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TOC Graphic:

Description:

Difference spectroscopy of functionalised ionic liquids can help resolve photoemission signals 

beyond what was previously thought possible. 
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Abstract

X-ray photoelectron spectroscopy (XPS) is a powerful element-specific technique to determine the 

composition and chemical state of all elements in an involatile sample. However, for elements such 

as carbon, the wide variety of chemical states produce complex spectra that are difficult to interpret, 

consequently concealing important information due to the uncertainty in signal identity.  Here we 

report a process whereby chemical modification of carbon structures with electron withdrawing 

groups can reveal this information, providing accurate, highly refined fitting models far more complex 

than previously possible. This method is demonstrated with functionalised ionic liquids bearing 

chlorine or trifluoromethane groups that shift electron density from targeted locations. By comparing 

the C 1s spectra of non-functional ionic liquids to their functional analogues, a series of difference 

spectra can be produced to identify exact binding energies of carbon photoemissions, which can be 

used to improve the C 1s peak fitting of both samples. Importantly, ionic liquids possess ideal chemical 

and physical properties, which enhance this methodology to enable significant progress in XPS peak 

fitting and data interpretation. 
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1 Introduction

X-ray photoelectron spectroscopy (XPS) gives information regarding the chemical states of elements 

in a sample.1–3 Different oxidation states and electronic environments can be identified and quantified 

for all elements (except for hydrogen and helium),4 making XPS a powerful technique for surface 

analysis of inorganic and organic samples. Prominent areas that utilise XPS include solid-state 

materials, polymers, nanoscience, and more recently, ionic liquids (ILs).5–8 When an element occupies 

multiple chemical states, such as the carbon 1s photoemission of organic structures, signals appear 

complex and unresolved. This phenomenon is inherent to XPS as the FWHM of core photoemissions 

are large compared to the binging energy (B.E.) ranges of most common chemical states. For this 

reason, peak fitting models are used to interpret the characteristic structures of convoluted 

photoemissions, imparting an uncertainty to the information obtained from complex spectra.9,10 Many 

of the fitting models described to date assign peaks by conjecture or examining vast numbers of 

samples relative to each other to incrementally improve peak fitting paramteres.11–17 Importantly, 

there is no absolute peak fitting method and expert analysts have warned that interpretation of XP 

spectra is likely to lead to mistakes.10 Therefore, a reliable methodology is essential to extract valuable 

information from complex photoemission spectra. 

As an ultra-high vacuum (UHV) based technique, most liquids would rapidly evaporate under XPS 

experimental conditions. However, the extremely low volatility of ionic liquids (ILs) have enabled the 

investigation of liquid phase processes (e.g. solvent-solvent and solvent-solute interactions) by XPS.18–

22  Investigations of IL surfaces have also produced a wealth of information regarding the liquid-gas 

interface, nanostructure, and surface enrichment of solutes, primarily due to the element specific 

nature of XPS.23–26 Importantly, XPS studies of ILs are complimented by strong photoelectron fluxes 

that give rise to intense, narrow signals emitted by flat IL surfaces. Furthermore, ILs are electrically 

conducting, which prevents significant differential charging, and have an apparent high beam stability 

due to the dynamic liquid surface.27 IL XP spectra are consequently exceptionally high quality and are 

often superior to the XP spectra of solid organic powders. 

IL chemical structures produce complex C 1s photoemission spectra because of the diverse chemical 

states of carbon, which occupy both electron-rich aliphatic environments and electron-poor ionic 

environments. The complexity of IL C 1s spectra are dictated by the cation  (i.e. covalent bonding, 

charge delocalisation), anion (i.e. charge transfer, presence of carbon), alkyl chain lengths, and 

presence of functional groups.13,28–31 Hence, accurate and reliable C 1s fitting models are needed to 
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unlock all of the information present in an XP spectrum. However, due to the lack of standard 

procedures, different C 1s fitting models have been developed for even the most basic IL chemical 

structures. For example, the C 1s region of imidazolium ILs have been fitted with 2-3 component  

models, which broadly account for polar and non-polar regions,32 or more complex fittings with 3+ 

components.21,33 While the latter can potentially provide more information, simpler models are a 

conservative approach aimed at minimising over interpretation of XP spectra. 

Post-analysis data interpretation is problematic for any complex system with multiple chemical states 

and often a limiting factor for the successful application of XPS as an analytical method.  Although 

there are numerous methodologies and tools for determining the goodness of fit for XP spectra, most 

serve as error analyses to identify poor peak fittings and do not indicate correct peak assignments.34–

36 Peak fitting by intuition can also produce misleading results as XP spectra are a combination of initial 

and final state effects. XPS has significant final state effect contributions and previous publications 

have warned against interpreting B.E. shifts < 0.5 eV in IL XP spectra in terms of atomic charges.32,37 

Despite this, correlations between core-electron B.E.s and physicochemical properties (e.g. Kamlet-

taft parameters)21,22,31 support the drive for accurate peak fittings, regardless of the physical 

interpretation of the data.  

