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Abstract  1 

Aims: The Western diet is typically high in salt and fructose which have pressor activity. Maternal 2 

diet can affect offspring blood pressure but the extent to which maternal intake of excess salt and 3 

fructose may influence cardiovascular function of the offspring is unknown. We sought to determine 4 

the effect of moderate maternal dietary intake of salt and/or fructose on resting and stimulated 5 

cardiovascular function of the adult male and female offspring.   6 

Methods and Results: Pregnant rats were fed purified diets (+/-4% salt) and water (+/-10% fructose) 7 

before and during gestation and through lactation. Male and female offspring were weaned onto 8 

standard laboratory chow. From 9-14 weeks of age, cardiovascular parameters (basal, circadian, 9 

stimulated) were assessed continuously by radiotelemetry. Maternal salt intake rendered opposite-10 

sex siblings with a 25 mm Hg difference in blood pressure as adults; males were hypertensive (15 11 

mm Hg MAP), females were hypotensive (10 mm Hg MAP) above and below controls, respectively. 12 

Sex differences were unrelated to endothelial nitric-oxide activity in vivo but isolation-induced 13 

anxiety revealed a significantly steeper coupling between blood pressure and heart rate in salt-14 

exposed males but not females. MAP of all offspring was refractory to salt-loading but sensitive to 15 

subsequent dietary fructose, an effect exacerbated in female offspring from fructose-fed dams. 16 

Circadian analyses of pressure in all offspring revealed higher mean set-point for heart rate and 17 

relative non-dipping of nocturnal pressure.  18 

Conclusions: Increased salt and fructose in the maternal diet has lasting effects on offspring 19 

cardiovascular function that is sex-dependent and related to the offspring’s stress-response axis. 20 

 21 

Keywords: rat, hypertension, fructose, salt, maternal, stress 
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 23 

Introduction  24 

Ancestral man is predicted to have eaten a diet high in fibre, potassium, complex carbohydrates and 25 

protein and low in sodium, refined sugars and energy density. Typically, a paleolithic diet provided a 26 

plant-to-animal energy ratio of 1:1 with the net acid-load being alkaline(1; 2). Analyses of the diets of 27 

modern hunter-gatherer populations support these predictions(2; 3). Since this time, when 28 

physiological and metabolic systems were evolving, there has been a gradual transition away from 29 

this Palaeolithic diet. With the emergence of agriculture (ca. 7 to 5,000 years ago) through to the 30 

industrial revolution (ca. last 100 years),  the ‘Modern diet’ has rapidly become low in fibre and high 31 

in sodium, simple sugars and energy density (4). When superimposed on the Palaeolithic genotype 32 

and physiology, the modern diet has resulted in an increased incidence of non-communicable 33 

diseases (NCD), estimated to account for 60% of all deaths worldwide(5). The economic impact of 34 

NCD is vast; $558, $237 and $33 billion in China, India and the UK, respectively(6) whilst $750 billion is 35 

spent annually in the United States for diabetes and hypertension alone(7).  36 

Modification of diet offers an achievable and economically beneficial prevention strategy for NCD. 37 

Short-term consumption of a ‘Paleolithic’ diet produces significant reductions in blood pressure, 38 

cholesterol, triglyceride and insulin resistance(8). In addition, reduced salt intake (e.g. to 3g/day) is 39 

predicted to reduce all-cause mortality in the United States by 44-92,000 individuals, saving an 40 

estimated $10-24 billion annually(9). Reducing sugar-sweetened beverage consumption by 1 41 

serving/day reduced systolic BP by 1.8 mmHg(10). Earlier dietary intervention, for example to 42 

pregnant mothers or those considering pregnancy, may have added benefit as an adverse 43 

periconceptional and/or prenatal nutritional exposure has been shown to increase risk of NCD’s (e.g. 44 

cardiovascular or metabolic disease) in the adult offspring(11; 12; 13) – a paradigm referred to as the 45 

developmental programming of health and disease. 46 

The majority of developmental programming studies to recapitulate either a ‘Westernized’ or 47 

under/over-nourished diet in experimental models have used a low protein, or a high-fat and/or a 48 

high sugar paradigm(14; 15; 16). In the UK, whilst higher than optimal (RNI; reference nutrient intake) 49 

intake of saturated fat is observed, high total fat intake is not. Indeed, data from the National Diet 50 

and Nutrition Survey suggests, total fat consumption is close to recommended, but that fructose and 51 

salt intake remain high(17). In the US a similar dietary pattern of high fructose and high salt intake has 52 

been observed raising concerns about increased cardiovascular disease risk(18; 19).  53 

