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ABSTRACT 

In aero-engine bearing chambers, two-phase shearing flows are difficult to predict as Computational Fluid Dynamics 
(CFD) RANS models tend to overestimate interfacial turbulence levels, leading to inaccuracies in the modelling of the 
flow. Turbulence damping methods have been developed to address this problem, such as Egorov’s correction, however, 
this method is mesh dependent and results differ considerably according to the choice of turbulence damping coefficient. 
In addition, this approach assumes a smooth interface between the air and oil phases when in reality they are wavy. In this 
paper, a Machine Learning method is used to inform an unsteady RANS turbulence modelling. It is trained using high 
fidelity quasi-DNS simulation data and used to provide an appropriate correction to the popular Wilcox’s standard RANS 
𝑘 − 𝜔 turbulence model. The correction consists of a machine learning-predicted source term which is used to adjust the 
energy budget in the RANS transport equations. Demonstration of the approach is presented for a range of interfacial flow 
regimes. 

INTRODUCTION 
The prediction of the oil film thickness distribution plays an important role when it comes to improving and optimising 

the design of aero-engine bearing chambers. A schematic of the cross-section of a bearing chamber is shown in figure 1. 

 
Figure 1: Rolls-Royce Ultrafan aero-engine and cross-section schematic of 

a bearing chamber (Rolls-Royce Plc, 2022) 
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Whilst the design of bearing chambers is mainly based on experiments, research focuses on finding adequate 
approaches to model two-phase air/oil shearing flows with Computational Fluid Dynamics (Bristot et al., 2016). However, 
modelling turbulent two-phase shearing flows with a sharp interface in an industrial context can be challenging due to the 
combination of a multiphase flow problem and the effects of high speed regimes. On the one hand, accurate results using 
CFD might be obtained in exchange for a high computational cost (Adeniyi et al., 2014), which is not practicable in an 
industrial context. On the other hand, averaged simulations would limit computational costs (RANS), although they 
struggle to treat the high velocity gradients in the interfacial region (Frederix, 2018), causing an overestimation of the levels 
of turbulence at the interface, corrupting the velocity and energy profiles and causing inaccuracies in the prediction of the 
flow. Egorov et al. (2004) proposed a correction for the RANS 𝑘 − 𝜔 model’s transport equation of the specific turbulence 
dissipation rate 𝜔 by adding a source term 𝑆𝜔 to reproduce a wall-like treatment at the interface between the liquid and the 
gaseous phase. This source term is controlled by a turbulence damping parameter B, which choice depends on the flow 
conditions and the expected solution. One could write this corrected 𝜔 transport equation in the standard unsteady RANS 
𝑘 − 𝜔 model (Wilcox, 1998) as follows: 

 
 𝜕𝜌𝜔

𝜕𝑡
+

𝜕𝜌𝑢𝑖𝜔

𝜕𝑥𝑖

= 𝛾
𝜔

𝑘
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𝜕
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)

𝜕𝜔
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] + 𝑆𝜔 (1) 

 
With 𝜌 the flow density, 𝑢𝑖 the velocity, 𝑘 the turbulent kinetic energy, 𝜇 the dynamic viscosity, 𝑃𝜔 the production 

term, 𝛾 and 𝛽 coefficients of 0.55 and 0.075 respectively. The correction source term for the 𝜔 transport equation 𝑆𝜔 is 
written as follows: 

 
𝑆𝜔 = 𝐴𝑖Δ𝑥𝛽𝜌𝑖 (𝐵

6𝜈𝑖

𝛽Δ𝑥2
)

2

 (2) 

 
The subscript 𝑖 denotes the phase (either gaseous or liquid), 𝐴 is the interfacial area density used as a switch to ensure 