Difference spectra can be generated by subtracting one core-level XP spectrum from the same core-

level spectrum of another sample. This method can provide useful information when the samples are 

structurally related. A relevant example by Cremer et al. used the difference between two 

homologous imidazolium ILs to definitively identify the C 1s photoemission of a C2-methyl group.22 By 

subtracting the C 1s photoemissions of [C8C1Im][A] (Note: A = mono- or poly-atomic anions) from 

methylated analogues [C8C1C1Im][A], the resulting difference spectra had single peaks representing 

the additional carbon atom of the [C8C1C1Im][A] ILs. Another example by Briggs and Fairley 

demonstrated the usefulness of XP difference spectra for understanding surface modification of low-

density polyethylene (LDPE) thin films.15 The C 1s XP spectrum of untreated LDPE was subtracted from 

the C 1s spectra of a range of chemically oxidised LDPE samples. The difference spectra were used to 

identify changes in chemical state and the area of the photoemissions were compared to oxygen at.% 

to assess peak fitting variables (e.g. lineshapes and FWHMs). Importantly, these overlooked 

experiments demonstrate that incremental structural modifications can produce consistent XP 

photoemissions that differ by discreet and quantifiable changes. This work develops upon this 

principle to provide the first targeted chemical functionalisation of samples for identification of XP 

photoemissions. 
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ILs are considered neoteric designer solvents as their physicochemical properties can be tuned by 

chemical modification to improve their functions, i.e. they are task-specific (TSILs).38 There are 

numerous examples of TSIL XPS investigations, most focused towards characterising the impact of 

functional groups on IL physical properties.20,28,31 However, some studies have sought to utilise the 

designer aspect of ILs to expand XPS as an analytical tool. Prominent examples include monitoring gas-

liquid (e.g. CO2 capture by amines)39 or liquid phase (e.g. alkylations, dehydrogenation of organic 

compounds, or thermochromic transformations of organometallics)40–42 chemical processes by 

anchoring functional groups to the involatile IL phase. Maier et al. have discussed the details and 

importance of such investigation in a 2017 perspective published in the Journal of Chemical Physics.43 

Here, we exploit the tunable nature of ILs to effect electronic changes in the IL cation to facilitate XPS 

peak fittings. The ILs presented in this work are therefore task-specific for XP spectroscopic 

measurements; further support that their unique properties are perfectly complimentary to XPS. 

Although a wide variety of ILs have been analysed by XPS, this work investigates pyridinium, [CnPy][A], 

and imidazolium, [CnC1Im][A], ILs which have been a primary focus throughout the development of 

liquid phase XPS. Furthermore, their complex C 1s spectra arise from both aromatic and aliphatic 

carbon chemical states, producing photoemission peaks that spread from low (≈ 285.0 eV) to high (≈ 

293.0 3V) B.E.s. By exploiting the designer aspect of ILs, targeted functionalisation of [CnPy][A] and 

[CnC1Im][A] with electron withdrawing groups (EWGs) such as chlorine and trifluoromethane (see 

Figure 1) has been used to shift electron density from specific locations. Comparison of the TSILs XP 

spectra to non-functional analogues gives difference spectra that reveal the initial and final 

photoemission B.E.s, simultaneously improving both XP spectra fittings. 

Figure 1 Structures of the chlorine- and trifluoromethane-functionalised cations (left) and anions 
(right) presented in this work. 
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2 Experimental

2.1 Synthesis

Full synthetic procedures and characterisation of the functionalised ILs are reported in the ESI. The 

non-functionalised IL XPS data was re-used from previous projects which have published the synthesis 

and characterisation of the ILs to confirm sample purity. In this work, the 2-chloropyridinium salts 

were synthesised by N-alkylation of 2-hydroxypyridine, followed by chlorination of the N-

alkylpyridone with phosphorus (V) oxychloride and subsequent anion metathesis (Scheme 1Error! 