The delayed programming effect of a maternal diet high in simple sugars (e.g. fructose(20)) or salt has 54 

been considered(21; 22). Feeding sucrose to pregnant rats can influence hepatic metabolism and 55 

reduce offspring birthweight(23), and fructose-feeding during lactation renders the resultant adult 56 

offspring vulnerable to cardiometabolic risk(20). A maternal diet high in salt is one of the few dietary 57 

challenges to repeatedly produce hypertensive offspring(21; 24). More importantly, increased intake of 58 

salt in (or added to) food potentiates intake of simple sugars (e.g. from drinking sugar sweetened 59 

beverages)(25). As each is known to influence cardiovascular health, it is important to consider their 60 

potential interaction experimentally. Sex-specific effects are widely observed in developmental 61 

programming studies(26), sex is an important consideration with regard to disease susceptibility,(27)  62 

and there has been recent criticism of sex-bias (in favour of males) in translational medicine 63 
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studies(28; 29). It is therefore important to also consider potential sex-specific responses after 64 

maternal dietary intervention with respect to offspring cardiovascular function. 65 

To date, no study has considered the delayed cardiovascular consequences on adult offspring (male 66 

and female) of the combined intake of fructose and salt by the dam. Excess salt in the diet increases 67 

fluid intake; disappointingly, this tends to be of sugar-sweetened beverages (25). We anticipate that 68 

high maternal intake of fructose and salt renders adult offspring prone to hypertension and 69 

hypersensitive to further consumption of salt or fructose. The aim of the present study was to 70 

characterise the cardiovascular health of adult male and female rat offspring after maternal 71 

consumption of a high salt and/or fructose diet before and during her pregnancy and for the 72 

duration of her lactation. Baseline cardiovascular health of all offspring was assessed 24/7 by 73 

radiotelemetry, as previously described by us after maternal salt intake (24). Cardiovascular 74 

hypersensitivity in vivo was assessed during four further experimental studies: 1) during sympathetic 75 

activation induced by anxiety-related isolation, 2) during nitric-oxide blockade with N(G)-nitro-L- 76 

arginine methyl ester (L-NAME), 3) during dietary salt- or 4) dietary fructose-loading to determine if 77 

postnatal response is conditioned by prenatal exposure. During each challenge, all data recorded 78 

was submitted for further non-linear regression analyses to determine potential effects on 79 

cardiovascular function through the circadian cycle. Finally, offspring hearts were studied ex vivo 80 

using the perfused Langendorff system to assess isolated cardiac function. For all outcome 81 

measures, we have assessed cardiovascular responses in different-sex siblings. 82 

 83 

84 
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Materials and Methods 85 

Ethics: Animal procedures were carried out under license and in accordance with the Home Office 86 

animals (Scientific Procedures) Act 1986 and approved by the local animal welfare and ethical review 87 

board of the University of Nottingham.  88 

Diet design: In brief, Sprague Dawley dams (190-200g; 8-10 weeks of age) were kept in a 89 

temperature (20-22oC) and humidity (55-65%) controlled environment and subjected to a 12 hour 90 

light/dark cycle (0700-1900h). Rats were randomly assigned to one of 4 treatment (diet) groups; 1) 91 

Control diet (CD; n=6), fed purified standard chow (TD.08164; Teklad Harlan, Maddison. WI.) and tap 92 

water; 2) Salt diet (SD; n=6), fed purified standard chow with 4% NaCl added (TD.08162 Teklad 93 

Harlan, Maddison WI.) and tap water; 3) Fructose diet (FD; n=6), fed purified standard chow 94 

(TD.08164) and tap water with 10% fructose (Sigma-Aldrich, UK) added; 4) Fructose/Salt diet (FSD; 95 

n=6), fed purified salt diet (TD.08162) and tap water with 10% fructose added. Diet composition has 96 

been published previously (30). All rats were fed the experimental diets ad libitum for at least 28 days 97 

prior to conception and throughout gestation and lactation.  98 

Radiotelemetry and baseline cardiovascular recording: At 9 weeks of age, one male and one female 99 

offspring from each litter were surgically instrumented for radiotelemetric recording of blood 100 

pressure (TA11PA-C40; DSI, St-Paul, MN USA) from the descending abdominal aorta as described 101 

previously(31). In brief, the rats were fully anaesthetised (fentanyl citrate; Sublimaze, Janssen-Cilag 102 

and medetomidine hydrochloride; Domitor, Pfizer, UK; 300 µg/kg of each i.p.), for probe 103 

implantation (TA11PA-C40; DSI, St-Paul, MN USA). Anaesthesia was reversed (Antisedan, Pfizer UK; 1 104 

