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In the present work, we investigate the effect of dipole interactions on hyper-
thermia heating the cluster composed of multi superparamagnetic nanoparticles via
time-quantified Monte Carlo simulation. The dynamic hysteresis loop area of non-
interacting particles calculated by a modified Rosensweig’s model is shown to be
proportional to the field frequency. The inverse of the total number of Monte Carlo
steps per field cycle is considered as a computational frequency in our modelling. By
comparing the two proportionality constants gained from the simulation and from the
Rosensweig’s model, respectively, the time scale of one Monte Carlo step is estimated.
The shape of the cluster is characterised by treating it as an equivalent ellipsoid. When
the morphology of cluster is highly anisotropic such in a chain and cylinder, dipole
interactions align the moments of the particles to the morphology anisotropy axis of
the cluster. The strength of such alignment depends on the magnitude of morphology
anisotropy of the cluster. The alignment helps improve heating capability of the chain
and cylinder clusters at the most angles between the field direction and morphology
anisotropy axis. However, when the field direction is away from the axis too much,
the high energy barrier will hamper the cluster to maintain the magnetization, leading
to a reduced heating efficiency. Once the cluster loses its morphology anisotropy
(i.e. cube), the influence of dipole interactions on hysteresis losses is reduced to the
minimum; the probability to obtain an improved heating becomes very low no matter
with the type of particle arrangement. C 2015 Author(s). All article content, except
where otherwise noted, is licensed under a Creative Commons Attribution 3.0
Unported License. [http://dx.doi.org/10.1063/1.4939514]

I. INTRODUCTION

Much attention has been focussed on magnetic hyperthermia due to its great potential to be a can-
cer treatment.1–6 Different from other approaches developed to raise the temperature of bio-tissue,7–10

magnetic hyperthermia heats the cancerous tissues through inductively heating pre-implanted single-
domain magnetic nanoparticles. The particles convert magnet work done by the field to particles’
internal energy via the mechanism called “hysteresis losses.”11 The amount of energy converted per
field cycle is equal to the area of the magnetic hysteresis loop.11,12 Consequently, the temperature
of particles could be increased rapidly at a rate of 102 to 103 K/s.13 Then, the heat is released to the
surrounding tissue to treat the tumor.

Many researchers have applied large single-domain particles retaining permanent magnetic mo-
ments at room temperature for hyperthermia heating.14–19 Triggering the hysteresis losses of large
particles requires a high threshold field amplitude stronger than the coercivity field.20,21 However, it
has been suggested that the field frequency f and amplitude H0 should be reduced to some level in
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order to conduct a safe hyperthermia treatment.2,22 Therefore, the use of small single-domain parti-
cles seem to be more important.4 When the magnetic anisotropy energy becomes comparable with
the thermal energy at room temperature, the moment of individual particles will start to flip freely
through Néel Relaxation in absence of an external magnetic field; thus, the permanent magnetization
will disappear; and those particles are referred to as superparamagnetic nanoparticles (SMNPs).23