Reference source not found.) to give N-alkyl-2-chloropyridinium bis(trifluoromethanesulfonyl)imides, 

[CnPy-2-Cl][NTf2] (where n = 4 or 8), which were light brown liquids at room temperature. The 3-

chloropyridinium salts, [CnPy-3-Cl][A] (where n = 4 or 8, and [A] = [BF4]- or [NTf2]-), were synthesised 

by similar procedures to non-functionalised pyridinium ILs, i.e. alkylation of 3-chloropyridine followed 

by anion metathesis in water (Scheme 2Error! Reference source not found.), to give light brown 

liquids at room temperature.  [C8Py-4-(CF3)][NTf2] was synthesised by alkylation of 4-

(trifluoromethane)pyridine with bromooctane, followed by anion metathesis in water (Scheme 

3Error! Reference source not found.). The chlorine-functionalised imidazolium salts, [CnC1Im-4-

Cl][NTf2] (where n= 4 or 8), were synthesised by Rebecca Hawker at UNSW and full synthetic 

procedures and characterisation have been previously published elsewhere.44 All ILs prepared for this 

work have been characterised by 1H and 13C NMR, HRMS, XPS and either ion chromatography (IC) or 

the aqueous silver nitrate test to determine anion purity (see the ESI for further details). 

Scheme 1 Synthesis of [CnPy-2-Cl][NTf2] ILs from 2-hydroxypyridine. 
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Scheme 2 Synthesis of N-alkyl-3-chloropyridinium ionic liquids, [CnPy-3-Cl][A],  from 3-
chloropyridine.

Scheme 3 Synthesis of [C8Py-4-(CF3)][NTf2] by alkylation of 4-(trifluoromethane)pyridine, followed by 
anion metathesis in water. 

2.2 XPS 

Data Acquisition

All XP spectra were recorded using a Kratos Axis Ultra Spectrometer equipped with a monochromated 

Al Kα source (1486.6 eV), hybrid (magnetic/electrostatic) optics, concentric hemispherical analyser 

(CHA) and a multi-channel plate and delay line detector (DLD). The incident angle of the X-rays was 

30° and the collection angle was 0 °, relative to the surface normal. The entrance aperture was 300 x 

700 μm2 and pass energies were set to either 80 eV for wide scans or 20 eV for high resolution scans. 

The Ag 3d5/2 photoemission had an intensity of 7.5 x 105 CPS and an FWHM of 0.55 eV for a clean Ag 

surface, with a pass energy of 20 eV at the analyser and a 450 W emission power. Binding energies 

(B.E.s) were calibrated to the Au 4f7/2 (83.96 eV), Ag 3d5/2 (368.21 eV) and Cu 2p3/2 (932.62 eV) 

photoemissions and the experimental error was determined by the manufacturer to be ± 0.1 eV. 

Liquid samples were placed on to a stainless steel sample bar as single drops and degassed overnight 

in a sample transfer chamber (≈ 10-7 mbar) before being moved to the analysis chamber (≤ 1 x 10-8 

mbar). Liquid samples were not charge neutralised as they are electrically conducting and therefore 

do not experience significant differential charging.27 

Data Analysis

All data sets were converted to VAMAS (.vms) format and imported to CasaXPS for quantification and 

peak fittings. A detailed description of the C 1s peak fitting procedures used in this work and previously 

published work is given in the ESI. The C 1s photoemission peaks are numbered by the carbon atom 
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numbers, which are ordered by IUPAC priority rules (see Figure 2). All XP spectra presented in this 

study were charge corrected using existing procedures, whereby the Caliphatic (abbr. Cali) components 

for long alkyl-chain ILs (≥ C8) are set to 285.0 eV. The B.E. shifts are then used to correct the N 1s 

photoemissions and the resulting values are used to reference all XP spectra of the same cationic type.  

All  XP spectra were normalised by adjusting the areas of the non-functionalised IL F 1s photoemissions 

to equal the areas of the analogous functionalised IL F 1s photoemissions. For C 1s difference spectra, 

the normalisation was checked by comparing the -CF3 C 1s photoemission from the [NTf2]- anions, and 

any deviations were omitted by adjusting the areas of the non-functionalised IL C 1s photoemissions 

until the signals were aligned (N.B. further normalisation was often required but the adjustments were 

relatively minor).  In the absence of this reference (i.e. [BF4]- ILs), spectra were normalised to their F 

1s photoemissions and the Cali signals were used to fine-tune the normalisation in the same manner 

as described above. 

