordered to being ordered. The two curves
intersect at the last position in the string because the numbers of ‘+1’, ‘0’ and ‘−1’ in either string (ordered or scrambled) is
conserved. The difference between the ordered and disordered strings provides a precise measure of the genetic influence on the
phenotype. In figure 4(A) we provide a plot of such a difference in the phenotypic space.

Note that the order in which the individu-
als were called is linked to the position in the
string. Let us now repeat the same experiment using
the same individuals in a context where accurate
information on a chosen phenotype is available.
That is, we call the individuals as a function of
the magnitude of their phenotype we consider. For
example, if the phenotype is height, one starts by
calling the smallest individual and all subsequent
individuals through successive increments in their
phenotype height. Note again that because each

individual has a unique phenotype value there is
no possibility for two individuals to be called at
once.

If the genome position 1 000 000 on chromosome
4 is involved in the formation of the phenotype,
then one would expect a change in the configuration
of the string of microstates based on the fact that
homozygotes would be found at the extremities of
the string and heterozygotes towards the middle (see
figure 2). An example of such a string would be, for
example:

[+1,+1,+1,+1, 0,+1,+1, . . . ,+1, 0, 0, 0,−1, 0,−1, . . . ,−1, 0,−1,−1,−1,−1,−1].
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Thus, the only thing that changes between the
random and the phenotype-ordered configurations
is the way the genetic microstates are allocated to
positions in the string. However, as the genome posi-
tion 1 000 000 on chromosome 4 is the only one that
has been considered, the two configurations contain
the same number of ‘+1’, ‘0’ and ‘−1’, since the
same individuals were considered between the two
configurations.

The ansatz is then to consider the cumulative sum
of microstates as a function of the position in the
string. Indeed, it is clear from the examples given
above that if one starts by adding the microstates
together, differences will be seen in the resulting
cumulative sums. To give an example, let us consider
the two strings above and note ‘θ0(i)’ and ‘θ(i)’ the
cumulative sums of microstates in the random and
ordered configurations, respectively, where ‘i’ is the
position in the string. Then adding the microstates
starting from the left side of the strings one finds:

θ0(1) = −1 = −1 θ(1) = +1 = +1

θ0(2) = −1 + 1 = 0 θ(2) = +1 + 1 = +2

θ0(3) = −1 + 1 + 0 = 0 θ(3) = +1 + 1 + 1 = +3.

As a result, the difference ‘θ(i) − θ0(i)’ is expected
to be indicative of the importance of the pheno-
typic information and how gene microstates are
related to the phenotype. The fact that the same
individuals were considered in both configurations
also imposes a conservation relation under the form:
θ(N) − θ0(N) = 0. One shall call the cumulative
sums: ‘genetic paths’ whose mathematical definition
will be précised below. To conclude, it is the informa-
tion on the phenotypic values that provides a change
in the configuration of microstates and one can start
developing the formulations of, θ0(i) and θ(i).

Noting, N+1, N0 and N−1 the number of genetic
microstates ‘+1’, ‘0’ and ‘−1’, respectively. The
genetic microstate frequencies for genome position 1
000 000 on chromosome 4 are defined by, N+1/N =

ω0
+, N0/N = ω0

0 and N−1/N = ω0
−.

When the positioning of the genetic microstates
in the string is performed in a random fashion, the
probabilities of finding ‘+1’, ‘0’ or ‘−1’ as genetic
microstate at any position are ω0

+, ω0
0 and ω0

−, respec-
tively. The resulting cumulative sum is then: θ0(i) =(
+1 · ω0

+ + 0 · ω0
0 − 1 · ω0

−
)
i. Consequently, θ0(i) is

therefore a straight line. We shall call θ0(i) the ‘default
genetic path’(figure 2(C)).

In the second configuration the microstates are
ordered. Noting ω+(i), ω0(i) and ω−(i) the occur-
rence probabilities of the genetic microstates ‘+1’,
‘0’ and ‘−1’ the cumulative sum is then: θ(i) =∑i

1

(
+1 · ω+

(
j
)
+ 0 · ω0

(
j
)
− 1 · ω−

(
j
))

; where θ(i)
is defined as the ‘phenotype-responding genetic path’
(figure 2(C)).

As a result, the signature of a gene interacting with
the phenotype when considering the two aforemen-
tioned genetic paths is the difference: θ(i) − θ0(i) =∑i

1

[(
ω+

(
j
)
− ω−

(
j
))

−
(
ω0
+ − ω0

−
)]

. One can then
be a little bit more prescriptive by introducing the
notion of phenotypic fields.

3. A physics-inspired model for GIFT:
notion of ‘phenotypic fields’ and
resulting difference between the
phenotype-responding and default
genetic paths

The difference, θ(i) − θ0(i), can be described using
field theory. Indeed, as the only difference between
the two configurations is the information linked to
the phenotypic values, the phenotypic information
can be thought as an external field impacting the
configuration of microstates. To provide a physics-
inspired definition of genotype–phenotype mapping,
let us reconsider the random string above and assume
that the set of individuals in the string are parti-
cles and that the different genetic microstates ‘+1’,
‘0’ and ‘−1’ are their physical properties. One can
then assume that it is those properties that interact
with the field. Note that contrary to physics where
a single field is defined, one needs in our case to
define one field per microstate. One shall note by
u+(Ω), u0(Ω) and u−(Ω) the phenotypic fields acting
on the microstates ‘+1’, ‘0’ and ‘−1’ respectively.
Note that the variable Ω represents the phenotypic
values measured precisely. By assuming further that
the particles cannot interact together and that, when
they are not forced into a specific configuration by
the fields, they can hop and exchange positions when
the field is null (similar to a diffusion/thermal pro-
cess), one can then model the string of microstates
as a closed system. Figure 2(C) provides an idea of
how the ‘phenotypic fields’, when non null, impacts
on the configuration of microstates by seggregat-
ing them. With those assumptions and using basic
principles from statistical physics it is then possible
to model the presence probability of microstates at
any position in the string.

Thus, after re-expressing the genetic paths in
the space of phenotypic values since the fields are
function of the phenotypic values (appendix A.1),
one can then construct functionals representing the
entropy (appendix A.2) and the total interaction
energy between the microstates and the subfields
(appendix A.3). Finally, one can optimise a functional
similar to the free energy to express how the fields
are related to the asymmetry of states (appendix A.4).
Consequently, one can demonstrate the familiar result
concerning the presence probability of microstates
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expressed in the phenotypic space as,

ω̂+(Ω) =
ω0
+e−δu+(Ω)

ω0
0 + ω0

+e−δu+(Ω) + ω0
−e−δu−(Ω)

(1)

ω̂0(Ω) =
ω0

0

ω0
0 + ω0

+e−δu+(Ω) + ω0
−e−δu−(Ω)

(2)

ω̂−(Ω) =
ω0
−e−δu−(Ω)

ω0
0 + ω0

+e−δu+(Ω) + ω0
−e−δu−(Ω)

. (3)

Where the hat ‘ ̂ ’ is added to insist on the fact
that the presence probabilities of microstates are
expressed in the space of phenotypic values (and
not positions) and, δu+(Ω)defu+(Ω) − u0(Ω),
δu−(Ω) def u−(Ω) − u0(Ω). Equations (1)–(3) are
familiar to physicists when dealing with Boltzmann’s
weigh in statistical physics. Note that the default
genetic path is defined when the fields are null.
Noting, Δθ̂(Ω) def θ̂(Ω) − θ̂0(Ω), the difference
between the phenotype responding and default
genetic paths expressed in the phenotypic space,
Δθ̂(Ω) is therefore a function of the difference
between equations (1) and (3). One can then
make the symmetries of the problem more
apparent by defining for the genetic microstates,
Δω0 def ω0

+ − ω0
− and ω0 def ω0

+ + ω0
− = 1 − ω0

0 ;
and for the phenotypic fields, 2u(Ω) def δu+(Ω) +
δu−(Ω) = u+(Ω) + u−(Ω) − u0(Ω) and 2Δu(Ω)
def δu+(Ω) − δu−(Ω) = u+(Ω) − u−(Ω). In this
case, using hyperbolic functions one deduces (see
appendix A.4 for development),

ω̂+(Ω) − ω̂−(Ω) =
sh(Δu(Ω0) −Δu(Ω))

α0eu(Ω) + ch(Δu(Ω0) −Δu(Ω))
.