However, almost null coercivity field confines the hysteresis loop area.11

Colloidal clusters composed of multi-magnetic nanoparticles have shown great potential in mag-
netic hyperthermia heating.24,25 Different from the isolated particles, the hysteresis losses of the clus-
ters are affected by inter-particle dipole interactions. The role of dipole interactions is complex, and
apparently contradictory findings have been reported. Several evidences show that the dipole inter-
actions can improve heating performance when the shape of cluster is highly morphologically aniso-
tropic, such as in chain or cylinder.25–27 Mehdaoui et al.25 found that dipole interactions could improve
the heating performance of SMNP columns by generating an additional magnetic uniaxial anisotropy,
especially when the magnetocristalline anisotropy is low and column is long. However, other results
suggest that chain-like clusterings may not bring in an enhancement in heating efficiency.17,28 Bran-
quinho et al.28 reported that only at high damping factor the heating efficiency of short chain clusters
would increase with the chain length; but at lower damping factor formation of chains could lead to
low heating efficiency, because the present magnetocrystalline anisotropy became farther away from
the optimal value although dipole interactions reinforce the cluster’s effective magnetic anisotropy.
The role of dipole interactions is also dependent upon the relative orientation of the magnetic field
with respect to the clusters. Several modelling results suggest that chain cluster will produce less heat
once the field direction does not align with the chain axis.29,26 Serantes et al.27 have experimentally
demonstrated a reduction in heating efficiency by increasing the relative orientation of field with
respective to the chain formed by ferromagnetic particles. Their simulation has predicted that the loss
per cycle will decrease when the shape of the cluster is changed from chain to cube. In fact, assembling
particles into anisotropy-less clusters, such as in sphere, can change the heating efficiency in either
positive24 or negative way.30 In order to understand how dipole interactions dominate the hysteresis
losses of a cluster, it is necessary to develop a method to associate the influence of dipole interactions
with the cluster’s characteristics as well as the magnetic field orientation; and it can be applied to the
cluster with any shape and particle arrangement.

Metropolis algorithm is widely used for studying time-dependent magnetization of magnetic
nanoparticle system by Monte Carlo (MC) method.16,31–34 Unlike the kinetic Monte Carlo algo-
rithm,35,36 which calculates dynamic hysteresis loop within two-level approximation, the transition
possibility of the Metropolis algorithm mainly depends on the energy difference between the current
and attempted states. However, without a theory to associate physical time with the Monte Carlo step
(MCS), a dynamic magnetic hysteresis cannot be described in a quantified manner. Nowak et al.37

pioneered the work on relating one MCS of heat-bath MC algorithm to the time scale of Langevin
dynamics in fluctuation dissipation theorem. Cheng et al.38 used the Fokker-Planck equation to link
the Metropolis MC algorithm and Langevin dynamics schemes, and gained accurate quantification at
a large range of the damping factor. Melenev et al.39 estimated the time scale of MCS for simulating
dynamic magnetic hysteresis for the first time. They considered a model of non-interacting SMNPs
responding to an oscillating field. The MC simulation was manipulated until the simulated hysteresis
loop was in good agreement with the one produced by Brown’s kinetic equation at a certain frequency.
By correlating MCSs per field cycle, NMCS, with the frequency, the time scale of each MCS was
obtained. One can expect an improved accuracy of the time quantification if a series of frequencies
are considered.

In the present work, the effect of dipole interactions on the hysteresis losses of the cluster
composed of SMNPs is studied. Three typical morphologies, namely chain, cylinder and cube, are
selected to shape the cluster. Two cube clusters are fabricated to possess a simple cubic and facial
centred cubic (FCC) lattice, respectively. The morphology anisotropy of the cluster is quantitatively
characterised by using the reported method.40 An approach has been proposed to quantify the
directionally dependent influence of dipole interactions in terms of energy. The dynamic magnetic
hysteresis of a cluster is simulated via the MC method. The hysteresis loop area of non-interacting
particles calculated by Rosensweig’s model12 with an minor modification is shown to be proportional
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to the field frequency. In our modelling, the inverse of NMCS per cycle is considered as a computational
frequency. By comparing the two proportionality constants gained from the simulation and the
Rosensweig’s model, the time scale of one Monte Carlo step is estimated. Our simulation results
suggest that when the cluster is highly morphologically anisotropic, the dipole interactions try to
align the individual magnetic moment of each particle to the axis of shape anisotropy. The strength
of the alignment associates intimately with the magnitude of the morphology anisotropy. Once the
cluster loses its morphology anisotropy, the influence of dipole interactions on the hysteresis loss
will be reduced to the minimum and the chance of obtaining improved heating will become very low.