The difference spectra reported here are plotted on a common X-axis and the data points are aligned 

to allow data subtraction. This work uses the functionalised IL B.E. axis, therefore non-functionalised 

XP spectra are referenced to the functionalised IL XP spectra. This is achieved by setting the -CF3 signal 

maximum of the non-functionalised IL to the same B.E. as the functionalised ILs, or in the case of [BF4]- 

salts, the Cali component. All photoemissions are plotted on the functionalised IL x- and y-axes with 

the normalised non-functionalised IL photoemissions overlaid. Most y-axes therefore display arbitrary 

units and the difference spectra are generated on the functionalised IL scale. All area quantifications 

are relative to normalised spectra. A list of difference spectra and structural representation of the 

subtraction process are given in the ESI (Figure S2-6). The non-functionalised XP spectra reported here 

have been previously published;22,27,30 the fully analysed spectra are shown in the ESI (Figure S25-29) 

for comparative purposes. In addition, the experimental elemental compositions and nominal 

stoichiometries for the ILs presented in this work are displayed in the ESI (Table S1). 
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Figure 2 Numbering of the (a) imidazolium, [CnC1Im][A], and (b) pyridinium, [CnPy][A], carbon atoms.

3 Results

3.1 Pyridinium ILs

Survey and high resolution XP scans of [CnPy-2-Cl][NTf2] are shown in the ESI (Figure S11-14); both ILs 

produce high quality XP spectra with no evidence of impurities or beam damage. Furthermore, all 

photoemission signal B.E.s (see Table 1) are consistent for both n = 4 and n= 8 samples (i.e. values are 

within the experimental error of ± 0.1 eV), except for the changing aliphatic signal at 285.0 eV on 

increasing alkyl chain length (see Figure S7). Other than the expected changes in the C 1s region, the 

[CnPy-2-Cl][NTf2] photoemission B.E.s also show remarkable consistency to the [CnPy][NTf2] B.E.s.  

However, relative to the [CnPy][NTf2] ILs, a shift of 0.2 eV in the N 1s photoemission of the [NTf2]- anion 

from 399.5 eV to 399.3 eV was observed. As these values are within 0.1 eV of 399.4 eV, this 

observation can be considered within experimental error. However, previous work suggest that shifts 

of this magnitude are large enough to be a real effect and additional analyses are underway to 

investigate these observations. For the purpose of this work such shifts are not a primary focus and 

can be considered within error. 

Figure 3a-b show the C 1s photoemissions of [CnPy-2-Cl][NTf2] with the non-chlorinated [CnPy][NTf2] 

C 1s photoemissions overlaid on the respective plots. The difference spectra (difference 1 and 2) for 

both sets of ILs are also displayed on each plot; the difference was generated by subtracting the 

[CnPy][NTf2] C 1s photoemissions from the [CnPy-2-Cl][NTf2] C 1s photoemissions. Figure 3c shows an 

overlay of the difference 1 and difference 2 normalised to the area of the positive signals. From 282 

eV to 296 eV the difference spectra are flat, however both show coincident negative peaks at 287.1 

eV and coincident positive peaks at 288.4 eV. This 1.3 eV shift is very large and indicates a significant 
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loss of electron density from the C2 carbon of the pyridinium ring. Furthermore, the positive and 

negative peaks of the difference spectra have average areas equivalent to 0.83 and 0.85 carbon atoms, 

respectively (relative to their [CnPy-2-Cl][NTf2] C 1s photoemissions). Previous studies have measured 

an average of 10% signal loss from sp2-hybridised carbon atoms due to the shake-up/off 

phenomenon.30 The measured shake-up/off signals for the [CnPy-2-Cl][NTf2] ILs are 12.9% (n = 4) and 

9.9% (n = 8), giving an average signal loss of 11.4%. The positive and negative signals therefore 

originate from a single carbon atom that has experienced shake-up/off losses, i.e. the sp2 hybridised 

C2 carbon atom. 
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Figure 3 The C 1s high resolution XP spectra and difference spectra for: (a) [C4Py-2-Cl][NTf2] and 
[C4Py][NTf2], and (b) [C8Py-2-Cl][NTf2] and [C8Py][NTf2]. The overlaid difference spectra (c) have been 

normalised to the area of the positive signal of the [C8Py-2-Cl][NTf2] and [C8Py][NTf2] difference 
spectrum (black) for comparison. 

The survey and high resolution XP scans of [CnPy-3-Cl][A] are shown in the ESI (Figure S15-19); again, 

all ILs produce high quality XP spectra with no evidence of impurities or beam damage. The n = 4 and 

n = 8 [CnPy-3-Cl][NTf2] ILs have consistent photoemission B.E.s that are within the experimental error 

(Table 1), except for the aliphatic carbon signal at 285.0 eV, which increases with longer alkyl chain 

length (see Figure S8). Again, all [CnPy-3-Cl][A] photoemission B.E.s show remarkable consistency to 
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their respective [CnPy][A] photoemission B.E.s, except for the expected changes in the C 1s regions 

(i.e. the C3 photoemission). 