(4)

Where, th(Δu(Ω0)) def Δω0
ω0

and α0 def 1−ω0
ω0

ch

(sΔu(Ω0)) = 1
2

ω0
0√

ω0
+ω0

−
. The new variable ‘Ω0’ is the

phenotype value corresponding to the condition
ω̂+(Ω0) ∼ ω̂−(Ω0) and the meaning of the constant
‘α0’ can be related to the Hardy–Weinberg law
from population genetic. Hardy–Weinberg law
based on random mating in a population provides
a relationship between the genetic microstate
frequencies under the form: p2 + 2pq + q2 = 1,
where p2 and q2 are the genotype frequencies of
genetic microstates ‘+1’ and ‘−1’, i.e. homozygote
genotypes aa and AA, respectively; and 2pq the
genotype frequency for genetic microstate ‘0’,
i.e. the heterozygote genotype Aa. In our case,
this corresponds to replacing p2, q2 and 2pq
with, respectively, ω0

+, ω0
− and ω0

0. Consequently,
the Hardy–Weinberg law imposes α0 = 1 with
α0 �= 1 corresponding to a deviation from the
law. However, this term is expected to remain
stable upon any changes of allele or genotype
frequencies suggesting therefore that, genetically, any
changes in ‘Δω0’ are to some extent compensated
by corresponding changes in ‘ω0’. Finally,
using equation (4) one deduces the difference
between the phenotype responding and default
genetic paths expressed in the phenotypic space,
Δθ̂(Ω), as (appendix A.5):

Δθ̂(Ω) =

∫ Ω

Ω1/N

[
sh(Δu(x0) −Δu(x))

α0eu(x) + ch(Δu(x0) −Δu(x))

− sh(Δu(x0))

α0 + ch(Δu(x0))

]
1

Δ(x)
dx. (5)

Where Ω1/N is the smallest phenotypic value mea-
sured and, Δ(x), is the spacing between individuals
in the code bar figure 2(A) that can be related to the
PDF of the phenotype when the population measured
is dense (see appendix A.1 and SM1 in the supplemen-
tary materials). Finally, the conservation of genetic
microstates needs to be added, that is, Δθ̂(Ω1) = 0,
expressed as,∫ Ω1

Ω1/N

sh(Δu(x0) −Δu(x))

α0eu(x) + ch(Δu(x0) −Δu(x))

1

Δ(x)
dx

=
sh(Δu(x0))

α0 + ch(Δu(x0))
. (6)

Where Ω1 is the largest phenotypic value measured.
Therefore, as α0 is constant since a single genome
position is considered, the genetic paths difference
can be re-expressed integrally using two independent
reduced phenotypic fields, i.e., Δu(Ω) and u(Ω), and
equation (6) provides a coupling between those fields
and Δ(Ω). The advantage of using fields is the reduc-
tion of unknown parameters involved in the problem
and the possibility of laying out genotype–phenotype
associations based on fields’ symmetry. For example,
and as a minimalist model, one may wonder what
sort of expression would take the fields if the ref-
erence field u0(Ω) was null and, sδu+ and sδu−,
were acting anti-symmetrically and linearly on the
microstates ‘+1’ and ‘−1’? This minimalist model
can be developed (see SM2 in the supplementary
materials) and is similar to Fisher’s seminal intu-
ition concerning genotype–phenotype associations
(see below).

Our aim is now to demonstrate that the idea of
genetic paths mediated by phenotypic fields already
exists in Fisher theory. This can be shown by coarse
graining the paths.

4. Coarse graining GIFT: definition of
fields in Fisher’s context, implication for
small gene effects and definition of
variance fields

4.1. Coarse graining GIFT
To derive a coarse-grained version of GIFT, that is,
a genetic path difference for GWAS, we assume the
existence of categories or bins and concentrate on
the interval of phenotype values ranging between
Ω and Ω+ δΩ defining one particular category or
bin.

Based on frequentist probability, by noting by N
the total number of individuals in the population

7
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we can define by: δN ∼ N · PΩ(Ω)δΩ, the number
of individuals in the phenotype category concerned
namely with a phenotype value ranging between Ω

and Ω + δΩ.
Similarly, concentrating on a single genome posi-

tion, we can define by: δN+ ∼ N0
+ · P+(Ω)δΩ, δN0 ∼

N0
0 · P0(Ω)δΩ and δN− ∼ N0

− · P−(Ω)δΩ the respec-
tive number of ‘+1’, ‘0’ and ‘−1’ genetic microstates
for the phenotype values ranging between Ω and
Ω+ δΩ, where N0

+, N0
0 and N0

− correspond to the
total number of ‘+1’, ‘0’ and ‘−1’ microstates in the
population with respective presence PDFs, P+(Ω),
P0(Ω) and P−(Ω).

The design of categories generates two conser-
vation relationships: the first one concerns the total
number of individuals and microstates, namely, that
for a given genome position, the sum of all possible
microstates is also the sum of all individuals. This
relationship is written as follows: N = N0

+ + N0
0 +

N0
−. The second conservation relationship is linked

to the category considered. The number of individ-
uals in the category concerned is also the sum of
the microstates in this category: δN = δN+ + δN0 +
δN−. Consequently, the conservation relation con-
cerning the number of individuals and microstates in
the concerned category can be rewritten as,

δN/N =
(
N0

+/N
)(
δN+/N0

+

)
+
(
N0

0/N
)(
δN0/N0

0

)
+
(
N0

−/N
)(
δN−/N0

−
)
. (7)

Using the PDF of both microstates and the pheno-
type defined above, the following is deduced:

PΩ(Ω) = ω0
+P+(Ω) + ω0

0P0(Ω) + ω0
−P−(Ω). (8)

From equation (8) all the moments of microstate
distributions are related to those of the phenotype
distribution. Let us note by, 〈Ω〉, and, a+, a0, a−, the
average values of the phenotype and microstates ‘+1’,
‘0’, ‘−1’ distribution functions, respectively; and by
σ2 and σ2

+, σ2
0 , σ2

− the variances of the phenotype
and microstates ‘+1’, ‘0’, ‘−1’ distribution functions,
respectively. From equation (8), one deduces the con-
servation relations for the first two moments in the
form:

〈Ω〉 = ω0
+a+ + ω0

0a0 + ω0
−a− (9a)

σ2 =
(
ω0
+σ

2
+ + ω0

0σ
2
0 + ω0

−σ
2
−
)
+ ω0

+

(
〈Ω〉 − a+

)2

+ ω0
0

(
〈Ω〉 − a0

)2
+ ω0

−
(
〈Ω〉 − a−

)2
. (9b)

The relations provided by equation (9) are valid
by definition, namely, whatever PDFs are involved.
While Fisher never formulated a conservation similar
to the second from equation (9b), in his seminal paper
[4] he used the notation α2 to denote the genetic

variance in the form: α2 def ω0
+

(
〈Ω〉 − a+

)2
+

ω0
0

(
〈Ω〉 − a0

)2
+ ω0

−
(
〈Ω〉 − a−

)2
.