mg/kg) and analgesia administered (buprenorphine; Buprecare, Animalcare UK; 0.02 mg/kg s.c.) 105 

together with a long-acting antibiotic (Amoxycare LA; 0.05 ml i.m.). All 24 rats that underwent 106 

surgery completed the study and all were subsequently housed with a same-sex sibling to minimize 107 

stress. Cardiovascular variables were recorded (Dataquest GOLD v4.02; DSI, St-Pauls MN USA) at 108 

intervals (x2 15 sec periods per 15 minutes) during a 5-7 day recovery and baseline period and 109 

during cardiovascular challenges which each lasted for further 5-7 day periods. Male and female 110 

siblings were recorded simultaneously, each with a same-sex cage mate present at all times, but 111 

challenges were conducted in a random order. At the end of all experiments, rats were euthanized in 112 

a sealed chamber using a rising concentration of CO2, followed by cervical dislocation after 113 

confirmation of cardiac arrest. 114 

Radiotelemetry and stimulated cardiovascular recording: CV challenge 1) Isolation-induced anxiety, 115 

after a recovery period, the untelemetered sibling was removed from the cage for a 24 h period and 116 

blood pressure and heart rate recorded continuously (i.e. x2 15sec periods per minute; 2880 117 

datapoints in total). Thereafter, siblings were reunited and recording continued at intervals. With 5-7 118 

day recovery and wash-out periods between each challenge telemetered rats were subjected to 119 

three further experimental studies in a randomised fashion, each lasting 5-days with a further 2-days 120 

recording during recovery: CV challenge 2) Nitric-oxide blockade, the drinking water was substituted 121 

for fresh water with N(G)-nitro-L- arginine methyl ester (L-NAME) dissolved at a concentration of 150 122 

µg ml-1 (equivalent to 4.1 mg L-NAME∙day-1); CV challenge 3) Salt-loading, standard chow was 123 

substituted for purified chow with 4% NaCl (TD.08162 Harlan) and CV challenge 4) Fructose-loading, 124 

the drinking water was substituted for fresh water with 10% fructose solution. 125 

 126 
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The Isolated Heart (Langendorff) preparation: One male and one female offspring from each 127 

control or salt-exposed dams (offspring of fructose-fed dams were not included) were randomly 128 

selected, anaesthetised (3% isofluorane in 2L min-1
 O2) and killed by cervical dislocation. Within 90 129 

seconds, the heart was excised and cannulated via the aorta to Langendorff perfusion apparatus (AD 130 

Instruments, Oxford, UK) and reverse-perfused with Krebs Henseleit buffer (118mM NaCl, 4.7mM 131 

KCl, 1.2 mM KH2PO4, 1.2mM MgSO4, 25 mM NaHCO3, 11mM glucose and 1.25 mM CaCl2  pH 7.4 132 

bubbled with 95%/5% O2/CO2). Perfusion was maintained at a constant pressure of 60 mmHg, with 133 

perfusate warmed to 37.4C, and the heart immersed in a water jacketed temperature controlled 134 

glass chamber set at 37.4C therefore ensuring normothermia throughout the perfusion protocol. 135 

Contractile function (left ventricular developed pressure) was determined by an intravascular 136 

balloon, adjusted to an end diastolic pressure of 5-10mmHg. Data were recorded for a 30min 137 

baseline period after 15-30 min stabilisation via transducers (Senso-Nor 844, AD Instruments) using 138 

the Powerlab Acquisition System (AD Instruments).  139 

Statistics: The study was designed with a 2 (fructose) x 2 (salt) factorial structure and was 140 

analyzed by a General Linear Model (GLM) approach for normally distributed data or after log-141 

transformation for a skewed error distribution (Genstat v16, VSNi, UK). All data are presented as 142 

means ± SEM or s.e.d. (standard error of the differences between comparisons, for a more 143 

conservative estimate of the contrast variance). Whilst P0.050 was accepted as indicating statistical 144 

significance, values of P from 0.06-0.09 are also presented to indicate effects falling close to the 145 

arbitrary significance boundaries. Using one male or female offspring per litter per determination 146 

avoids complicating the statistical model with shared intra-litter variance. For offspring 147 

cardiovascular analyses, data were either tested as summary measures (e.g. hourly means of blood 148 

pressure) or, for circadian analyses, by incorporating all recorded cardiovascular data (e.g. 2880 149 

datapoints per animal; 14,400-17,280 datapoints per group [n=5-6 animals of each sex] into a non-150 

linear regression model fitting a Fourier-curve (Y=α+ßsin(2π(X+)/w) to derive four parameters α, 151 

set-point; ß, amplitude; w, wavelength and , offset, which were analysed by GLM. 152 