Figure 4a-b show the C 1s photoemissions of [CnPy-3-Cl][NTf2] with the respective non-chlorinated 

[CnPy][NTf2] C 1s photoemissions overlaid. The difference spectra (difference 3 and 4) are also shown 

on each plot and Figure 4c shows a normalised overlay for comparison; the difference spectra were 

generated by subtracting the [CnPy][NTf2] C 1s photoemissions from the [CnPy-3-Cl][NTf2] C 1s 

photoemissions. As with the [CnPy-2-Cl][NTf2] ILs, difference 3 and 4 are relatively flat from 282 eV to 

296 eV, apart from coincident negative peaks at 286.1 eV and positive peaks at 287.5 eV ([C4Py-3-

Cl][NTf2]) and 287.6 eV ([C8Py-3-Cl][NTf2]). Despite the 0.1 eV discrepancy for the positive peaks, the 

B.E. values are within the experimental error. The 1.4-1.5 eV shift is similar to that of the C2 chlorinated 

IL, indicating a significant reduction in electron density about the C3 carbon. Relative to the 

[CnPy][NTf2] C 1s photoemissions, the area of the negative peaks average to 0.91 carbon atoms, while 

the positive peaks average to 0.82 carbon atoms. The shake-up/off losses are 9.8% (n = 4) and 11.3% 

(n = 8), giving an average signal loss of 10.6%, which is similar to the average 10% shake-up/off losses 

measured for [CnPy][A] ILs. The signals therefore originate from a single sp2 hybridised carbon atom, 

i.e. the shifting C3 carbon. 

Figure 5a shows the C 1s photoemissions of [C8Py-3-Cl][BF4] with the non-chlorinated [C8Py][BF4] C 1s 

photoemissions and resulting difference spectrum (difference 5); the difference was generated by 

subtracting the [C8Py][BF4] C 1s photoemissions from the [C8Py-3-Cl][BF4] C 1s photoemissions. Again, 

the difference spectrum is flat from 282 eV to 298 eV, except for a negative peak at 285.8 eV and a 

positive peak at 287.4 eV. The C3 carbon photoemission has therefore experienced a 1.6 eV shift, 

which is larger than the C2- and C3-chlorine functionalised IL. Relative to the [C8Py][BF4] C 1s 

photoemissions, the negative peak has an area equivalent to 0.98 carbon atoms, while the positive 

peak has an area equivalent to 0.86 carbon atoms. Shake-up/off losses have been experimentally 

determined to be 12.2%. Figure 5b shows a comparison of difference 5 and difference 4 (the [C8Py-3-

Cl][NTf2] and [C8Py][NTf2] difference spectrum); the spectra are normalised to the areas of the positive 

peaks. 
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Figure 4 The C 1s high resolution XP spectra and difference spectra for: (a) [C4Py-3-Cl][NTf2] and 
[C4Py][NTf2], and (b) [C8Py-3-Cl][NTf2] and [C8Py][NTf2]. ]. The overlaid difference spectra (c) have 

been normalised to the area of the positive signal of the [C8Py-3-Cl][NTf2] and [C8Py][NTf2] difference 
spectrum (black) for comparison. 
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Figure 5 The C 1s high resolution XP spectra and difference spectra for: (a) [C8Py-3-Cl][BF4] and 
[C8Py][BF4]. ]. The difference spectrum has been normalised to the area of the positive signal of the 

[C8Py-3-Cl][NTf2] and [C8Py][NTf2] difference spectrum (c) for comparison.  

The survey and high resolution XP scans of [C8Py-4-(CF3)][NTf2] are shown in the ESI (Figure S20). 

Again, the IL produces high quality XP spectra with no evidence of impurities in the survey scan, 

and no signs of beam damage from the high resolution scans. The B.E.s are summarised in Table 

1 and the C 1s photoemission is displayed in Figure 6, with the [C8Py][NTf2] C 1s photoemission 

overlaid for comparison. The difference spectrum (difference 6) was generated by subtracting the 

[C8Py][NTf2] C 1s photoemission from the [C8Py-4-(CF3)][NTf2] C 1s photoemission. Difference 6 

has a relatively flat background; however, unlike the chlorine-functionalised ILs, there is an 

additional positive peak at 293.6 eV. This peak originates from the -CF3 carbon of the cation and 

integration of the peak relative to the [C8Py-4-(CF3)][NTf2] C 1s photoemission gives an area 

equivalent to 1.2 carbon atoms. The negative peak at 286.0 eV and the positive peak at 287.5 eV 

are equivalent to 1.1 and 1.5 carbon atoms, respectively. The 1.5 eV shift is similar in magnitude 

to the previously observed shifts; however, the carbon equivalents are higher than expected for 
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this IL. The experimentally determined shake-up/off losses are 11.7%, close to the expected 10.0% 

signal loss.  