Let us now define the coarse-grained version of
equation (4) by noting, δω̂+(Ω) − δω̂−(Ω), the dif-
ference in the presence probability of microstates
‘+1’ and ‘−1’ for the category of interest, it is then
deduced:

δω̂+(Ω) − δω̂−(Ω)

=
δN+

δN
− δN−

δN

=
ω0
+P+(Ω) − ω0

−P−(Ω)

ω0
+P+(Ω) + ω0

0P0(Ω) + ω0
−P−(Ω)

. (10)

Note that equation (10) corresponds to a local
relative difference, in the space of phenotypic values,
of microstates ‘+1’ and ‘−1’. Also, it can be verified
that the conservation of gene microstates holds by
summing, δN+ − δN−, over all existing categories
or bins, namely: N+ − N− =

∑
bins

(δN+ − δN−) =∑
bins

(δω̂+(Ω) − δω̂−(Ω))δN. Using the definition

δN = NPΩ(Ω)δΩ together with equation (8),
we deduce using the continuum limit, N+−N−

N ∼∫ Ω1
Ω1/N

ω0
+P+(Ω)−ω0

−P−(Ω)

ω0
+P+(Ω)+ω0

0P0(Ω)+ω0
−P−(Ω)

PΩ(Ω)δΩ or equiva-

lently, N+−N−
N ∼

∫ Ω1
Ω1/N

(
ω0
+P+(Ω) − ω0

−P−(Ω)
)
δΩ =

ω0
+ − ω0

−.
Direct mapping of fields can then be performed

between GWAS and GIFT (SM3 in the supplementary
materials). As a result, we can define the coarse-
grained versions of the difference in the genetic paths
using the continuum limit as:

Δθ̂(Ω) ∼
∫ Ω

Ω1/N

[
ω0
+P+(Ω) − ω0

−P−(Ω)

ω0
+P+(Ω) + ω0

0P0(Ω) + ω0
−P−(Ω)

−
(
ω0
+ − ω0

−
)]

PΩ(Ω)dΩ. (11)

Equation (11) demonstrates that Δθ̂(Ω) is sen-
sitive to the PDFs involved as a whole and not just
to the average values. In other words, the variance
of microstates and their average values will impact
on genotype–phenotype associations. Note that in
equation (11) the integration interval is unchanged.
However, the convergence in probability of distribu-
tions allows some freedom, for example changing the
integration interval from

[
Ω1/N ; Ω1

]
to [0; +∞[, or

from
[
Ω1/N − Ωm; Ω1 − Ωm

]
to] −∞; +∞], where

‘Ωm’ is a median position.
The fields can then be defined in Fisher’s

context setting: −δu+(Ω) def ln
[
P+(Ω)/P0(Ω)

]
and

−δu−(Ω) def ln
[
P−(Ω)/P0(Ω)

]
; and from those

relations it is deduced: u(Ω) = ln[
P0(Ω)/

√
P+(Ω) · P−(Ω)

]
and Δu(Ω) = 1

2 ln[
P−(Ω)/P+(Ω)

]
.

Finally using equation (5)’s notations one
deduces:

8
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Δθ̂(Ω) =

∫ Ω

Ω1/N

sh
(

1
2 ln

(
P+(Ω)
P−(Ω) ·

P−(Ω0)
P+(Ω0)

))
1
2

ω0
0P0(Ω)√

ω0
+P+(Ω)ω0

−P−(Ω)
+ ch

(
1
2 ln

(
P+(Ω)
P−(Ω) ·

P−(Ω0)
P+(Ω0)

))PΩ(Ω)dΩ

−
sh
(

1
2 ln

(
P−(Ω0)
P+(Ω0)

))
1
2

ω0
0√

ω0
+ω0

−
+ ch

(
1
2 ln

(
P−(Ω0)
P+(Ω0)

))∫ Ω

Ω1/N

PΩ(Ω)dΩ. (12)

The significance of these fields can now be
addressed. The field u(Ω) describes local deviations
from the Hardy–Weinberg law, valid for each bin
or category of phenotype values. For example, if
a population was under no selection and random
mating occurred, then the whole population would
follow the Hardy–Weinberg equilibrium law, that is,
1
2ω

0
0/
√
ω0
+ω

0
− ∼ 1. However, selecting a particular

bin or category of phenotype values would demon-
strate a local deviation of this law, given by the term
eu(Ω) = P0(Ω)/

√
P+(Ω)P−(Ω).

The signification ofΔu(Ω) can be addressed using
Fisher’s approach.

4.2. Definition of fields using Fisher’s theory
In his seminal paper [5], Fisher hypothesised that in
a context where the population is infinite to use the
normal distribution, the genetic variance ‘α2’ is much
smaller than the phenotype variance and that the
variances of microstate distribution density functions
for each gene are similar to that of the variance of the
phenotype. While his hypothesis can be understood
intuitively when all distribution density functions
nearly overlap, it can also be demonstrated using
equation (9b). Indeed, assuming α2 � σ2 implies
σ2 − α2 ∼ σ2 and therefore σ2 ∼ ω0

+σ
2
+ + ω0

0σ
2
0 +

ω0
−σ

2
−. As ω0

+ + ω0
0 + ω0

− = 1, posing σ2
+ ∼ σ2

0 ∼
σ2
− ∼ σ2 as Fisher did, is one valid solution. How-

ever, the relation σ2 ∼ ω0
+σ

2
+ + ω0

0σ
2
0 + ω0

−σ
2
−, is the

equation of an ellipse, and an infinite number of
solutions are, in theory, possible. Those solutions
will dependent on the variances of microstates (see
section 4.4. below, that is, the definition of fields
linked to the variance of microstates).

Following Fisher’s assumption, the probability
of finding the microstates ‘+1’, ‘0’ and ‘−1’ as
a function of phenotype values are expressed as

[4] (figure 1): P+(Ω) ∼ K
σ

exp

(
− 1

2
(Ω−a+)2

σ2

)
,

P0(Ω) ∼ K
σ exp

(
− 1

2
(Ω−a0)2

σ2

)
and P−(Ω) ∼ K

σ exp(
− 1

2
(Ω−a−)2

σ2

)
. Where ‘K’ is the normalisation

constant identical for all microstates distribution

functions since they nearly overlap. Noting,
δx def x − 〈Ω〉, the difference between the variable,
x, and the average of phenotype values to simplify the

notations, as the second orders defined by
(
δa+/σ

)2
,(

δa0/σ
)2

and
(
δa−/σ

)2
are neglected in Fisher’s

context, one deduces then:

Δu(Ω0) =
1

2
ln

(
P−(Ω0)

P+(Ω0)

)
∼ 1

2

(
δa− − δa+

σ

)(
δΩ0

σ

)
(13a)

Δu(Ω0) − sΔu(Ω) =
1

2
ln

(
P+(Ω)

P−(Ω)
· P−(Ω0)

P+(Ω0)

)

=
1

2

(
δa− − δa+

σ

)(
δΩ0

σ
− δΩ

σ

)

(13b)

u(Ω) = ln

(
P0(Ω)√

P+(Ω) · P−(Ω)

)

∼ 1

2

(
2δa0 − δa+ − δa−

σ

)
δΩ

σ
. (13c)

In equations (13a) and (13b) the term δa− −
δa+ = a− − a+ = 2a (see figure 1(A)) is known
as the ‘gene effect’ in GWAS. In equation (13c),
the term 2δa0 − δa+ − δa− = 2a0 − a+ − a− = d
(see figure 1(A)) is the dominance as defined in the
GWAS. In his seminal paper, Fisher considered: d ∼ 0.

Altogether, these results demonstrate that Fisher’s
theory can be described by phenotypic fields and
genetic paths. As it turns out Fisher’s model cor-
responds to the minimalist model aforementioned
(SM2 in the supplementary materials). Using these
fields, it is also possible to determine a generic solu-
tion to equation (8) (see SM4 in the supplementary
materials).