153 
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 154 

Results 155 

Maternal food intake: At conception, food intake was similar in rats fed salt diet but marginally 156 

reduced in those with fructose-sweetened water available (CD, 10.3±1.0; SD, 10.9±0.9; FD, 9.36±0.8; 157 

7.02±0.9 g/day; Pfructose = 0.01). Food intake increased with advancing gestational age: by day 20 158 

gestation (term ~day 21), rats were eating approximately double the quantity at conception and 159 

those rats with fructose-sweetened water available were still consuming marginally less food (CD, 160 

22.6±2.2; SD, 21.8±2.0; FD, 18.2±1.9; 16.6±1.9 g/day; Pfructose = 0.02). Nevertheless, using the AIN-161 

93G formulation and despite a marginal reduction in food intake in those rats with fructose 162 

available, the diets (TD.08164 and TD.08162) still met macro- and micronutrient requirements for 163 

pregnant rats (32).  164 

Resting cardiovascular status of adult offspring: Prenatal exposure to salt-diet (SD) significantly 165 

increased blood pressure in male offspring; systolic, mean and diastolic pressures being 15 mmHg 166 

higher than age-matched dietary controls (CD; Table 1, Figure 1a). In contrast, female siblings tended 167 

to be hypotensive; systolic, mean and diastolic pressures being 10 mmHg lower than dietary controls 168 

(Table 1, Figure 1b). Circadian analyses of pressure and heart rate, incorporating all measured 169 

datapoints for each animal within each diet group, suggested less dipping of nocturnal heart rate in 170 

male offspring exposed in utero to high maternal salt (Figure 1c) and in female offspring exposed in 171 

utero to high maternal fructose (Figure 1d). The latter, additionally, exhibited less dipping of 172 

nocturnal blood pressure (Figure 1e). Such effects, despite no excessive dietary intake post-natally, 173 

suggests long-term programming of cardiovascular sensitivity and reactivity in the offspring. We 174 

then tested this hypothesis in a number of experiments: 175 

Stimulated cardiovascular responses – isolation-induced stress: Immediately upon removal of their 176 

sibling from the cage, the single-housed telemetered offspring exhibited a robust cardiovascular 177 

response (Figure 2a-d). Despite differing baselines, the magnitude of the change in pressure and 178 

heart rate were similar between dietary groups, but when the slopes of the relationship between 179 

paired values were analyzed, the male, but not female, offspring of dams fed salt-diet exhibited a 180 

significantly steeper response: calculated slopes (mean, 95% confidence interval) for male offspring 181 

were: CD, 3.26 (3.02-3.49); FD, 2.81 (2.63-2.99); SD, 5.36 (5.17-5.55); FSD, 5.38 (5.15-5.60) beats min-182 
1 mmHg-1, P<0.001; and for female offspring: CD, 4.77 (4.59-5.08); FD, 4.26 (3.91-4.60); SD, 4.47 183 

(4.25-4.69); FSD, 3.30 (3.12-3.48) beats min-1 mmHg-1 (Figure 2e,f). In short, the male offspring of 184 

dams fed a high-salt diet are hypertensive, with greater short-term cardiovascular reactivity to 185 

anxiety-related stimuli that leads on in the long-term to less-dipping of heart rate at night. We then 186 

assessed whether such a phenotype was underpinned by programmed cardiovascular changes in a) 187 

the periphery, by examining cardiovascular function on a background of tonic endothelial nitric 188 

oxide blockade and b) the heart, by using the langendorff technique in isolated hearts.  189 

a) Stimulated cardiovascular responses – nitric-oxide blockade: Upon consumption of L-NAME 190 

mean arterial pressure increased significantly in both sexes of all groups (Figure 3a,b), with the 191 

magnitude of change (i.e. increase from baseline) being similar between groups and sexes 192 

(pooled estimate, 43.3±2.6 mm Hg). The oscillation in heart rate increased with duration of L-193 

NAME treatment in both males and females i.e. the ß-coefficient increased from 37.1±3.1 (day 194 

1-2) to 50.1±3.0 beats/min (day 4-5) for males and females alike (Figure 3c,d). Despite L-NAME 195 
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treatment, circadian analyses indicated heart rate to remain elevated in male, but not female, 196 

offspring of salt-fed dams (352 vs. 337 ± 2.1 beats/min; P<0.001; Figure 3e). In addition, the 197 

reduced dipping of heart rate at night in the male offspring from salt-loaded dams was retained 198 