Given the presence of the -CF3 group of the cation, an additional difference spectrum can be 

generated by subtracting the [C8Py][NTf2] F 1s photoemission from the [C8Py-4-(CF3)][NTf2] F 1s 

photoemission. The results are displayed in Figure 6b, which show the individual spectra and 

resulting difference spectrum (difference 7) with labels. Difference 7 shows a positive peak at 

689.2 eV, which integrates to 3.20 fluorine atoms, relative to the [C8Py-4-(CF3)][NTf2] 

photoemission. This value is half that of the F 1s signal of the [NTf2]- anion, which possesses 6 

fluorine atoms from the two -CF3 groups. The peak B.E. is also 0.4 eV higher than the -CF3 signal 

of the [NTf2]- anion at 688.8 eV, indicating that the pyridinium ring also has an electron 

withdrawing effect on the -CF3 group itself. 

Figure 6 The difference (red) between the normalised (a) C 1s and (b) F 1s high resolution XP spectra 
of [C8Py-4-(CF3)][NTf2] (blue) and [C8Py][NTf2] (black). 

3.2 Imidazolium ILs
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The survey and high resolution XP scans of [CnC1Im-4-Cl][NTf2] are shown in the ESI (Figure S21-24); 

the ILs produce high quality XP spectra with no impurities or signs of beam damage. The B.E.s for 

[CnC1Im-4-Cl][NTf2] and the analogous non-functionalised [CnC1Im][NTf2] ILs are summarised in Table 

2. The C 1s photoemissions are also displayed in Figure 7a-b, along with the respective [CnC1Im][NTf2] 

C 1s photoemissions and the resulting difference spectra (difference 8 and 9). As before, difference 8 

and 9 were generated by subtracting the [CnC1Im][NTf2] C 1s photoemission from the [CnC1Im-4-

Cl][NTf2] C 1s photoemission. Figure 7c also shows a normalised and overlaid plot of difference 8 and 

9 for comparison. Both difference spectra are flat from 282 eV to 298 eV, apart from coincident 

negative peaks at 286.5 eV and coincident positive peaks at 287.9 eV. The 1.4 eV shift is similar in 

magnitude to the shifts measured for chlorine-functionalised pyridinium ILs, relative to their non-

functionalised analogues. The negative and positive difference peaks integrate to average values of 

0.87 and 0.83 carbon atoms, relative to their [CnC1Im-4-Cl][NTf2] C 1s photoemissions. The 

experimental shake-up/off losses are 16.8% (n = 4) and 22.2% (n = 8), giving an average signal loss of 

19.8%. This value is close to the experimentally determined average of 20.0% for sp2 hybridised 

carbons of imidazolium ILs.27 
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Figure 7 The C 1s high resolution XP spectra and difference spectra for: (a) [C4C1Im-4-Cl][NTf2] and 
[C4C1Im][NTf2], (b) ) [C8C1Im-4-Cl][NTf2] and [C8C1Im][NTf2]. The difference spectra have been 

normalised to the area of the positive signal of the [C8C1Im-4-Cl][NTf2] and [C8C1Im][NTf2] difference 
spectrum (c) for comparison.
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Table 1 The B.E.s of the non-functionalised, chlorine-functionalised and trifluoromethane-functionalised pyridinium ILs presented in this work.

  B.E. / eV
Ionic Liquid C 1s N 1s

Cation Anion  Caliphatic C2 C3 C4 C5 C6 C7 CF3  Cation Anion
O 1s F 1s B 1s S 2p3/2 Cl 2p3/2

[C4Py]+ [NTf2]- 285.2 287.1 286.2 286.2 286.2 287.1 287.1 292.9 402.6 399.5 532.6 688.8 169.0

[C8Py]+ [NTf2]- 285.0 287.1 286.1 286.1 286.1 287.1 287.1 292.9 402.6 399.5 532.6 688.8 169.0

[C8Py]+ [BF4]- 285.0 286.9 286.0 286.0 286.0 286.9 286.9 402.4 685.9 194.2
[C4Py-2-Cl]+ [NTf2]- 285.1 288.4 286.1 286.1 286.1 287.0 287.0 292.8 402.6 399.3 532.6 688.8 168.9 201.8
[C8Py-2-Cl]+ [NTf2]- 285.0 288.5 286.1 286.1 286.1 287.0 287.0 292.9 402.6 399.3 532.6 688.8 168.9 201.9
[C4Py-3-Cl]+ [NTf2]- 285.3 287.1 287.6 286.2 286.2 287.1 287.1 293.0 402.7 399.5 532.7 688.9 169.0 201.5
[C8Py-3-Cl]+ [NTf2]- 285.0 287.1 287.6 286.1 286.1 287.1 287.1 292.9 402.7 399.5 532.7 688.9 169.0 201.5
[C8Py-3-Cl]+ [BF4]- 285.0 287.0 287.5 286.0 286.0 287.0 287.0 402.6 686.0 194.2 201.4
[C8Py-4-(CF3)]+ [NTf2]-