II. METHODS

A. Characterization of cluster’s morphology anisotropy

The morphology anisotropy of the cluster is characterised by treating it as an equivalent ellipsoid
with uniform mass distribution in 3D. The ellipsoid has the same mass and principal moments of
inertia as the cluster. The morphology anisotropy is defined in terms of the ratios of the length of its
semi-principal axes. Each particle is divided into 280 unit volume elements. The moment of inertia
tensor, TI , for a cluster composed of N discrete point masses (N = 280 × the number of particle) is
described as,

TI =

N
l=1

*...
,

y2
l + z2

l −xl yl −xlzl
−xl yl x2

l + z2
l −ylzl

−xlzl −ylzl x2
l + y2

l

+///
-

(1)

where (xl, yl, zl) are the coordinates of point mass l. The original point locates at the mass centre of
the cluster. Diagonalising TI works out the principal moments of inertia of the cluster, λi(i = 1,2,3).
The length of semi-principal axis of the equivalent ellipsoid di is obtained by,

di =


5
2
λ j + λk − λi

N
(2)

where i, j and k equals 1 or 2 or 3, respectively, and i , j , k. Then, di (i = 1,2,3) are assigned to A,
B and C, ordered from the largest to smallest. A long di comes with a small λi, which suggests that
the mass of the cluster is distributed close to the principal axis of rotation i. Therefore, high ratios of
A to B and C indicate a heterogeneous mass distribution of the cluster with respect to different axes,
indicating a high anisotropy in morphology.

B. Estimation of directionally dependent influence of dipole interactions

When a cluster is magnetically saturated, the total energy of dipole interaction


i< j E(i, j)
D can be

described as, 
i< j

E(i, j)
D =


i< j

µ0M2
d
V 2

4π



1 − 3(cos θi j)2
r3
i j


(3)

where µ0 is the vacuum permeability, Md the domain magnetization, V the magnetic volume of par-
ticle, θi j the angle between the direction of magnetization and the line joining the centers of particle
i and j, and r⃗i j the distance between the centers of particles. We denote it as EDISM. It is evidenced
that the clusters formed by SMNPs can inherit superparamagnetism from the particles,24,41–43 as long
as T is high enough to make the moments rotate too rapidly to generate permanent magnetization.
Moreover, the blocking temperature of the densest assembly of SMNPs can be much lower than
room temperature.44,45 When body temperature is considered, it can be assumed that


i< j E(i, j)

D of the
SMNP cluster whose magnetization is completely relaxed is independent upon its structure and shape.
In this case, EDISM dominates the difference of


i< j E(i, j)

D before and after the cluster is magnetized.
Decreasing EDISM is expected to make magnetizing the cluster easier. In the present modelling, the
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direction of the cluster’s magnetization is set always in parallel with the field direction. Therefore,
EDISM is such a parameter which connects dipole interactions, the field direction, and the hysteresis
losses.

C. Monte Carlo Simulation

All clusters are composed of mono-sized spherical magnetic nanoparticles. Each particle pos-
sesses a uniaxial magnetic anisotropy, and the orientation of the easy axis is randomly chosen in a
3D space. The magnetic properties of particle are set the same as the published data of magnetite
nanoparticles: the effective magnetic anisotropy constant Keff is 9000 J/m3 and Md 446 kA/m.46 For the
sake of simplicity, we assume that both of them are temperature-independent. The magnetic moment
of each particle is defined as µ⃗i = MdV s⃗i, where s⃗i is the unit vector of µ⃗i. The energy model of the
cluster system consists of three major sources, namely, anisotropy energy EA, Zeeman energy EH

and dipolar interaction energy ED.47 The uniaxial anisotropy E(i)
A

of each particle is given by,

E(i)
A
= −KeffMdV (s⃗i · n⃗i)2 (4)

where n⃗i is the unit vector along the easy axis direction. The coupling with the applied field H⃗ is
described by,

E(i)
H = −µ0MdV

(
H⃗ · s⃗i

)
(5)

The energy of dipole interaction is given by,

E(i, j)
D =

µ0M2
d
V 2

4π



s⃗i · s⃗ j
r3
i j

−
3
�
s⃗i · r⃗i j

� �
s⃗ j · r⃗i j

�

r5
i j


(6)