4.3. Implication for small gene effects
Complex traits involve genes with very small effects
that are difficult to characterise. The aim is to deter-
mine the resulting difference in the genetic paths
in this case, that is, when the gene effect, a =

9
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(a− − a+)/2 (see definition above), tends towards
zero: a → 0. Because PDFs are used, the integration
interval can be altered using the convergence property
of the distributions. In this context, the conservation
of genetic microstates (equation (6)) can be written
using Fisher’s fields as,∫ +∞

0

sh
(

1
2

(
a
σ

)(
δΩ0
σ

− δΩ
σ

))
α0e

1
2

(
d
σ

)
δΩ
σ + ch

(
1
2

(
a
σ

)(
δΩ0
σ − δΩ

σ

))PΩ(Ω)dΩ

∼ sh
(

1
2

(
a
σ

)(
δΩ0
σ

))
α0 + ch

(
1
2

(
a
σ

)(
δΩ0
σ

)) . (14)

Consider, as Fisher did in his seminal paper
[4], a phenotype distribution of the form, PΩ(Ω) ∼
K
σ e

− 1
2

(
Ω−〈Ω〉

σ

)2

, and rescale the phenotype values in
the integral using, a/σ, as a scaling parameter as
follows:∫ +∞

0

sh
(

1
2

(
δΩ0
σ − δΩ

σ

))
α0e

1
2

d
a

(
δΩ
σ

)
+ ch

(
1
2

(
δΩ0
σ

− δΩ
σ

))Ke
− 1

2

(
δΩ
a

)2

× d

(
Ω

a

)
∼ sh

(
1
2

(
a
σ

)(
δΩ0
σ

))
α0 + ch

(
1
2

(
a
σ

)(
δΩ0
σ

)) . (15)

By taking the limit a → 0, the rescaled phenotype
distribution becomes a Dirac distribution, dominat-
ing any convergences; thus, the left-hand side can be
transformed as:

lim
a→0

∫ +∞

0

sh
(

1
2

(
δΩ0
σ − δΩ

σ

))

α0e
1
2

d
a

(
δΩ
σ

)
+ ch

(
1
2

(
δΩ0
σ

− δΩ
σ

))Ke
− 1

2

(
δΩ

a

)2

d

(
Ω

a

)

∼
sh
(

1
2

(
δΩ0
σ

))

α0 + ch
(

1
2

(
δΩ0
σ

))

∼ lim
a→0

sh
(

1
2

(
a
σ

)(
δΩ0
σ

))

α0 + ch
(

1
2

(
a
σ

)(
δΩ0
σ

)) ∼ 0. (16)

Therefore, small gene effects imply: δΩ0/σ �
1. Recalling that Δω0/ω0 = th

((
a
σ

)(
δΩ0
σ

))
, one also

deduces lim
a→0

th
((

a
σ

)(
δΩ0
σ

))
∼ 0, that is, small gene

effects always involve common allele frequencies,
namely Δω0/ω0 → 0. Using this result, the genetic
paths difference can then be developed when gene
effects are small and by assuming that PΩ

(
Ω1/N

)
� 1

and that ‘PΩ(Ω)’ is normally distributed one obtains
at the leading order:

Δθ̂(Ω) ∼ ω0

2

( a

σ

)∫ Ω

Ω1/N

−
(
δΩ

σ

)
PΩ(Ω)dΩ

+ O
(
a2
)

∼ ω0
a

2
PΩ(Ω) + O

(
a2
)
. (17)

Equation (17) shows that in the context of Fisher’s
theory, a small gene effect corresponds to an over-
lapping symmetry between the genetic microstates
and the phenotype distribution, with an amplitude
proportional to the gene effect.

4.4. Fields linked to the variance of microstates
The involvement of variances in microstate
distribution functions in genotype–phenotype
associations is a highly debated matter (see [20]
and references within). As mentioned above, the
expression of the difference of the genetic paths
considers the distribution density function as a
whole, including the role of the microstate variances.
In this context, we saw that equation (9b) provides
a relation between variances in the form of an
ellipse. Assuming a single variance for all microstate
and phenotype distributions, as Fisher did, is
plausible; but other solutions exist that would
not violate equation (9b). In this context, let us
imagine that the gene effect and dominance are
nulls but that the distribution density function of
microstates ‘+1’, ‘0’, ‘−1’ and of the phenotype
have distinct variances; written, respectively,

as: P+(Ω) ∼ K
σ+

exp
(
− 1

2
(δΩ)2

σ+2

)
, P0(Ω) ∼

K
σ0

exp
(
− 1

2
(δΩ)2

σ0
2

)
, P−(Ω) ∼ K

σ−
exp

(
− 1

2
(δΩ)2

σ−2

)
and PΩ(Ω) ∼ K

σ
exp

(
− 1

2
(δΩ)2

σ2

)
.

By noting λ+ = σ/σ+, λ0 = σ/σ0 and λ− =

σ/σ−, the fields can be mapped under the form:

Δu(Ω0) =
1

2
ln

(
P−(Ω0)

P+(Ω0)

)

= +
1

2

(
λ2
+ − λ2

−
)(δΩ0

σ

)2

+ ln

(
λ+

λ−

)
(18a)

Δu(Ω0) − sΔu(Ω) =
1

2
ln

(
P+(Ω)

P−(Ω)
· P−(Ω0)

P+(Ω0)

)

= +
1

2

(
λ2
+ − λ2

−
)((

δΩ0

σ

)2

−
(
δΩ

σ

)2
)

(18b)

u(Ω) = ln

(
P0(Ω)√

P+(Ω) · P−(Ω)

)

∼ −1

2

(
λ2

0 −
1

2
λ2
+ − 1

2
λ2
−

)(
δΩ

σ

)2

+ ln

(
λ+λ−
λ0

)
. (18c)

Consequently, pseudo-gene effect and
pseudo-dominance linked to the variances of
genetic microstates can be defined, respectively, as:
a′ = 1

2

(
λ2
+ − λ2

−
)

and d′ = 1
2

(
λ2

0 − 1
2λ

2
+ − 1

2λ
2
−
)
.

To conclude, as this new method does not only
concentrate on average values, it captures more infor-
mation as far as genotype–phenotype associations are
involved.
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Table 1. Genetic variances as a function of the gene effect and allele frequency.

Allele frequency (p)

0.1 0.2 0.3 0.4 0.5

Gene
effect
in
unit
of
phenotypic
standard
deviations (a/σ)

1 0.18 0.32 0.42 0.48 0.5 Genetic
0.8 0.1152 0.2048 0.2688 0.3072 0.32 variances
0.5 0.045 0.08 0.105 0.12 0.125
0.3 0.0162 0.0288 0.0378 0.0432 0.045

0.15 0.00405 0.0072 0.00945 0.0108 0.01125
0.1 0.0018 0.0032 0.0042 0.0048 0.005

0.05 0.00045 0.0008 0.00105 0.0012 0.00125
0.01 0.000018 0.000032 0.000042 0.000048 0.00005

0.005 4.5 × 10−6 0.000008 1.05 × 10−5 0.000012 1.25 × 10−5

0.001 1.8 × 10−7 3.2 × 10−7 4.2 × 10−7 4.8 × 10−7 5 × 10−7

0.0005 4.5 × 10−8 8 × 10−8 1.05 × 10−7 1.2 × 10−7 1.25 × 10−7

Figure 3. Power calculations for two allele frequencies as a function of the gene effect and sample size using Fisher’s additive
model when the dominance is null. The colour of the curves is associated with the sample size (one thousand individuals for
black, ten thousand individuals for red, hundred thousand individuals for blue and one million individuals for green). The figure
illustrates that with 1000 individuals current genotype–phenotype methods are not powerful enough to detect small gene effects.

5. Illustration of the application of GIFT
using simulated data

We intend to illustrate how GIFT can be applied using
simulated data and qualitatively assess its sensitivity to
extract information.

5.1. Data simulations
The codes used are provided in SM5, see the supple-
mentary materials.

Data was simulated according to quantitative
genetic models defined by Falconer and Mackay
(1996) [27]. A single bi-allelic quantitative trait locus
associated with a continuous phenotype was mod-
elled, with an additive allele effect, a, and allele fre-
quencies, p and q, where p + q = 1. The simulation
parameters were set as the number of individuals
sampled, N = 1000; number of simulation replicates,
n = 1000; allele frequency, p; additive allele effect, a,
and dominance, d; note that the number of simulation
replicates allows one to determine the best outcomes.
While the theory provided in this paper is general, the
simulation of data will be restricted to individuals’
genotypes allocated according to Hardy–Weinberg
proportions. For N individuals, Np2 had genotype

AA (corresponding to microstate −1), 2pqN had
genotype Aa (microstate 0), and Nq2 had genotype
aa (microstate +1). The allele effect, a, is defined as
half the difference between the +1 and −1 genotype
(microstate) means, and d, is the position of the 0
genotype (microstate) mean (figure 1). Dominance is
measured as the deviation of the mean of microstate 0
from the midpoint between the means of the +1
and −1 microstates. For the purposes of the sim-
ulation dominance, d, was 0, that is, the mean of
microstate 0 was mid-way between the mean of
microstates +1 and −1.