that the source term is only applied in the interfacial region, Δ𝑥 is the representative cell size across the interface and 𝜈 is 
the kinematic viscosity. The application of the Egorov’s correction results in a better treatment of the interfacial turbulence 
dissipation and provides more accurate solutions. While Egorov et al. (2004) recommended a value of 100 for 𝐵, Lo and 
Tomasello (2010) used a value of 2500 to match experimental measurements. Bristot et al. (2017) demonstrated that the 
choice of this turbulence damping parameter strongly influences the interface prediction in the context of bearing chambers’ 
two-phase flow. For example, they compared results using the RANS 𝑘 − 𝜔 Shear Stress Transport model (SST) with 
Egorov’s correction for two values of 𝐵 (10 and 100) at the same bearing chamber flow regime of 15000 rpm. They indeed 
found out that predicting physics is very sensitive to the choice of 𝐵 as shown in figure 2. The correction source term 𝑆𝜔 
is strongly mesh dependent (Frederix et al., 2018) (Fan et al., 2019) and there are no guidelines on setting 𝐵. Egorov et al. 
(2004) were pioneers in assessing and addressing the standard model’s weakness to evaluate the interfacial turbulence in 
stratified flows with high gradient of velocities across the interface. More recent research has focused on improving 
Egorov’s method. Fan et al. (2019) proposed a novel approach with more physics and made the Egorov’s method mesh 
independent with an asymmetric treatment of the two phases, leading to more physical predictions of the flow turbulent 
kinetic energy and velocity especially in the interfacial region. Frederix et al. (2008) extended Egorov’s method to the k-ε 
model for the two-fluid formulation (Euler-Euler approach) giving more consistent results on differing meshes than the 
original Egorov’s method. Hashmi et al. (2010) developed an ‘enhanced VOF model’ with a refined interface treatment 
and obtained promising results when applying their method on stratified flow cases using the RANS k-ε model. 

 
Figure 2: Oil film thickness distribution influenced by the turbulence damping parameter 

𝑩 = 𝟏𝟎𝟎 (left) and 𝑩 = 𝟏𝟎 (right) at the same flow regime (Bristot et al., 2017) 
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The use of machine learning (ML) in computational fluid dynamics has become more and more common as the field 
of data science is gaining in popularity in industry. One of the best current features of ML in CFD is the improvement of 
existing low order turbulence models such as RANS models, thanks to high fidelity simulations such as DNS or LES data-
driven ML models.  

One can use ML to compute the source terms in the transport equations of RANS turbulence models. For example, 
Tracey (2015) used ML in order to reproduce the Spalart-Allmaras RANS model. They modified the solver in a way that 
used the output of the ML model instead of the standard Spalart-Allmaras model’s source term. The ML model was trained 
with a flat plate simulation dataset and used for the simulation of the flow around an airfoil. When looking at the friction 
coefficient, the author found very good agreement between the ML and the Spalart-Allmaras model. Despite the ML model 
giving promising results, the author warned that the differences found between prediction and true data could be explained 
by the fact that the ML algorithm was trained only with converged flow solutions. Singh (2018) used multiple sources of 
data for ML model training such as DNS, LES and experiments. Here, ML methods were used to improve the Wilcox’s 
RANS 𝑘 − 𝜔 model for adverse pressure gradient flows such as flows over a bump. The author focussed on adding a 
correction function in the 𝑘 − 𝜔 equations applied to the production term. This correction was used to change the net 
balance of the source terms improving the standard model. Results demonstrated a great improvement of the solution. 

This paper aims to address the problems related to the Egorov’s correction by generating a mesh and coefficient 
independent correction for the 𝜔 transport equation from high fidelity simulation data and more specifically by training a 
a ML model to predict a correction source term on various cases and flow conditions. It is embedded as a process within 
the open source CFD code OpenFOAM, in order to improve the standard Wilcox’s RANS 𝑘 − 𝜔 model. The objectives of 
this paper are to first generate training data using quasi-DNS (qDNS) using OpenFOAM, then implement an appropriate 
ML model capable of predicting proper corrections for the simulated case. Finally to include the implemented ML model 
within OpenFOAM to provide a correction for the standard RANS 𝑘 − 𝜔 model. 

METHODOLOGY 
The methodology for the current research can be decomposed into three main tasks. The first is the creation of high 

fidelity datasets for the training of the ML model. Quasi-DNS simulations were carried out in periodic horizontal channels 
with a liquid phase at the base (water) and a gaseous phase on the top (air). One could assimilate the flow present in a 
periodic horizontal channel to the flow located on the external wall of a small portion of a bearing chamber with an oil film 
driven by air shear. Different interface heights and phase velocities were employed to diversify the training dataset. A proof 
of concept was carried out using qDNS simulations based on experiments (Fabre et al., 1987), which involve air shear over 
deep water. Then, a second study was performed using a ML model trained with qDNS data on flow conditions closer to 
the type of flow that one finds in bearing chambers (i.e. shallow water or thin films). The second task of the methodology 
is the implementation of the ML model, where the choice of the different input features is important and must be performed 
by considering possible physical links with the output. The number of inputs, layers and the type of neural network used 
must also be considered in the implementation of the ML model. The implementation of the model was performed within 
the Python API of the well-known PyTorch open source ML library. The final task of the methodology is the embedding 
of the ML model within OpenFOAM for unsteady RANS 𝑘 − 𝜔 simulations in a way that it can be reused or easily adapted 
in future versions of the code. 