Therefore, the total energy of the cluster system can be expressed as,

E =

i

E(i)
A
+

i

E(i)
H +

i< j

E(i,j)
D (7)

Five kinds of SMNP clusters are studied in this work. Chain cluster, cylinder cluster and cube
cluster with simple cubic lattice are built with 64 particles. Cube cluster with a FCC lattice contains
63 particles. The particles of the chain cluster are lined up along the Z-axis. The cylinder cluster is
created by repeating the unit cell of simple cubic lattice along the Z-axis. The anisotropy-less cluster
with an imperfect lattice is fabricated by removing 16 randomly picked particles from the structure
of the cube cluster with a simple cubic lattice. Usually, a SMNP is covered with a layer of organic
stabiliser in practice to ensure the particle dispersity. The thickness of this stabiliser layer is set at
1 nm in the modelling, and the radius of magnetic fraction is kept at 5 nm.

Monte Carlo simulation featured with the Metropolis algorithm is carried out to reproduce the
time dependent magnetization of SMNP clusters at body temperature. At the beginning of each MCS,
one particle is picked randomly and the moment is directly agitated to a new direction, which is cho-
sen inside of a spherical segment around the present direction with an aperture angleδθ. According
to the reported work,16 temperature dependence of δθ is given by δθ = (0.05kBT/2KeffV )0.5 in an
usual reduced unit, where kB is the Boltzmann constant. This agitation is accepted with probability
min [1,exp(−∆E/kBT)], where ∆E is the change of the total energy of the cluster system caused
by agitation. The above procedure is repeated until all particles are agitated to complete one MCS.
During the simulation, the particles only relax through Néel mechanism and the particle positions are
fixed.

Before simulating cluster’s hysteresis losses, 275000 MCSs are used for thermalization. After
that, magnetic field is introduced and increased until reaching H0; then it is decreased to −H0, and
increased again to H0 to finish the cycle. The simulation time increases by MCS. The inverse of NMCS

per cycle is used as the computational frequency. The field oscillates in sinusoidal waveform, namely,
H = H0sin2π(1/NMCS)(l × NMCS/400), l = 1,2,3 . . . 400. H0 is set at 200 kA/m to enable the cluster
to be magnetised completely. The time returns to 0 before a new cycle is started. The magnetization of
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FIG. 1. (a) 3D schematics and (b) the equivalent ellipsoid of the chain cluster, cylinder cluster, and two cube clusters with a
simple cubic and FCC lattice respectively.

the cluster is collected by summing the moment projections on the positive direction of field variation
every NMCS/400. As the growth of cycle numbers, Ncycle, the time dependent magnetizations keep
being averaged across all of existing cycles to generate the matrix of cycle-averaged magnetization
M(l,Ncycle). Supplementary Information.52 Fig. 1 shows the evolution of Euclidean distance d (M (:,
Ncycle), M (:, ∞)) as a function of Ncycle when chain, cylinder and two cube clusters are magnetized
by the field oscillating along the Z-axis. M (:, Ncycle) become almost constant after Ncycle exceeds
60. The loop area is produced by integrating each column of M (l, Ncycle>60) against H followed
by averaging work. Finally, the loop area is converted to one in reduced units via being divided the
product of saturation magnetization MS and Ha = 2Keff/MS. The magnetization–field (M-H) curves
shown in this work are the plots of M (l, Ncycle = 100) against H(t).

III. RESULTS AND DISCUSSION

Figure 1(a) shows 3D schematics of chain cluster, cylinder cluster, and two cube clusters which
have a simple cubic and FCC lattice, respectively. The Morphology anisotropy of SMNP clusters
is characterised by treating it as an equivalent ellipsoid. As shown in Figure 1(b), the equivalent
ellipsoids of the chain cluster and cylinder cluster exhibit similar characteristics to the morphology
of clusters. Because the mass distribution of both clusters is rotationally symmetric with respect to
Z-axis, the two shorter semi-principal axes B and C equal each other (Table I). The ratio A/B or
A/C of chain cluster is 10 times larger than that of cylinder cluster. The longest principal axes of

TABLE I. Characterization of clusters’ morphology and distribution of EDISM.