The additive genetic variance due to the quanti-
tative trait loci (σ2

QTL) was defined as [27]: σ2
QTL =

2pq
[
a + d

(
q − p

)]2
. Each individual was assigned a

genotypic value, depending on their microstate: −a
for the +1 microstate, 0 for the 0 microstate, and +a
for the −1 microstate. Individual phenotypes were
generated by adding a random environmental effect
to the genotypic value of each individual. The added
environmental effect was a random variate drawn
from a normal distribution with a mean of 0 and vari-
ance of 1 − σ2

QTL. The phenotype was then rescaled
to a value representing a realistic dataset: phenotype
= (simulated phenotype × standard deviation of real
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Figure 4. (A) Simulation of genetic paths difference in the space of positions as a function of log-scale values of the gene effect
normalised by the phenotypic standard deviation, noted ‘a/σ’, for Δω0 = 0. (B) Natural-logarithm transformation of the genetic
paths difference in the space of positions as a function of log-scale values of the gene effect normalised by the phenotypic standard
deviation, noted ‘a/σ’, for Δω0 = 0. (C) Simulations of genetic paths difference in the space of phenotype values as a function of
log-scale values of the gene effect normalised by the phenotypic standard deviation, noted ‘a/σ’, for Δω0 = 0.
(D) Natural-logarithm transformation of the genetic paths difference in the space of phenotype values as a function of log-scale
values of the gene effect normalised by the phenotypic standard deviation, noted ‘a/σ’, for Δω0 = 0.

data) + mean of real data. In this case, the real dataset
modelled was a summary of the genotype-tissue
expression (GTEx) project [28]. In particular, the
phenotype was height with a mean of 68.17206 inches
and standard deviation of 4.030 07 inches. For each
simulated replicate of N individuals, the difference
between the cumulative sums of microstates ordered
by phenotype value and genotypes in a randomised
order with respect to phenotype was determined to
create the difference in the genetic paths difference.
The maximum value of this difference was identified
and its position and phenotypic value in the ordered
string of microstates were recorded. Where the max-
imum value extended over several positions, the
mean position and phenotypic value were recorded.
Finally, to simplify representation, the amplitudes
of the genetic path differences were normalised by
population size (N = 1000 in this case).

Note that the standard deviation(s) arising from
genotype–phenotype simulations were not consid-
ered in the analysis that follows. Instead, we report a
theoretical analysis of the convergence of the genetic
path difference method, and its self-consistency, as
well as its sensitivity to detect genotype–phenotype
associations using simulations, in SM6 and SM7,
respectively, see supplementary materials.

5.2. Analysis of simulated results
For information, table 1 shows how genetic vari-
ance, gene effect, i.e., a/σ, and allele frequency are
numerically related using GWAS method. Similarly

figures 3(A) and (B) represent, in the context of
GWAS and for the allele frequencies p = 0.5 (Δω0 =

0) and p = 0.8 (Δω0 = 0.6) that will be used below as
examples, the relationship between the power of the
study, the gene effect and the sample size as described
in [29]. Briefly, the power of a study is related to the
concepts of type I and type II errors. A type I error
(a.k.a. α) is rejecting the null hypothesis in favour
of a false alternative hypothesis, and a type II error
(a.k.a. β) is failing to reject a false null hypothesis in
favour of a true alternative hypothesis. The power of
a study is then the probability of avoiding a type II
error. Mathematically, the power is defined by, 1 − β,
where 0<β < 1. If the power is close to 1, i.e., β ∼
0, the hypothesis test is very good at detecting a false
null hypothesis. β is commonly set at 0.2, to provide
a power ∼0.8 (or 80%). Powers lower than 0.8, while
not impossible, would typically be considered too low
for GWAS. The four primary factors affecting power
are, the sample size, the significance level (or α), the
variance/variability in the measured response and the
magnitude of the effect of the variable. Only the first
variable can be altered in a study since all the others
are fixed by the genes. To conclude, power is increased
when the sample size or effect sizes (gene effect) are
increased. Accordingly, figure 3 demonstrates that
1000 individuals would not allow 80% power to be
achieved unless the gene effect is sufficiently large,
that is for a/σ � 0.5.

Using simulated data, we can now represent the
genetic paths difference and its log transformation for
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Figure 5. (A) Simulations of genetic paths difference in the space of phenotype values as a function of log-scale values of the gene
effect normalised by the phenotypic standard deviation, noted ‘a/σ’, for Δω0 = 0.6. (B) Natural-logarithm transformation of
the genetic paths difference in the space of phenotype values as a function of log-scale values of the gene effect normalised by the
phenotypic standard deviation, noted ‘a/σ’, for Δω0 = 0.6. (C) Representation of the shift in the phenotype value for which the
genetic path difference is maximal as a function of the gene effect ‘a/σ’ for different values of allele frequencies. N = 1000
represents the number of individuals in the simulation. (D) Representation of the shift in the phenotype value for which the
genetic paths difference is maximal when the population is increased by a factor 10 (N = 10 000) for the gene effects verifying
a/σ < 0.1.

Δω0 = 0, either in the space of positions (figures 4(A)

and (B)) or of phenotypic values (figures 4(C) and

(D)) for different log-scale values of the normalised

gene effect a/σ (see inset).

As shown in figure 4(C), the profile of the pheno-

type distribution density function is recovered with

an amplitude that decreases as a/σ decreases. The

red vertical dashed line in figure 4(C) represents the

mean phenotypic value. Using the natural logarithm

to transform Δθ̂(Ω) (figure 4(C)) to ln
[
Δθ̂(Ω)

]
(figure 4(D)) demonstrates that a difference between

genetic paths can be seen for small gene effects.

One may then compare how perceptible the asso-

ciations are using the new method by comparing

figures 1(B) and (C) (method of averages based

on Fisher’s theory) and figure 4(D) for identical

allele frequencies and similar gene effects. Recall that

GWAS rely on determining difference in averages (see

figure 1(B) or figure 1(C)). However, the determina-

tion of a difference in the microstate averages rely on

a strong gene effect (figure 1(B)) or a very large popu-

lation (see figure 3) as otherwise the density functions

of microstates collapse onto one. This is particularly

visible when one compares the right-hand and left-

hand graphs in figure 1(B) or figure 1(C). Thus, the

results provided by figure 4 suggest that GIFT can

be applied to 1000 individuals to return informa-
tion regarding potential genotype–phenotype asso-
ciations that would not otherwise be possible, or
extremely difficult, with current association studies.

Concentrating on different allele frequencies given
by p = 0.8 (Δω0 = 0.6) as an example. Figures 5(A)
and (B) are representations of Δθ̂(Ω) and its natural-
log transformation for log-scale values of a/σ.

Differences are clearly visible between Δω0 = 0
and Δω0 = 0.6, since the phenotype values for which
Δθ̂(Ω)’s are maximal have been shifted from the aver-
age value of the phenotype (indicated by the vertical
red dashed line). This is not surprising because the
simulation only imposed a set of genetic variances,
without any constraint on the conservation of the
average phenotype value.

However, the shift of the phenotype value
for which Δθ̂(Ω) is maximal is of interest. As
equation (17) demonstrates that for small gene
effects, the genetic path difference should be
proportional to the phenotype distribution, that is,
the phenotype value for which Δθ̂(Ω) is extreme
should be the average value of the phenotype.

Thus, to obtain a better visualisation of the
impact of the gene effect on the positioning of the

phenotype value Ω
(
Δθ̂max

)
for which the genetic

path difference is maximal, a set of simulations
were also performed based on allele frequencies
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Table 2. Nonlinear fit results for figure 4(C) using
Ln[Δθ̂(Ω)] = AΩ2 + BΩ+ C.

a/σ = 1
p = 0.5

a/σ = 0.5
p = 0.5

a/σ = 0.05
p = 0.5

a/σ = 0.005
p = 0.5

A −0.0371 −0.0321 −0.0311 −0.0435
B 5.0539 4.3799 4.2425 5.9241
C −173.69 −151.48 −149.5 −208.35
r2 0.9960 0.9990 0.9937 0.8329
Ω 68.11 68.22 68.21 68.09
σ2 13.48 15.58 16.08 11.49

defined by p ∈ {0.5; 0.4; 0.3; 0.2; 0.1} for log-ranging
values of gene effects (figure 5(C)). Note that p ∈
{0.5; 0.6; 0.7; 0.8; 0.9} can be deduced from the sym-
metry around the average value of the phenotype.