Generation of the high-fidelity simulation training dataset 

The Volume of Fluid method 

The Volume of Fluid (VOF) method was used for the purpose of all simulations mentioned in this paper using the 
solver interFoam available in OpenFOAM. The VOF method describes the flow such that all phases share the same velocity 
and pressure fields (Hirt, 1981). The phase volume fraction 𝛼𝑖 describes how the phases are distributed in the domain. In 
the case of a two-phase flow problem, where 𝛼𝑖 = 𝛼1 or 𝛼𝑖 = 𝛼2, one can write 𝛼1 = 1 − 𝛼2. Thus 𝛼𝑖 becomes a variable 
quantity of the discretised domain and is advected by the local velocity as: 

 
 𝜕𝛼𝑖

𝜕𝑡
+ 𝐮 ⋅ 𝛁𝛼𝑖 = 0 (3) 

 
One can then describe flow scalar fields such as the density, kinematic and dynamic viscosity of a two-phase flow as: 
 

 𝜙 = 𝛼1𝜙1 + (1 − 𝛼2)𝜙2 (4) 
 
Where 𝜙 refers to the given scalar field and indices 1 and 2 refer to the primary and secondary phase respectively. The 

surface tension between the two phases of the problem can be introduced into the Navier-Stokes equations by adding a 
resulting interaction force 𝐹 = 𝜎𝛁 ⋅ 𝐧𝛻𝛼𝑖 with 𝐧 the unit vector normal to the interface, i.e. for incompressible flows: 
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𝜌 [

𝜕𝑢𝑖

𝜕𝑡
+ ∇ ⋅ (𝑢𝑖 × 𝑢𝑖)] = 𝜌𝑔 − ∇𝑝 + 𝜇Δ𝑢𝑖 + 𝐹 (5) 

 
The VOF method is widely employed in CFD to model multiphase flows and performs well in the case of strong 

instabilities in free surface problems provided that the mesh is refined enough in the interfacial region (Faghri, 2006). In 
the context of a shearing two-phase flow, it can be challenging to preserve a sharp interface. The interFoam solver comes 
with a sharpening method of the interface that was implemented by Wardle and Weller (2013). In this method, a 
compression term is added to the transport equation of 𝛼𝑖 (Eq. 3) as: 
 

 𝜕𝛼𝑖

𝜕𝑡
+ 𝐮 ⋅ 𝛁𝛼𝑖 + 𝛁 ⋅ 𝐮𝐜𝐨𝐦𝐩𝛼𝑖(1 − 𝛼𝑖) = 0 (6) 

 
In which 𝐮𝐜𝐨𝐦𝐩 is a compression velocity applied only in the region of the interface and applied normally to it. It is 

enabled by a compression coefficient 𝐶𝛼: 
 

 
𝐮𝐜𝐨𝐦𝐩 = min{𝐶𝛼‖𝐮‖ ; max‖𝐮‖}

𝛁𝛼

‖𝛁𝛼‖
= 0 (7) 

 

All the simulations mentioned in this paper were carried out using a surface tension 𝜎 = 0.07 and compression 
coefficient 𝐶𝛼 = 2.0. 

Discretisation schemes and solution methods for qDNS 
The VOF solver interFoam was employed with the second order Crank-Nicolson time scheme with a coefficient of 0.9, 
the second order total variation diminishing (TVD) ‘van Leer’ scheme van Leer (1979) to discretise the divergence terms 
in the transport equations of 𝛼𝑖 and second order linear schemes for the other divergence terms. The pressure-velocity 
coupling is managed by the PIMPLE algorithm. Pressure was solved using the Preconditioned Conjugate Gradient (PCG) 
method, whilst the phase volume fraction, velocity and kinetic energy were solved using the Gauss-Seidel method. 