Sample A/B A/C K0 (×103 J/m3) K1 (×103 J/m3)

Chain 81.6 81.6 −14.18 22.27
Cylinder 8.41 8.41 −11.32 16.98
Cube (SCL)a 1 1 0 0
Cube (FCC)b 1 1 0 0
Anisotropy-lessc 1.06(±2.88%) 1.14 (±4.55%) - -

aCube (SCL) is the cube cluster with simple cubic lattice.
bCube (FCC) is the cube cluster with facial centered lattice.
cAnisotropy-less is the anisotropy-less cluster with with an imperfect lattice.
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FIG. 2. Orientation distribution of EDISM of chain cluster, cylinder cluster, and cube clusters with a simple cubic and FCC
lattice. The axis where EDISM achieves the minimum is represented by a red arrow.

both ellipsoids coincide with Z-axis. In contrast, the equivalent ellipsoids of the two cube clusters
are visually isotropic in geometrics (Figure 1(b)). Obviously, the finding of A/B=A/C=1 (Table I)
further confirms that the mass distribution of these two cube clusters is truly isotropic, regardless
of the type of lattice. Therefore, as the shape changes from a chain to a cylinder and to a cube, the
morphology anisotropy decreases to 0. The longest principal axis is arbitrarily defined as the axis of
morphology anisotropy (AMA).

As shown in Figure 2, the orientation distribution of EDISM of chain and cylinder clusters displays
typical uniaxial anisotropy. The easy axis coincides with the AMA of each cluster (red arrows). The
angle-dependent EDISM obeys the correlation, EDISM = K0 + K1sin2θMA, where K0 and K1 are con-
stants and θMA is the angle between the unit vector of magnetization of the cluster and the AMA. The
value of K0 and K1 are given in Table I. K1 of the chain and cylinder cluster are positive, indicating
that EDISM of both the clusters increases with θMA. As θMA gets close to 0o the dipole interactions are
expected to help maintain the current magnetization of the cluster. However, once θMA approaches
to 90o, the dipole interactions will turn to compel the cluster to lose the magnetization. Moreover,
K0 of the chain cluster is smaller than that of the cylinder, but K1 is larger. The deep energy valley
brought by EDISM at 0o makes the moments of the chain cluster more inclined to align with the AMA.
In contrast, EDISM of the two cube clusters are independent of direction (Figure 2) and fixed at 0. This
is further validated by the presence of almost null K0 and K1 (Table I). Therefore, after the cluster loses
its shape anisotropy, dipole interactions are expected to contribute little to the cluster’s magnetism.

To investigate the effect of dipole interactions on hysteresis losses of the cluster, Monte Carlo
approach featured with the Metropolis algorithm is carried out to generate M-H curve. At first, the
simulation is validated by reproducing the DC equilibrium magnetic magnetization of non-interacting
SMNPs at T ≈ 0 K, as shown in Figure 3 (left). The remanence magnetization and coercivity are
0.5 MS and 0.48 Ha respectively. Both of them are in good agreement with the expected values pro-
posed by Stoner and Wohlfarth.16,48 Then, the temperature is increased to 310 K (body temperature),
and the particle moments are allowed to interact magnetically with each other. NMCS per cycle is
adjusted to be large enough to obtain a DC equilibrium magnetization. As shown in Figure 3 (right),
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FIG. 3. Simulated DC equilibrium magnetization of non-interacting particles at T = 0.001 K (left) and the chain cluster,
cylinder cluster, and cube clusters with a simple cubic and FCC lattice at T = 310 K (right). DC magnetization of
non-interacting particles at 310 K modeled by LRT is also presented in the image on the right side.

all of the M-H curves exhibit minute loops, demonstrating the presence of superparamagnetism,
despite the cluster’s shape. The DC equilibrium magnetization of non-interacting particles at 310 K
is also shown in Figure 3 (right), which is calculated by the LRT. It is clear that LRT is no longer
suitable for describing the magnetization of an ensemble of magnetically interacting particles. This
notion is consistent with Schaller et al.,49 who used MC to simulate DC equilibrium magnetization
of a sphere-like cluster at 293 K.