(Figure 3e). Similarly, adult female, but not male, offspring of fructose-fed dams, retained higher 199 

average heart rates: 384 vs. 362 ± 2.1 beats/min (Figure 3f). Programmed sex-specific pathways 200 

in the adult offspring, that independently influence adult cardiovascular control after maternal 201 

salt or fructose loading, were therefore beginning to emerge: for males, maternal high salt diet 202 

renders them reactive to further cardiovascular stressors as adults; for females, maternal high 203 

fructose has a similar effect. Each was apparently independent of endothelial NOx status.  204 

 205 

b) Adult offspring isolated heart function at 8 weeks of age: With hearts mounted on the 206 

langendorff apparatus, heart rate was higher (P=<0.001) in the female offspring of dams fed salt 207 

diet (males, 312 vs. 308; females, 310 vs. 330 beats/min for CD vs. SD, respectively) but left 208 

ventricular developed pressure (males, 39 [17-45] vs. 39 [35-53]; females, 51[46-56] vs. 48[39-50] 209 

mm Hg for medians [IQR] of CD vs. SD, respectively) and the maximal positive derivative of the 210 

rate of change in developed pressure (+dp/dt) were not different between groups (males, 1076 211 

[609-1449] vs. 1617 [1481-1670]; females, 1448 [1271-1700] vs. 1568 [1475-1744] mm Hg for 212 

medians[IQR] of CD vs. SD, respectively). 213 

Without any obvious programmed alteration to tonic endothelial (nitric-oxide) activity or cardiac 214 

function we next tested whether male and female offspring were rendered differentially reactive to 215 

the same inducing dietary stimulus in their mothers. 216 

Stimulated cardiovascular responses – salt-sensitivity: There was little measurable effect of high-217 

salt intake on cardiovascular status in the male and female offspring of all dietary groups. Circadian 218 

analyses did indicate, however, that with salt-loading the offspring of fructose-exposed dams 219 

exhibited significantly blunted nocturnal dipping of pressure (ß-coefficient males; 3.9 vs. 5.3 ±0.4 220 

mmHg; F=3.8; Plight*salt=0.001) and heart rate (ß-coefficient males, 39.5 vs. 45.3 ±2.1 mmHg; F=6.3; 221 

Plight*fructose=0.001; females, 37.1 vs. 41.9 ±1.7 mmHg; F=2.5; Plight*fructose=0.01).  222 

Stimulated cardiovascular responses – fructose-sensitivity: Consumption of fructose per se had little 223 

cardiovascular effect in control offspring (CD effect size, 1.0±2.3 mm Hg). In male offspring from salt-224 

loaded dams, high fructose intake elicited a significant pressor response (SD effect size, 6±2.6 mm 225 

Hg; P=0.002), that was greater in male offspring from fructose-loaded dams (FD effect size, 8.1±2.6 226 

mmHg; Figure 4a). For female offspring, high fructose intake increased pulse pressure (effect size, 227 

+5.2±3.1 mm Hg; P=0.005), but this effect was 2-fold greater if their dams had also been fructose-228 

loaded (FD effect size, 10.3±3.1 mm Hg; Figure 4b). Heart rate varied with the light/dark cycle, as in 229 

the unchallenged state, but was not overly influenced by 5-days fructose consumption (Figure 4c,d). 230 

In male rats, previously exposed to maternal salt-loading, the increase in heart-rate from day-to-231 

night as the rats became active was diminished (a change of 54 beats/min vs. 60 beats/min ± 5; 232 

Psalt<0.005). 233 

Heart rate variability (HRV): During all challenges HRV was calculated. HRV exhibited marked 234 

circadian and ultradian patterns under control conditions which was unaffected by L-NAME 235 

treatment, salt-loading or high intake of fructose (Figure 5a-f). However, notably, regardless of the 236 

challenge HRV distinctly peaked at 20.00h in all groups (Figure 5 a-f).   237 

238 
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 239 

Discussion  240 

The adverse metabolic consequences of increased consumption of extrinsic sugars in particular 241 

fructose, has been widely reported (33; 34; 35; 36). Only one study in mice(37) and one in rats(38) have 242 

described the cardiovascular effects of additional dietary salt on cardiovascular function; none have 243 

considered their interaction when fed to pregnant dams and, subsequently, to their offspring. In the 244 

current study, we reveal some clear circadian and sex-specific effects of high maternal intake of salt 245 

or fructose on cardiovascular physiology in the adult offspring. Two independent sex-specific 246 

phenotypes emerge that are retained despite no significant consumption of salt or fructose 247 

postnatally; maternal salt-loading has distinct and marked hypertensive effects on male offspring, 248 

maternal fructose-loading appears to have greater cardiovascular effects on female offspring. 249 

Importantly, for fructose in particular, these effects in the female offspring are exacerbated by 250 

further fructose intake, as would naturally tend to occur in human populations.  251 