Formulation of the correction source term 

In order to obtain the correction source term 𝑆𝜔 for the budget of the transport of the specific turbulence dissipation 
rate of the standard RANS 𝑘 − 𝜔 model, each term of the 𝜔 equation was calculated by qDNS in OpenFOAM using coded 
functions objects for example equation (1) can be rewritten as follows: 

 
 𝑆𝜔 = 𝑆𝑎𝑑𝑣 − 𝑆𝑝𝑟𝑜𝑑 + 𝑆𝑑𝑒𝑠 − 𝑆𝑑𝑖𝑓𝑓  (8) 

 

     With:   • 𝑆𝑎𝑑𝑣 =
𝜕𝜌𝑢𝑖𝜔

𝜕𝑥𝑖

 :   the advection term 

 • 𝑆𝑝𝑟𝑜𝑑 =  𝛾
𝜔

𝑘
𝑃𝜔 :   the production term 

 • 𝑆𝑑𝑒𝑠 = 𝛽𝜔2 :   the destruction term 

 • 𝑆𝑑𝑖𝑓𝑓  =
𝜕

𝜕𝑥𝑖

[(𝜇 +
𝜌𝑘

2𝜔
)

𝜕𝜔

𝜕𝑥𝑖

] :   the diffusion term 

 
The specific turbulence dissipation rate is defined as 𝜔 = 𝜀 (𝑘𝛽∗)⁄  with 𝜀 the turbulent dissipation and 𝛽∗ a model 

constant taken at 0.09. The quantities 𝑢𝑖, 𝜀, 𝑘 and 𝜔 are averaged as the simulation progresses within OpenFOAM once 
the flow is fully developed. This is achieved using the following definition  of 𝜀 within the VOF solver (Hinze, 1975): 
 

 
𝜀 =

1

2
𝜈 (

𝜕𝑢𝑖′

𝜕𝑥𝑗

+
𝜕𝑢𝑗′

𝜕𝑥𝑖

)

2

 (9) 

 
Where 𝑢𝑖′ is the fluctuation velocity such as 𝑢𝑖 = 𝑢𝑖 + 𝑢𝑖

′. It should be noted that steady RANS simulations would not 
fully converge even though the flow exhibited weak unsteadiness and a unsteady RANS (URANS) methodology was 
adopted.  The correction term calculated using qDNS includes contributions from all length scales. As part of future work 
and for higher Reynolds numbers the removal of deterministic URANS scales will be examined for example using FFT/IFT 
(see Lav et al., 2019). In the present work the impact is thought to be small and as will be seen the corrected RANS yields 
lower TKE values compared to qDNS. 
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Domain geometry, flow characteristics and case presentation 

As previously mentioned, two flow configurations were tested. The first one is based on reference experiments (Fabre 
et al., 1987) and was designed to establish a proof of concept and validate the qDNS methodology. The second 
configuration is based on a shallow water air-shear driven flow configuration that is more representative of bearing chamber 
flows containing thin wavy films. These two configurations are referred to as ‘configuration 1’ and ‘configuration 2’ 
respectively. In both configurations, the liquid and the gaseous phase are co-current and the gaseous phase has a higher 
velocity than the liquid phase. The liquid phase is water and located at the base of the channel. The gaseous phase on top 
is air. No-slip boundary conditions are used for the top and bottom walls whilst periodic boundary conditions were used in 
the flow direction (𝑥) and in the horizontal cross-flow direction (𝑧). Figure 3 gives an overview of the domain and flow 
setup for both configurations. Both phases are driven toward the streamwise direction using velocity sources added to the 
velocity transport equations and applied to each phase. 

 
Figure 3: 2D schematic overview of the computational domain 

Configuration 1: 
In the reference experiments, the channel is 12 m long, 0.1 m high and 0.2 m wide. The liquid bulk velocity is 0.45 

m/s and the gaseous bulk velocity is 4.2 m/s. The computational domain was made periodic for computational cost and a 
periodic length of 0.2 m in the 𝑥 direction and 0.025 m in the 𝑧 direction was used. To examine the extent of the periodic 
dimensions an autocorrelation study of the flow was performed. The autocorrelation function was used to determine the 
minimum periodic length; if the periodic length is too small then large turbulent structures can overlap and lead to 
unphysical results. If the autocorrelation function of the fluctuation velocity drops to zero at a distance half of the periodic 
length, them this length is sufficient to prevent unphysical results (Fröhlich et al., 2005). The autocorrelation of a quantity 
is a function of the time lag Δ𝑡 and space lag Δ𝑥 where 𝑥𝑖 = 𝑥 in the flow direction and 𝑥𝑖 = 𝑧 in the cross-flow direction. 
The autocorrelation of the fluctuation velocity is calculated as follows: 

 
 

𝑅𝑥𝑖𝑥𝑖
(Δ𝑥𝑖 , Δ𝑡) =

𝑢𝑥𝑖
′ (𝑥𝑖 , 𝑡)𝑢𝑥𝑖

′ (𝑥𝑖 + Δ𝑥𝑖 , 𝑡 + Δ𝑡)