In order to simulate AC dynamic hysteresis of SMNPs in a quantified manner, the estimation of
the time scale of MCS is demanded. Rosensweig’s model has been suggested to be useful in predict-
ing heating behavior of non-interacting SMNPs.4 In the present modelling, Rosensweig’s model is
modified to be suitable for describing dynamic hysteresis driven by high field intensity. The equilib-
rium susceptibility is set to change with field intensity, and the loop area is calculated by integrating
magnetization against field. Details are given in the Supplementary Information.52 The properties of
the particle and field amplitude are set to be the same as those used in MC simulation. The value
of pre-exponential factor τ0 is chosen as 10−9 s−1, which corresponds to the damping factor of 0.28
(see Supplementary Information52 for details). During the simulation, the temperature is maintained
at 310 K and the value of δθ is fixed. Figure 4 shows the plot of simulated loop area in reduced units
against 1/NMCS per cycle. It can be seen that the loop area is excellently proportional to 1/ NMCS per
cycle. By using linear regression without the intercept term, the proportionality constant is found to be

FIG. 4. Loop area in reduced units of non-interacting SMNPs vs 1/NMCS per cycle. The temperature is fixed at 310 K. The
aperture angle is kept constant. The fitting curve is presented as a red line.
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FIG. 5. Dynamic hysteresis loops of the chain cluster (a) and cylinder cluster (b) at θMA= 0o, 15 o, 30 o, 45 o, 60 o, 75 o, and
90 o. AM and A[001] (c) and EDISM (d) of two clusters vs θMA.

23812.6 MCS−1. The coefficient of determination is 0.997. And the constant ratio between the calcu-
lated loop area and frequency is 8.736 × 10−7 s−1 (see Supplementary Information52). Dividing the
second constant by the first one, we find that one MCS is comparable to 3.67 × 10−11 s. 54800 MCSs
per cycle is used for the study of the hysteresis losses of chain, cylinder and two cube clusters, which
corresponds to 500 kHz.

Figure 5(a) and 5(b) show M-H curves of chain and cylinder clusters obtained at different θMA,
respectively. The hysteresis loops of both clusters shrink quickly with θMA. This is further demon-
strated by continuous reduction of the loop area, denoted by AM in Figure 5(c). According to the
above discussion, both EDISM of chain and cylinder clusters increase with θMA. When the moments are
required to overcome a high energy barrier to get aligned with the field, a reduced heating efficiency
is understandable. The blue dashed line in Figure 5(c) presents the AM of non-interacting SMNPs
as blue dash line. Before θMA reaches 75o, AM of chain and cylinder cluster remain higher than that
of non-interacting SMNPs. If we assume that the cluster is randomly orientated with respect to the
field direction in practice, there will be 80% of probability to get an enhanced heating efficiency after
assembling SMNPs in the chain and cylinder cluster. In terms of the particle’s properties and τ0 chosen
for the simulation, the damping factor of isolated particle is around 0.28, which is already higher than
that of the particles studied in work of Branquinho et al.28 Their work also suggests that the damping
factor tend to increase with chain size. Perhaps high damping behavior might exist in our simulation
and prompt dipole interactions to contribute positively to the chain cluster’s hysteresis losses.