 252 

The adverse cardiovascular effects of increased consumption of salt have long been recognized(39); 253 

for fructose, the deleterious consequences are the subject of much recent debate(40). Taking an 254 

evidence-base approach, however, would favour the hypothesis that increased consumption of 255 

fructose after the introduction of high fructose corn syrup and sugar-sweetened beverages has had a 256 

negative impact on cardiovascular health(35; 41).  When considering impact of diet on health (including 257 

offspring health) then relativity is all important; early hominids evolved eating approximately ≈0.25 258 

g/day salt and no more than 2% energy/day from simple sugars. Current estimated average 259 

consumption is 8-12 g/day salt and 18-25% energy/day from simple sugars. Relative to our ancestral 260 

diet, during which our physiology was moulded over many thousands of years, the current average 261 

diet represents a considerable physiological burden. In the context of developmental programming, 262 

in which maternal malnutrition may influence fetal development to result in adaptations that 263 

become deleterious in a westernised nutritional environment, then it is unsurprising that such a 264 

physiological burden is not without effect. Using an animal model to recapitulate a westernised 265 

dietary pattern, the current study illustrates how this burden may translate to the offspring, and 266 

how these responses are sex- and nutrient-specific. For salt-loaded dams, effect size in sibling 267 

offspring is ≈25 mm Hg (males are hypertensive [≈15mmHg above controls], females hypotensive 268 

[≈10mmHg below controls]). Such large sex-specific effect size are rarely, observed (42; 43).  269 

 270 

Sex-specific effects are often observed within the developmental programming paradigm (44) but, to 271 

our knowledge, none as marked as in the current study. This study was designed to illustrate 272 

potential sex-specific, delayed developmental effects but not interrogate potential mechanisms 273 

should they arise. For example, whilst a number of models have inferred sex-specific effects of 274 

programming by adopting the relatively crude approach of gonad removal, a more appropriate 275 

intervention would be to use highly specific and reversible sex-hormone antagonists longitudinally. 276 

Some excellent recent studies that have shown programming of a sex-specific cardiovascular 277 

phenotype (such as increased blood pressure in male but not female offspring) have identified an 278 

absence of estrogen in males as a causal factor (42, 43); in effect, estrogen acts as a ‘pro-survival 279 

factor’ mitigating (perhaps epigenetically) the adverse consequences of a nutritionally-poor 280 

developmental environment until concentrations decline in middle-age and morbidity and mortality 281 

rates (e.g. for cardiovascular outcomes) in females begin to rise – the basis for estrogen replacement 282 

therapy (44). However, being genetically male or female and interacting differently with the 283 
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immediate (e.g. intrauterine) environment could be important; for example, periconceptional 284 

exposure to a maternal methyl deficient diet for only 6 days (day 0 to day 6 gestation) revealed 285 

significant sex-specific differential DNA methylation of CpG islands in the fetal livers at day 90 286 

gestation i.e. of the altered loci as a result of the dietary treatment, 53% were specific to male and 287 

only 12% specific to female (15). 288 

 289 

Programmed alterations of cardiovascular control in salt-exposed offspring appears independent of 290 

tonic endothelial nitric oxide; if this were the case then L-NAME treatment should have revealed 291 

differences in short-term responses (i.e. the magnitude of increase in first 8-12 hours) or long-term 292 

regulation. However, a simple procedure to induce temporal anxiety – removing the cage-mate for a 293 

24h period – does reveal marked differences in male, salt-exposed offspring. This has two important 294 

consequences; first, generation of curves of the coupling between pressure and heart rate at this 295 

time indicates that salt-exposed hypertensive male offspring, but not non-hypertensive female 296 

siblings, have a greater rate of rise of heart rate per unit pressure relative to female salt-exposed 297 

offspring. This suggests a centrally-mediated alteration at the level of the brain or peripheral 298 

autonomic nervous system and/or an effect on cardiac function. The latter can be ruled out, as ex 299 

vivo cardiac function, as shown by the langendorff preparation was not significantly different. 300 

Furthermore, we have previously shown, that the offspring of salt-loaded dams have altered set-301 

points for osmolar regulation – a phenotype indicative of alterations at the level of the brain (24). 302 