 
285.0 287.2 286.6 287.4 286.6 287.2 287.2 293.1a 

293.6b  
403.1 399.8 532.4 688.8a

689.2b

 169.8  

a -CF3 from [NTf2]- anion. b -CF3 from [C8Py-4-(CF3)]+ cation
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Table 2 The B.E.s of the non-functionalised and chlorine-functionalised imidazolium ILs presented in this work. The 

               
  B.E. / eV

Ionic Liquid C 1s  N 1s

Cation Anion  Caliphatic C2 C4 C5 C6 C7 CF3  Cation Anion
O 1s F 1s S 2p3/2 Cl 2p3/2

[C1C4Im]+ [NTf2]- 285.2 287.7 286.6 286.6 287.0 287.0 293.0 402.1 399.5 532.7 688.9 169.0

[C1C8Im]+ [NTf2]- 285.0 287.7 286.6 286.6 287.0 287.0 293.0 402.1 399.5 532.7 688.8 169.0

[C1C4-4-ClIm]+ [NTf2]- 285.2 287.9 287.9 286.7 287.0 287.0 293.0 402.3 399.5 532.7 688.9 169.0 201.9

[C1C8-4-ClIm]+ [NTf2]-  285.0 287.7 287.9 286.7 286.9 286.9 292.9  402.3 399.5 532.7 688.9 168.9 201.9
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4 Discussion

4.1 Difference Spectra 

The difference spectra reported herein were generated by subtracting the C 1s photoemissions of 

non-functionalised IL from chlorine or trifluoromethane functionalised analogues. The data 

subtraction procedure produces flat backgrounds, with clear negative and positive peaks, which 

indicate the original and final photoemission B.E.s of the EWG-bound carbon. Although most  

difference spectra show remarkable consistency, some irregularities in negative peak shapes around 

285.0 eV were observed in several cases (e.g. difference 5). The source is most likely small traces of 

aliphatic carbon that were not apparent in the individual HR C 1s scans. Aliphatic carbon is a common 

surface contaminant and difference spectra will be extremely sensitive to low levels of contamination 

as sample photoemissions effectively cancel out. Sample sputtering of IL surfaces can remove surface 

impurities; post acquisition difference spectra of identical samples could potentially reveal trace levels 

of surface contamination for future measurements. Fortunately, the data presented here is extremely 

high quality, with very low levels of aliphatic carbon. This is reflected in the resulting difference spectra 

which are of remarkable quality. 

The quantitative nature of XPS enables the number of carbon equivalents in difference spectra to be 

calculated. Errors are minimised as the XP spectra all originate from the same element (i.e. RSFs are 

not needed) and peak areas are measured relative to normalised photoemission spectra. The 

difference spectra of the chlorine functionalised ILs (relative to their non-functional ILs) all show signal 

loss from shake-up/off processes, with an average value of 0.88 ± 0.06 carbons. Interestingly, 

difference 6 show higher integrals with larger error, i.e. an average value of 1.27 ± 0.17 carbons 

relative to the [C8Py-4-(CF3)][NTf2] photoemission. The imidazolium IL difference spectra (difference 8 

and 9) show higher signal losses of 0.85 carbons (averaged value), which is slightly lower than the 20% 

signal loss previously measured.27 The measured values support the single carbon assignments and 

provide further evidence that shake-up/off losses have been accurately calculated for both pyridinium 

and imidazolium IL C 1s photoemissions.

Chlorine functionalisation of [CnPy][NTf2] and [CnC1Im][NTf2] ILs produces a B.E. shift of +1.4(±0.1) eV, 

while C3 functionalisation of [C8Py][BF4] produces a larger shift of +1.6 eV. Further experiments are 

needed to determine whether a set B.E. shift is produced by each EWG; however, the results 

presented here are consistent for ILs with pyridinium and imidazolium cations with [NTf2]- 

counterions. Likewise, the B.E. shift for the C4 C 1s photoemission upon -CF3 functionalisation (i.e. the 
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shift in the [CnPy][NTf2] and [C8Py-4-(CF3)][NTf2] difference spectrum) is +1.4 eV, suggesting that the 

two EWGs have similar electron withdrawing effects when measured by XPS. These B.E. shifts are far 

larger than can be described by final state effects alone and are therefore largely a result of electron 

withdrawal from the carbon electronic environment by covalent bonding to the EWGs. Fortunately, 

the large B.E. shift provides two resolved photoemission signals with similar lines shapes to the GL(30) 

peaks common to XPS. Weaker EWGs may produce overlapped signals and require peak fitting 

themselves. 