Interestingly, the chain cluster AM remains superior to the highest of the cylinder AM until
θMA reaches 60o (Figure 5(c)), but EDISM of the latter at 0o is already lower than the former at 30o

(Figure 5(d)). It seems that the hysteresis losses of the chain and cylinder cluster is not completely
dominated by EDISM. During the simulation, the projections of moments in [001] direction are
collected simultaneously. The loop area in reduced unit, denoted by A001 in Figure 5(c), is obtained
through the same approach as AM, except for the integration against the Z-component of the field.
The A001 of the chain cluster stays close to AM before θMA reaches 60o, and then decreases rapidly to
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0. A similar situation occurs on the cylinder cluster. Even if θMA is large up to 60o and 75o, the sum
of moment projection on Z-axis increases clearly with reduced field intensity (see Supplementary
Information52 Fig. S3). This indicates that the moments of both clusters have a clear tendency to get
aligned with each AMA. Furthermore, the alignment strength is enlarged when the shape is changed
from a cylinder to a chain. Before θMA rises to 90o, A001 of the chain cluster remains higher than
the other’s. The growth of EDISM as θMA makes the moments more inclined to stay at the AMA
to minimize the energy of dipole interactions. Such an alignment to a certain axis should impede
the demagnetization of the cluster significantly. It can be noticed that the energy valley of a chain
cluster formed by EDISM is sharper than the cylinder one (see Figure 5(c)). With the aid of such
strong alignment, the hysteresis losses of the chain cluster remain superior to the other at most θMA.
However, to answer whether this alignment brought by dipole interactions is the additional uniaxial
anisotropy mentioned in the work of Mehdaoui et al., 25 an investigation on the relationship between
the alignment strength and θMA will be necessary.

On the other hand, once the cluster loses its morphology anisotropy, we find that the hysteresis
losses begin to react almost numbly to the change of field orientation with respect to cluster. The field
direction is specified with cartesian reference frame. As shown in Figures 6(a) and 6(b), all M-H
curves of the cube cluster with a simple cubic lattice appear roughly the same, despite the change
of field direction from [001] to [112], [111] and [110], as do the curves of cube cluster with a FCC
lattice. Figure 6(c) compares the loop area of these two cube clusters in these four directions. The loop
area of the cube cluster with a simple cubic lattice varies little with the field direction and is slightly
lower than the non-interacting particles. The average loop area of the other cube cluster over four
directions is exactly equal to that of the non-interacting particles. The finding of inefficient hysteresis
losses caused by losing shape anisotropy is consistent with Mehdaoui et al.25 and Saville et al.16

EDISM of both cube clusters are directionally independent and kept at 0. The nearly null contribution
of dipole interactions minimizes the difference between clusters with less morphology anisotropy and
non-interacting particles.

FIG. 6. Zoom-in dynamic hysteresis loops of cube clusters with a (a) simple cubic and (b) FCC lattice. The field direction
is changed from [001] to [112], [111] and [110]. (c) Comparison of the loop area in reduced units, which are calculated by
integration of the M-H curves given in (a) and (b).
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FIG. 7. (a) EDISM-dependent loop area of anisotropy-less cluster with an imperfect lattice. The magnetic field oscillates
along the Z- axis. (b) The probability distribution of EDISM when the clusters’ magnetization aligns with the [001] direction,
as well as the probability distribution averaged over 1000 directions. These 1000 directions are uniformly distributed in a 3D
space.

So far, the synthesis of sphere-like SMNP clusters with a disordered structure has been widely
developed.42,50,51 Hayashi et al.24 found that the heating efficiency was increased by 50 percent after
assembling 9 nm of magnetite nanoparticles into sphere-like clusters with a disordered arrangement.
However, Liu et al.30 observed a sharp decrease in the heating ability after forming a dense spherical
pack of particles by loading 6 nm of MnFe2O4 into a polymer latex. It can be expected that a disordered
particle arrangement might bring an impact on the cluster’s hysteresis losses. Here, we intend to study
how the loss of lattice perfection changes the loop area of anisotropy-less cluster. 50000 such clusters
with imperfect lattice are fabricated by omitting 16 randomly picked particles from cube clusters with
a simple cubic lattice. As a result, the average A/B and A/C are 1.06 and 1.14 with a relative standard
deviation of 2.88% and 4.55% (Table I), respectively. It is noted the EDISM can achieve the minimum
at any angle with respect to the AMA (see Supplementary Information52 Fig. S4).