While the standard deviations obtained were not
always negligible concerning Ω

(
Δθ̂max

)
, typically

between 0.5 and 1 phenotypic standard deviation for
small gene effects; figure 5(A) demonstrated trends
toward the average value of the phenotype with small
gene effects. Indeed, below the simulated gene effect

of a/σ ∼ 10−1, the average value of Ω
(
Δθ̂max

)
was

remarkably similar to that of the average value of the
phenotype, marked by the horizontal black dashed
line.

To confirm this trend for small gene effects, that
is, a/σ � 0.1, we varied the population size from N =

103 to N = 104 to determine the presence of potential

variations in Ω
(
Δθ̂max

)
linked to the simulations.

Results summarised in figure 5(B) demonstrate that
the only difference was a reduction in the standard

deviations obtained for Ω
(
Δθ̂max

)
for the simulated

gene effects comprised between 0.01 and 0.1 (see
arrows figures 5(C) and (D) pointing to different
magnitude of the standard deviations). Namely, the
initial symmetry of the phenotype distribution den-
sity function reappears, as expected (equation (17)).

Finally, equation (17) suggests that for
small gene effects Δθ̂(Ω) is proportional to
the gene effect a/σ in the form, Δθ̂(Ω) ∼
ω0

a
σ Ke−

1
2σ2 (Ω−〈Ω〉)2

. As a consequence it was

decided to fit the all the curves Δθ̂(Ω) in
figures 4(D) and 5(B) with quadratic equations

of the form Ln
[
Δθ̂(Ω)

]
∼ AΩ2 + BΩ+ C; see

tables 2 and 3. Then, as Δθ̂(Ω) ∼ e
(

C− B2
2A

)
eA·(Ω+ B

2A )2

with such a fit, we expect by identification of
equation (17) that for small gene effects: Ω ∼ − B

2A , −
1

2σ2 ∼ A and a
σ
∼ 1

ω0K e
(

C− B2
2A

)
. Tables 2 and 3

provide the estimations for both Ω and σ and setting
K ∼ 1/

√
2π, figure 6 provides a comparison between

the gene effect from the simulations,
(

a
σ

)
sim

, and the
gene effect deduced from equation (17),

(
a
σ

)
theo

.
Thus, recalling that the phenotype average and

variance of the population modelled are, respectively,
68.17 inch and 16.24 inch2; tables 2 and 3 demonstrate
that fitting the genetic paths difference as a function

Table 3. Nonlinear fit results for figure 4(F) using
Ln[Δθ̂(Ω)] = AΩ2 + BΩ+ C.

a/σ = 1
p = 0.2

a/σ = 0.5
p = 0.8

a/σ = 0.05
p = 0.2

a/σ = 0.005
p = 0.2

A −0.0318 −0.0292 −0.0282 −0.0300
B 4.2666 3.9583 3.8514 4.0741
C −145.14 −136.71 −136.45 −145.40
r2 0.9135 0.8892 0.8004 0.7554
Ω 67.08 67.77 68.28 67.90
σ2 15.72 17.12 17.73 16.67

of phenotype values with a quadratic curve recovers
the magnitude of the average and variance of the
phenotype used for the simulations for most log-scale
values of the gene effect. Furthermore, the amplitude
ofΔθ̂(Ω) is also indicative of the gene effects involved.

6. Discussion

In his seminal paper [4], Fisher provided a synthe-
sis between the genetic inheritance of continuous
traits and the Mendelian scheme of inheritance using
statistics and probability. His theory has become a
landmark in genetics and heredity and its conceptual
framework is still used today. While statistics is a nat-
ural field to employ when dealing with large datasets,
the interpretation of data as well as the inferences that
can be drawn from it rely fundamentally on PDFs.
As the act of creating categories to work with density
functions is acknowledging imprecisions, our aim
was to devise a different method ruling out the need
for category. This new theoretical method, inspired
by physics and named GIFT, uses the concept of
phenotypic fields, and concentrate on ‘genetic paths’
to extract information on genotype phenotype map-
pings. It is then important to discuss the conceptual
similarities and differences between GWAS and GIFT.

In term of conceptual similarities, we saw that the
theory underscoring GIFT developed using Fisher’s
assumptions recovers key concepts from quantitative
genetics, including: (i) the Hardy–Weinberg coeffi-
cient locally, (ii) the Hardy–Weinberg coefficient at
the population level, (iii) the gene effect, (iv) dom-
inance, and (v) small gene effects involving com-
mon allele frequencies [30]. In this context, GIFT
and GWAS are similar. Finally, applying GIFT to
simulated data based on Fisher’s assumption proved
its sensitivity for extracting information on geno-
type–phenotype associations when sample sizes and
gene effects were small. The reason for not consider-
ing the dominance in the simulations is linked to the
fact that realistic GWAS have shown that with small
effect sizes/small gene effect (which is the main area of
concern of the current paper), dominance effects are
often too small, and an additive model as suggested by
Fisher works well enough [31].

In term of conceptual differences, three essential
points can be discussed.
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Figure 6. Comparison between simulated and theoretical gene effects the black dots correspond to the cases where the gene
effects simulated are identical to the theoretical gene effects.

First of all, GIFT is more general that GWAS
in the sense that the phenotypic fields can be any,
namely do not have to be linear. The prescription
of linear phenotypic fields in Fisher’s context comes
from the symmetry associated with using the nor-
mal distribution as a template for any distribution
density function, together with the assumption that
the phenotypic and microstate variances are identical
[4]. When the constraint on the variances is released,
the phenotypic fields become quadratic involving the
variances as well as the averages. In this context GIFT
has enabled us to define new parameters linked to
microstate variances, that are, the pseudo-gene effect
and the pseudo-dominance, which will probably help
resolve controversies [20].

Secondly, in term of genetics what has been
achieved so far is rather at odds with traditional
ways of thinking about the notion of gene. Indeed,
by defining the difference in genetic paths, Δθ(Ω),
one can say that it is the phenotype, i.e., phenotypic
fields or information, that organises the configuration
of genotypes and not the converse. In genetics the
tradition is to think of genes as causing phenotypes.
Here, a different way of thinking is suggested since
it is the variation in phenotype values, resulting
in our ability to generate a ranking process, that
interacts with the microstates. Therefore, the pheno-
type is able to ‘select’ a set of genetic microstates.
Recall that microstates ‘respond’ to, or interact
with, the phenotypic fields only if they are associ-
ated with the phenotype. Consequently, this model
suggests considering a genotype–phenotype ‘loop’,
a.k.a. self-consistency. That is to say that if genes
cause phenotypes (traditional view) and that pheno-
types select gene microstates (present view), then an
equivalence exists between phenotype and genotype.

Supplementary materials contain more information
and development concerning the convergence and
self-consistency of GIFT (SM6).

Finally, Fisher’s theory/GWAS has been built on
considering the normal distribution. In general, ‘real’
density functions never come as normally distributed.
Given that Fisher’s theory gives biological meanings
to average and variance only, to define the ‘gene
effect’ and ‘genetic/phenotypic variance’ linked to
heredity, respectively; there is no biological mean-
ing to any other statistical/mathematical parameters
describing real density functions, such as for example
the ‘skewness’. As GIFT uses curves, namely does
not use average and variance as central parameters,
this issue does not exist with GIFT. Said differently,
GIFT frees GWAS from any preconceived idea of what
statistics and probability applied to biology should be.

Taken as a whole, the work presented here is
a first step suggesting that GIFT can be consid-
ered as a potential method for genotype–phenotype
mappings. Supplementary material SM7 contains
more information concerning the signal-to-noise
ratio when GIFT is used and SM8 (see supplemen-
tary materials) provides an initial illustration of the
application of GIFT using real data based on GWAS
results.