Additionally, the data clearly indicate that measurements of resting blood pressure in telemetered 303 

rats should always be conducted with same-sex sibling cage mates in order to achieve a true ‘resting 304 

or ambulatory reading’; single-housed rats are easily stressed which has a marked negative impact 305 

on resting cardiovascular variables.  306 

 307 

For the first time, we provide evidence that increased maternal fructose consumption has important 308 

effects on adult offspring cardiovascular control. Resting blood pressure was unaltered by increased 309 

maternal fructose intake but the circadian oscillation in pressure and heart rate was significantly 310 

blunted, reflective of a ‘non-dipping’ nocturnal pattern – previously identified as a significant risk 311 

factor for later cardiovascular disease(45). This finding is intriguing considering the limited exposure 312 

to fructose; none had consumed any fructose since they were weaned at 3 weeks of age. A number 313 

of studies have previously reported a pressor effect of fructose either given acutely, using high doses 314 

(66% of total energy intake (46)) or chronically (using lower doses (35)) and others reporting no effects 315 
(47). Furthermore, our data suggest that maternal diet renders offspring (in particular female 316 

offspring) with a residual, increased sensitivity to further fructose intake. Mean arterial or pulse 317 

pressure in male and female offspring increased significantly more in prenatally fructose-exposed 318 

groups relative to control animals. Given that chronic L-NAME treatment did not reveal any 319 

difference in fructose-exposed groups suggests no residual involvement of tonic nitric-oxide activity. 320 

A recent study demonstrated an altered pattern of vascular smooth muscle prostanoid release may 321 

be a contributing factor to fructose-induced vascular sensitivity (48), but equally up-regulation of 322 

other vasoconstrictor, anti-natriuretic or diminished vasodilatory pathways may be causal. We have 323 

measured a number of fructose-induced advanced glycation end-products such as fructosamine (an 324 

indicator of fructose-induced protein glycosylation), uric acid and glucose and found no difference in 325 

the basal state to account for alterations in fructose-sensitivity. Acute fructose ingestion has been 326 

shown to increase blood pressure, likely through an effect on cardiac sympathetic sensitivity (49). The 327 

current study illustrates that the effects of fructose ingestion after being exposed in utero to a 328 
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maternal diet high in fructose have a distinct sex-specific bias, with females being more fructose-329 

sensitive.  330 

 331 

Finally, the current study clearly illustrates that moderate over-consumption of salt and/or fructose 332 

by dams during pregnancy and lactation is able, in the offspring, to recapitulate many of the known 333 

pathophysiological effects of these micronutrients despite little exposure of the offspring to these 334 

diets. This has marked implication for non-communicable disease in western populations. Continued 335 

intake of refined, low nutritional-quality diets in the next generation, following maternal over-336 

consumption, has the potential to vertically transmit adverse health outcomes through generations. 337 

Reversal of this trend is going to require preventative action prior to birth and as a result will also 338 

take generations to effect a response. Given the implications for human populations we would also 339 

strongly endorse recent commentaries and initiatives to reduce both the quantity of salt(50) and 340 

fructose(18) consumed as part of the modern Western diet. 341 

 342 
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Figure Legends 473 

 474 

Figure 1. Circadian analyses of pressure and heart rate in adult male and female offspring from dams 475 

fed fructose or salt. Circadian variation in mean arterial pressure (MAP; A,B) and heart rate (C,D,E) 476 

derived from Fourier curves in adult male and female offspring of dams fed 1) control diet and water 477 

ad libitum (CD, n=6 males/females), 2) control diet and 10% fructose in water ad libitum (FD, n=5 478 

males/females), 3) 4% salt diet and water ad libitum (SD, n=5 males/females) and 4) 4% salt diet and 479 

10% fructose in water ad libitum (FSD, n=5 males/females). Fourier plots represent predicted mean 480 

regression curve for each group (Genstat v16; VSNi Ltd). Digital time is 00.00am = 0.0000 and 481 

23h.59min.59sec = 0.9999.  482 

 483 

Figure 2. Mean arterial pressure (A,B), heart rate, (C,D) and slopes of the relationship (E,F) between 484 

mean arterial pressure and heart rate in male and female offspring at ≈10 weeks of age from dams 485 

fed fructose and/or salt. Data are (○) control diet and water ad libitum (n=6), ( ) control diet and 486 

10% fructose in water ad libitum (n=5), (∆) 4% salt diet and water ad libitum (n=5), (●) 4% salt diet 487 

and 10% fructose in water ad libitum (n=5) for males and females. Data were measured continuously 488 

(i.e. sampled at 2 outputs per minute) by telemetry for a 1h baseline period and subsequently for 2 489 

hours after removal of their sibling from the cage. Regression lines were generated in Graphpad 490 