To find out the relationship between EDISM and the hysteresis losses of anisotropy-less clusters
with imperfect lattice, numerical simulations are carried out with setting the field to oscillate along
the Z-axis. Figure 7(a) shows the plots of the loop area against EDISM when NMCS is adjusted to
20000, 30400 and 54800, which correspond to 1300, 900 and 500 kHz, respectively. The dashed
lines represent the loop area of non-interacting particles at these three NMCS. It can be seen that at
54800 MCSs per cycle the EDISM influences the loop area slightly, and the loop area remains compa-
rable to non-interacting particles. When the NMCS per cycle is reduced to 30400, the loop area turns to
decrease with EDISM. This tendency becomes to be much obvious at 20000 MCSs per cycle. In other
words, only at an extremely high frequency, the dipole interactions could be expected to change the
hysteresis losses, and it requires EDISM to be lower than −1.0 × 103 J/m3 to produce a better heating
efficiency. Figure 7(b) shows the probability distribution of EDISM when magnetization is along with
[001] direction and the distribution averaged over 1000 directions uniformly distributed in 3D space.
Both distributions suggest that the chance of EDISM being lower than −1.0 × 103 J/m3 is quite low
(< 3%). Obviously, it is difficult for a cluster with less anisotropy in shape to convert more magnetic
work to heat.

IV. CONCLUSION

In this work, we investigate the effect of dipole interactions on hyperthermia heating SMNP clus-
ters via time-quantified Monte Carlo simulation. The shape of the cluster is characterized by treating
it as an equivalent ellipsoid. The morphology anisotropy is defined in terms of the ratios of the length
of the ellipsoid’s semi-principal axes. As cluster’s shape is changed from chain to cylinder and to
cube, the morphology anisotropy of the cluster decreases to 0.

According to the Rosensweig’s model, the hysteresis loop area of non-interacting particles is
supposed to be proportional to the field frequency. In our simulation, the inverse of total number of
Monte Carlo step per field cycle is considered as a computational frequency. By comparing the two
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proportionality constants gained from the simulation and from the Rosensweig’s model, respectively,
the time scale of one Monte Carlo step is found to be 3.67 × 10−11 s.

EDISM suggests the total energy of dipole interactions after a cluster is magnetically saturated.
It is gained by direct calculation of Equation (3). Decreasing EDISM is expected to make magnetiz-
ing the cluster easier. The orientation distribution of EDISM of chain and cylinder clusters displays
typical uniaxial anisotropy. When the field direction is parallel to the morphology anisotropy axis of
the cluster, the value of EDISM achieves the minimum; and EDISM increases with the angle between
field direction and this axis. However, once the cluster loses the morphology anisotropy such as cube
cluster, the orientation distribution of EDISM becomes isotropic and the value is fixed at 0, indicating
that a minimized influence of dipole interactions can be expected.

The results of the present simulation suggest that the hysteresis loop area of chain and cylin-
der cluster decreases continuously with the increase of the angle between field direction and the
morphology anisotropy axis of the cluster, due to the growth of EDISM. However, with the aid of
low EDISM, the hysteresis loop area of the chain and cylinder cluster remain superior to that of non-
interacting particles at the most angles. In addition, higher shape anisotropy also prompts the dipole
interactions to benefit cluster’s hysteresis losses via aligning the moments to the cluster’s morphology
anisotropy axis. Such alignment helps chain cluster to heat better than cylinder cluster, even when
EDISM of the former is lower than the latter. However, once the cluster loses its shape anisotropy, it
will be hard to obtain enhanced heating efficiency. The loop area of cube cluster is almost the same
as that of non-interacting particles regardless of the change of the lattice type from simple cubic to
FCC lattice as well as the field direction. Moreover, the loss of lattice perfection won’t enlarge the
probability for anisotropy-less cluster to heat better. Only at extremely high frequency the EDISM can
get the chance to affect the hysteresis losses of anisotropy-less cluster with imperfect lattice.
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