However the authors agree with the fact that more
work needs to be done to compare GIFT to the
vast literature concerning GWASes. For example, at
present the model is quite simplistic in the way that,
by construction, it does not allow the easy incorpora-
tion of covariates. Future works will relate covariates,
such as age or sex, and for the case of human pop-
ulations, genetic principal components (to account
for population structure). In addition, GIFT will be
compared against well-known statistical tests as used
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in GWAS (e.g., z-test/chi-square as parametric test, or
the Kolmogorov–Smirnov test as non-parametric).

7. Conclusion

A century ago, Fisher devised a statistical method to
map genotypes and phenotypes, which was essentially
based on the measure of uncertainty. We present here
a method taking as a paradigm the fact that certainty
can exist with the possibility to measure phenotype
and genotype with very high precision. In an asso-
ciated paper, we present a theoretical methodology
based on Shannon’s information enabling the signifi-
cance of correlation using real genotype–phenotype
data to be quantified [32]. To conclude, this new
method (GIFT) opens a new way to analyse geno-
type–phenotype mapping.
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Appendix A

A.1. Differential expression of the genetic path in
the space of phenotypic values

We assume that the phenotype values are measured
precisely enough such that each individual has a
unique phenotype value noted Ωi. As the population
is composed of ‘N’ individuals one defines, î def i/N
and Ωî, as the new position and its correspond-
ing phenotype value, respectively. Thus Ω1/N and
Ω1 are the smallest and largest phenotype values,
respectively.

As a result, the cumulative sum of presence prob-
ability of genetic microstates as a function of ‘î’

can be written as: θ
(

î
)
=

∑ĵ=î

ĵ= 1
N

(
ω+

(
ĵ
)
− ω−

(
ĵ
))

,

where ω+

(
ĵ
)

and ω−

(
ĵ
)

are the presence probabil-

ities of microstates ‘+1’ and ‘−1’ at the position ĵ.

Using the continuum limit, one deduces also, θ
(

î
)
∼∫ î

1
N

(
ω+

(
ĵ
)
− ω−

(
ĵ
))

dĵ.

As the ranking of phenotype values was

introduced to define, θ
(

î
)

, the genetic path can also

be expressed as a function of phenotype values under

the form: θ̂
(
Ωî

)
=

∑ĵ=î

ĵ=1/N

(
ω̂+

(
Ωĵ

)
− ω̂−

(
Ωĵ

))
where the hat ‘̂’ is added to describe new functions
linked to phenotypic values. Accordingly, by
definition, θ̂

(
Ωî

)
− θ̂

(
Ωî−1

)
= ω̂+

(
Ωî

)
− ω̂−

(
Ωî

)
.

Assuming that the measured phenotype values
are sufficiently close, the continuum limit can be

used to determine θ̂
(
Ωî

)
− θ̂

(
Ωî−1

)
∼ dθ̂

dΩ ·Δ(Ω),
where Δ(Ω) is the spacing between two consecutive
individuals in the space of phenotype values. One

deduces then: dθ̂
dΩ ∼ (ω̂+(Ω) − ω̂−(Ω)) 1

Δ(Ω) . As a
result, the genetic path can be expressed in the space
of the phenotype values as:

θ̂(Ω) ∼
∫ Ω

Ω1/N

(ω̂+(x) − ω̂−(x))
1

Δ(x)
dx. (A.1)

Where
∫ Ω1
Ω1/N

Δ(Ω)dΩ = Ω1 − Ω1/N = ΔΩ. As Δ(Ω)

is the phenotypic space between individual, provided
that the population is large and dense enough one can
relate ‘Δ(Ω)’ to the phenotype distribution density
function, PΩ(Ω), under the form 1/Δ(Ω) ∼ PΩ(Ω)
(SM1 in the supplementary materials). The different
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elements that lead to the formation of a genetic path
can now be addressed.

A.2. Entropy of the string of microstates
Keeping the notations ω0

+, ω0
0 and ω0

−, for the genetic
microstate frequencies of a given genome position
across the population of individuals, we aim to deter-

mine the expressions of ω+

(̂
i
)

, ω0

(̂
i
)

and ω−

(̂
i
)

given the information obtained upon ordering the
genotypes as a function of phenotype values along the
î-axis.

The default genetic path, θ0, as a straight
line is defined by the absence of information on
phenotype values, which is similar to an absence
of association between the genetic microstates
and the phenotype values, leading to an apparent
disordering of genetic microstates. One way to
measure this disordering is by using the ‘entropy’
of the string of genetic microstates for the genome
position considered. In this context, the entropy
is given by calculating the number of possible
combinations of placing N+ = Nω0

+, N0 = Nω0
0

and N− = Nω0
− genetic microstates over ‘N’ possible

positions. Consequently, the entropy of the default
genetic path is S0 = N!/N+!N0!N−!; and for ‘N’
large enough using Stirling’s formula one deduces:
S0/N ∼ −ω0

+ ln
(
ω0
+

)
− ω0

0 ln
(
ω0

0

)
− ω0

− ln
(
ω0
−
)
,

that can be rewritten in the continuum limit
as: S0 ∼ −N

∫ 1
1/N

(
ω0
+ ln

(
ω0
+

)
+ ω0

0 ln
(
ω0

0

)
+ ω0

−
)

ln
(
ω0
−
)
d̂i. Note that, as the genetic microstate

frequencies are constant in this case, the entropy can
be rewritten using the phenotype values as,

S0 ∼ −N

∫ Ω1

Ω1/N

(
ω0
+ ln

(
ω0
+

)
+ ω0

0 ln
(
ω0

0

)
+ ω0

− ln
(
ω0
−
)) 1

Δ(Ω)
dΩ. (A.2)

When information about phenotype values and
their ranking is given and when the genome position
considered is associated with the phenotype, S0 is
transformed to S where:

S = −N

∫ Ω1

Ω1/N

(ω̂+(Ω) ln(ω̂+(Ω))

+ ω̂0(Ω) ln(ω̂0(Ω))

+ ω̂−(Ω) ln(ω̂−(Ω)))
1

Δ(Ω)
dΩ. (A.3)

As a result, the entropy difference, S − S0 when
non-null provides information on whether the
genome position is associated with phenotype values.
Thus the difference, S − S0, can be thought of as
a ‘transformation’ in a physical/thermodynamic
sense. That is, the difference in entropies must be
balanced by a term that is linked to the association
(or interaction) between the genetic microstates and
the phenotype values.

A.3. Interaction energy between microstates and
subfields
As the difference, S − S0, is linked to the
information gained from knowing phenotypic
values and ranking them (appendix A.2), given
the existence of three distinct genetic microstates,
one can define three distinct functions a.k.a.
phenotypic fields ‘u+(Ω)’, ‘u0(Ω)’ and ‘u−(Ω)’
that are fundamentally related to changes in the
phenotype-associated genetic path. In this context,
the entire genetic path can be defined with a function
representing the sum of interactions between each of
the genetic microstates and phenotypic fields under
the form:

E ∼ N

∫ Ω1

Ω1/N

(u+(Ω)ω̂+(Ω) + u0(Ω)ω̂0(Ω)

+ u−(Ω)ω̂−(Ω))
1

Δ(Ω)
dΩ. (A.4)

In this context, one may consider that the set
of microstates changes the configuration because
the fields are ‘switch on’. This implies that for the
genome positions that are not involved in the for-
mation of the phenotype considered, the switch does
not work, that is, the fields are null. In this con-
text, one can consider the equivalence, S − S0 ∼
E. As a result, the relationship to optimise is:
ΔS − E = 0.