Parallel to the C 1s difference spectra, the F 1s photoemission of the trifluoromethane functionalised 

[C8Py-4-(CF3)][NTf2] IL was subtracted from the F 1s photoemission of [CnPy][NTf2], to reveal the exact 

B.E. of the -CF3 fluorine (difference 7). However, it is important to note that this difference spectrum 

is not produced by shifting electron density, it is simply a deconstruction of coincident photoemission 

peaks (i.e. the coincident [NTf2]- -CF3 and [C8Py-4-(CF3)]+ -CF3 signals). Nevertheless, this result further 

highlights the power of difference spectra for determining exact B.E. values and shows the process in 

not limited to C 1s core photoemissions. 

4.2 Significance of the data

For the non-functional pyridinium ILs, B.E.s provided by the difference spectra support previous peak 

assignments and strengthen the C 1s peak fitting model previously presented by our group (Figure 

8a). 30 The symmetry of the pyridinium cation and the shape of their C 1s photoemission spectra  make 

this assignment far easier than other cationic systems. In comparison, the EWG-functionalised 

pyridinium C 1s signals are not spread across a large B.E. range, and assignment of the coincident 

signals between 286-288 eV is far harder because of the lack of features (i.e. single peak maxima). 

Fortunately, the difference spectra for both function and non-functional pyridinium ILs provide 

accurate B.E. signals that can be used to build precise C 1s peak fitting models. Importantly, the 

information obtained from the analytical procedure can benefit both C 1s spectra under consideration. 

The fully fitted C 1s spectra for all pyridinium salts are presented in the supporting information. 

For the non-functional imidazolium ILs, the negative C4 peak position (286.5 eV) indicates the position 

of the signal before chlorine functionalisation. The C 1s B.E. shows that previous peak assignments are 

incorrect, and a new peak fitting model is required (see Figure 8b). In this model, the C4 and C5 

photoemissions appear at lower B.E.s than the C6 and C7 carbon photoemission signals, suggesting that 

most of the positive charge is spread about the NCN portion of the imidazolium ring and around the 

N-C carbons of the pendant alkyl chains. The back of the imidazolium ring (i.e. the C4 and C5 carbons) 

therefore has a higher electron density than previously thought (through XPS interpretations). Further 
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investigations are currently underway to investigate whether this new observation is in fact related to 

electron density or is a result of final state effects. Regardless of the interpretation, the new data 

obtained from the difference spectra has led to a refinement in the C 1s fitting model. Furthermore, 

the accurate B.E.s of the chlorine functionalised imidazolium salts have been presented and fully peak 

fitted XP spectra are presented in the supporting information. 

Figure 8 The C 1s high resolution XP spectra with peak fittings and assignments (a) [C8Py][NTf2] and 
(b) [C8C1Im][NTf2]. Note: the [C8C1Im][NTf2] peak fitting has been updated according to the results 

presented in this work. 

5 Conclusions

The difference spectra reported herein demonstrate that targeted functionalisation of ILs with EWGs 

such as chlorine and trifluoromethane can produce B.E.s shifts large enough to clearly show initial and 

final peak positions. The exact C2, C3, and C4 C 1s photoemission B.E.s of the functional and non-

functional pyridinium ILs presented in this work have now been experimentally determined, along 

with the C4 C 1s photoemissions of the functional and non-functional imidazolium ILs. The obtained 

B.E. values have confirmed previous pyridinium C 1s peak fitting models and enabled refinement of 
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the imidazolium peak fitting models. The accurate C 1s peak fittings of the functional pyridinium and 

imidazolium salts have been presented; without difference spectroscopy peak assignments would 

likely be incorrect due to the lack of defining features in each spectrum. Furthermore, quantification 

of the difference spectra supports previous shake-up/off losses of sp2 hybridised carbons by directly 

measuring the photoemission signals, as opposed to indirect measurement of the shake-up signal 

which is subject to data analysis error (e.g. choice of background). 

Overall, this work demonstrates that difference spectroscopy can significantly enhance XPS analysis, 

providing more reliable information than previously though possible. High quality XP spectra are 

required to produce high quality difference spectra. For this reason, and in combination with robust 

charge correction procedures, this work demonstrates that ILs are ideal small molecules for XPS 

difference spectroscopy. The success of this technique as a post data acquisition analytical method is 

unlike to be matched by other systems such as polymers.  
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