Prism 5.0.  491 

 492 

Figure 3. Mean arterial pressure (A,B), heart rate (C,D) and Fourier curves (E,F) for circadian variation  493 

in heart rate in response to L-NAME in the male and female offspring of dams fed fructose and/or 494 

salt. Data are (○) control diet and water ad libitum (n=6), ( ) control diet and 10% fructose in water 495 

ad libitum (n=5), (∆) 4% salt diet and water ad libitum (n=5), (●) 4% salt diet and 10% fructose in 496 

water ad libitum (n=5) for males and females. Data were measured intermittently (for 30secs every 497 

15mins for 7 days) by telemetry and hourly means calculated as a summary measure of the 498 

cardiovascular response. Data were analysed within sex by General Linear Mixed Model (Genstat 499 

v13). NS, non-significant. L-NAME was provided in the drinking water (150µg ml-1). 500 

 501 

Figure 4. Mean arterial pressure (A), pulse pressure (B) and summary measures of heart rate (C,D) 502 

during fructose ingestion in the male and female offspring of dams fed fructose and/or salt. Data are 503 

(○) control diet and water ad libitum (n=6), ( ) control diet and 10% fructose in water ad libitum 504 

(n=5), (∆) 4% salt diet and water ad libitum (n=5), (●) 4% salt diet and 10% fructose in water ad 505 

libitum (n=5) for males and females. Data were measured intermittently (for 30secs every 15mins for 506 

7 days) by telemetry and hourly means calculated as a summary measure of the cardiovascular 507 

response. Data were analysed within sex by General Linear Mixed Model (Genstat v13). NS, non-508 

significant. Fructose was provided in the drinking water (10% solution). 509 

 510 

Figure 5. Heart rate variability (HRV) in male and female offspring from dams fed (○) control diet and 511 

water ad libitum (n=6), ( ) control diet and 10% fructose in water ad libitum (n=5), (∆) 4% salt diet 512 

and water ad libitum (n=5), (●) 4% salt diet and 10% fructose in water ad libitum (n=5) for males and 513 

females during 5 days of (a,b) L-NAME treatment, (c,d) 4% salt-loading and (e,f) 10% fructose in 514 

drinking water. Heart rate was derived from the radio telemetric pressure pulse and recorded 515 

intermittently (for 30secs every 15mins) for the duration [7 days] of each nutritional challenge. HRV 516 

was calculated as the variance (SD2) in heart rate for each hour of recording. Data were highly 517 
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positively skewed and were therefore analysed by General Linear Mixed Model with a gamma error 518 

distribution and logarithm-link function; back-transformed means are presented (Genstat v16). 519 

520 
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 521 

Table 1. Summary measures analysis of resting cardiovascular status of adult male and female 522 

offspring from dams consuming salt and/or fructose  523 

Daytime (resting) cardiovascular parameters of adult male and female offspring  

  salt  P value 

Male offspring fructose no yes s.e.d. Fructose Salt Fr*S 

Systolic pressure (mm Hg) no 128 142  

2.8 

 

NS 

 

0.03 

 

0.001 
yes 134 131 

Mean arterial pressure (mm Hg) no 106 121  

3.0 

 

NS 

 

0.004 

 

0.003 
yes 110 110 

Diastolic pressure (mm Hg) no 88 103  

3.3 

 

0.07 

 

0.004 

 

0.01 
yes 90 91 

Pulse pressure (mm Hg) no 40.4 39.2  

3.0 

 

NS 

 

NS 

 

NS 
yes 43.7 40.3 

Heart rate (beats/min) no 410 394  

8 

 

0.06 

 

NS 

 

NS 
yes 417 419 

Female offspring        

Systolic pressure (mm Hg) no 132 122  

5.3 

 

NS 

 

NS 

 

NS 
yes 129 127 

Mean arterial pressure (mm Hg) no 112 102  

4.2 

 

NS 

 

0.07 

 

NS 
yes 110 109 

Diastolic pressure (mm Hg) no 94 85  

4.1 

 

NS 

 

0.08 

 

NS 
yes 92 91 

Pulse pressure (mm Hg) no 38.0 36.7  

3.7 

 

NS 

 

NS 

 

NS 
yes 36.7 36.7 

Heart rate (beats/min) no 382 366  

8.7 

 

0.04 

 

NS 

 

NS 
yes 394 389 

Table 1. Blood pressures and heart rate were derived from radiotelemetric signals and reflect 524 

average values during the ‘resting’ period (i.e. day-time; 7am to 7pm) over a 7-day period. Data are 525 

means with standard error of the difference (s.e.d) for the comparison from n=5-6 male or females 526 

per dietary group (n=5-6 dams per dietary group). Data were analysed by 2 (salt, yes/no) × 2 527 

(fructose, yes/no) factorial ANOVA within each sex (Genstat v13). Statistical significance was 528 

accepted at P<0.05. Fr*S; interaction of fructose*salt 529 

530 
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