A.4. Optimisation of ΔS − E
Recalling the conservation of genetic
microstates for the genome position considered:∫ Ω1
Ω1/N

ω̂+(Ω) 1
Δ(Ω) dΩ = ω0

+,
∫ Ω1
Ω1/N

ω̂0(Ω) 1
Δ(Ω) dΩ

= ω0
0 and

∫ Ω1
Ω1/N

ω̂−(Ω) 1
Δ(Ω) dΩ = ω0

− together with

the conservation of probability, ω̂+(Ω) + ω̂0(Ω) +
ω̂−(Ω) = 1, Euler–Lagrange’s method can then
be used to determine the optimal configuration
for ω̂+(Ω), ω̂0(Ω) and ω̂−(Ω) in a context
where the phenotypic fields are imposed. By
defining α+, α0 and α−, the Lagrange multipliers
for the conservation of genetic microstates,
the relation to optimise with regard to the
genetic microstate frequencies ω̂+(Ω), ω̂0(Ω)
and ω̂−(Ω) is then,

ΔS/N − E/N − α+

(
ω0
+ −

∫ Ω1

Ω1/N

ω̂+(Ω)
1

Δ(Ω)
dΩ

)

− α0

(
ω0

0 −
∫ Ω1

Ω1/N

ω̂0(Ω)
1

Δ(Ω)
dΩ

)

− α−

(
ω0
− −

∫ Ω1

Ω1/N

ω̂−(Ω)
1

Δ(Ω)
dΩ

)
= 0. (A.5)

Using the conservation of genetic microstate fre-
quencies, ω̂0(Ω), can be replaced by, 1 − ω̂+(Ω) −
ω̂−(Ω), and a variational calculus can be performed
on the genetic microstate frequencies, leading to two
conditions:
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δω̂+(Ω)

[
ln

(
ω̂+(Ω)

1 − ω̂+(Ω) − ω̂−(Ω)

)
− δu+(Ω) + (α+ − α0)

]
= 0 (A.6)

δω̂−(Ω)

[
ln

(
ω̂−(Ω)

1 − ω̂+(Ω) − ω̂−(Ω)

)
− δu−(Ω) + (α− − α0)

]
= 0. (A.7)

Where δω̂+(Ω) and δω̂−(Ω) are small variations
in the presence probabilities of microstates
‘+1’ and ‘−1’, and δu+(Ω) def u+(Ω) − u0(Ω),
δu−(Ω) def u−(Ω) − u0(Ω). Finally, ω̂0(Ω) can
be deduced using ω̂0(Ω) = 1 − ω̂+(Ω) − ω̂−(Ω).
Using the conditions ω̂+(Ω) = ω0

+, ω̂0(Ω) = ω0
0 and

ω̂−(Ω) = ω0
− when the fields are null, one obtains,

ω̂+(Ω) =
ω0
+e−δu+(Ω)

ω0
0 + ω0

+e−δu+(Ω) + ω0
−e−δu−(Ω)

(A.8)

ω̂−(Ω) =
ω0
−e−δu−(Ω)

ω0
0 + ω0

+e−δu+(Ω) + ω0
−e−δu−(Ω)

. (A.9)

To make the asymmetries of the problem
more apparent, the following are defined for
genetic microstates: Δω0 def ω0

+ − ω0
− and

ω0 def ω0
+ + ω0

− = 1 − ω0
0; and for the phenotypic

fields:
2u(Ω) def δu+(Ω) + δu−(Ω) = u+(Ω) +

u−(Ω) − u0(Ω) and 2Δu(Ω)def δu+(Ω) −
δu−(Ω) = u+(Ω) − u−(Ω). Then, the difference
and sum of ω̂+(Ω) and ω̂−(Ω) can be rewritten as
follow:

ω̂+(Ω) − ω̂−(Ω)

=
ω0e−u(Ω)

[
Δω0
ω0

ch(Δu(Ω)) − sh(Δu(Ω))
]

1 − ω0 + ω0e−u(Ω)
[

ch(Δu(Ω)) − Δω0
ω0

sh(Δu(Ω))
]

(A.10)

ω̂+(Ω) + ω̂−(Ω)

=
ω0e−u(Ω)

[
ch(Δu(Ω)) − Δω0

ω0
sh(Δu(Ω))

]

1 − ω0 + ω0e−u(Ω)
[

ch(Δu(Ω)) − Δω0
ω0

sh(Δu(Ω))
] .

(A.11)

Noting that: −1 � Δω0/ω0 � +1, a new phe-
notype value is defined and noted ‘Ω0’ by setting
th(Δu(Ω0)) def Δω0

ω0
. Then, the difference and sum of

ω̂+(Ω) and ω̂−(Ω) can be rewritten as:

ω̂+(Ω) − ω̂−(Ω)

=
sh(Δu(Ω0) −Δu(Ω))

α0eu(Ω) + ch(Δu(Ω0) −Δu(Ω))
(A.12)

ω̂+(Ω) + ω̂−(Ω)

=
ch(Δu(Ω0) −Δu(Ω))

α0eu(Ω) + ch(Δu(Ω0) −Δu(Ω))
(A.13)

α0 def
1 − ω0

ω0
ch(sΔu(Ω0))

=
1 − ω0

ω0

1√
1 − (th(sΔu(Ω0)))2

=
1 − ω0√

ω0
2 −Δω0

2

=
1

2

ω0
0√

ω0
+ω

0
−

. (A.14)

The new variable ‘Ω0’ is the phenotype value
corresponding to the condition ω̂+(Ω0) ∼ ω̂−(Ω0).
The meaning of the constant ‘α0’ can be related to the
Hardy–Weinberg law. Hardy–Weinberg law based on
random mating in a population provides a relation-
ship between the genetic microstate frequencies under
the form: p2 + 2pq + q2 = 1, where p2 and q2 are the
genotype frequencies of genetic microstates ‘+1’ and
‘−1’, i.e. homozygote genotypes aa and AA, respec-
tively; and 2pq the genotype frequency for genetic
microstate ‘0’, i.e. the heterozygote genotype Aa. In
our case, this corresponds to replacing p2, q2 and 2pq
with, respectively, ω0

+, ω0
− and ω0

0 . Consequently, the
Hardy–Weinberg law imposes α0 = 1 with α0 �= 1
corresponding to a deviation from the law. However,
this term is expected to remain stable upon any
changes of allele or genotype frequencies suggesting
therefore that, genetically, any changes in ‘Δω0’ are to
some extent compensated by corresponding changes
in ‘ω0’.

We can now turn to the full expression of the
genetic path difference in the space of the phenotype
value:

A.5. Expression of the difference between the
phenotype responding and default genetic paths
expressed in the phenotypic space and
conservation of genetic microstate frequencies
The phenotype-associated genetic path is simply the
integration of (equation (A.12)) over the phenotype
values that is given, as seen above (equation (A.1) in

appendix A.1), by:
∫ Ω

Ω1/N

[
ω̂+(Ω) − ω̂−(Ω)

]
1

Δ(Ω) dΩ.

The default genetic path is deduced from
considering that the difference in the presence
probabilities between the genetic microstates ‘+1’

and ‘−1’ is constant, i.e.:
∫ Ω

Ω1/N
Δω0

1
Δ(Ω) dΩ.

By rewriting ‘Δω0’ as ‘ω0

(
Δω0/ω0

)
’, where

Δω0/ω0 = th(Δu(Ω0)) and deducing ‘ω0’ from
α0 = (1 − ω0)ch(Δu(Ω0))/ω0; it follows: Δω0 =

sh(Δu(Ω0))
α0+ch(Δu(Ω0)) . As a result, the difference between
the phenotype-associated and default genetic paths
expressed as a function of phenotypic fields within
the continuum limit is:

Δθ̂(Ω) =

∫ Ω

Ω1/N

sh(Δu(Ω0) −Δu(Ω))

α0eu(Ω) + ch(Δu(Ω0) −Δu(Ω))

1

Δ(Ω)
dΩ

− sh(Δu(Ω0))

α0 + ch(Δu(Ω0))

∫ Ω

Ω1/N

1

Δ(Ω)
dΩ. (A.15)
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The conservation of genetic microstates needs to
be added regardless of the genetic path taken, that is,
Δθ̂(Ω1) = 0, expressed as:∫ Ω1

Ω1/N

sh(Δu(Ω0) −Δu(Ω))

α0eu(Ω) + ch(Δu(Ω0) −Δu(Ω))

1

Δ(Ω)
dΩ

=
sh(Δu(Ω0))

α0 + ch(Δu(Ω0))
. (A.16)
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