√𝑢𝑥𝑖
′2(𝑥𝑖 , 𝑡)√𝑢𝑥𝑖

′2(𝑥𝑖 + Δ𝑥𝑖 , 𝑡 + Δ𝑡)

 (10) 

𝑅𝑥𝑖𝑥𝑖
 is bounded by -1 and 1. A value of 1 indicates that the flow is perfectly correlated and a value of 0 indicates no 

correlation of the flow. Figure 4 shows the spatial autocorrelation of the axial fluctuation velocity which is the quantity of 
interest, 𝑅𝑥𝑥(Δ𝑥, 0), averaged over a period of 10 seconds. It was evaluated at the height 𝑦 = 0.069 m in the centre of the 
gaseous phase, where the largest turbulent structures are generated. We can deduct from the spatial autocorrelation plots 
that the periodic length is sufficient in the flow direction as 𝑅𝑥𝑥 drops to 0 before the half of the length. 

 

 
Figure 4: Autocorrelation of the axial fluctuation velocity of the gas in the flow direction (left), cross-

flow direction (right) and isosurfaces of instantaneous Q-criterion and contours of instantaneous 
vorticity magnitude from qDNS based on Fabre et al. (1987) experiments (centre) in configuration 1. 
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The autocorrelation in the cross-stream direction also reaches a value of zero halfway through the width of the channel and 
indicates a sufficient decorrelation of the flow in the cross-stream direction. The interface was set at 0.038 m from the base 
of the channel which gives a liquid layer thickness of 38% of the total height of the channel. A 3D representation of the 
flow with instantaneous Q-criterion isosurfaces and coloured with vorticity magnitude contours is shown in figure 4. 
Additionally, the autocorrelations of all the fluctuation velocity components in both x and z directions are shown in figure 
7, Appendix A. 
 
Configuration 2: 

In configuration 2, the domain is a periodic channel with similar boundary conditions to configuration 1. The periodic 
length of the channel in configuration 2 is 0.04 m in the 𝑥 direction and 0.08 m in the 𝑧 direction. The channel height is 
0.026 m with no-slip boundary conditions at the top and bottom walls. The two-phase flow can be considered as a shallow-
water flow. 

A range of qDNS cases were carried out in order to produce a diversified dataset for the training of the machine 
learning model. In those cases, different interface height and bulk velocities for each phase were used. In addition to the 
training dataset cases, three additional test cases were performed using qDNS for different regimes and interface heights, 
cfg2-1, cfg2-2 and cfg2-3. The results from these three cases were used as reference for comparison with the corresponding 
RANS simulations using the RANS 𝑘 − 𝜔 model coupled with the trained ML model. Results were also compared with 
the standard RANS 𝑘 − 𝜔 model without correction. The bulk velocity 𝑈𝑏 and Reynolds number 𝑅𝑒 of each phase, the 
mean interface height ℎ, the kinematic viscosity 𝜈 and the density 𝜌 of each phase are presented in table 1 for the three test 
cases. 

Table 1: Flow properties for the configuration 2 test cases 

Property cfg2-1 cfg2-2 cfg2-3 

𝑈𝑏,𝑔 (m/s) 5.20 4.20 5.20 
𝑈𝑏,𝑙 (m/s) 7.72 × 10−3 1.93 × 10−2 1.93 × 10−2 
𝑅𝑒𝑔 8.2 × 103 6.3 × 103 8.0 × 103 
𝑅𝑒𝑙 1.8 × 101 6.6 × 101 6.0 × 101 
ℎ (m) 2.33 × 10−3 3.44 × 10−3 3.05 × 10−3 
𝜌𝑔 (kg/m3) 1.0 1.0 1.0 
𝜌𝑙 (kg/m3) 1.0 × 103 1.0 × 103 1.0 × 103 
𝜈𝑔 (m2/s) 1.5 × 10−5 1.5 × 10−5 1.5 × 10−5 
𝜈𝑙 (m2/s) 1.0 × 10−6 1.0 × 10−6 1.0 × 10−6 

Discretisation of the computation domain 

To assess the mesh resolution, a comparison to the Kolmogorov turbulent scale 𝜂 can be performed. One Kolmogorov 
number for each phase is calculated using 𝜂 = (𝜈3 𝜀⁄ )1/4 where 𝜀 can be estimated as 𝜀~𝑈𝑏

3/𝐿𝑖 in which 𝑈𝑏is bulk velocity 
of the phase and 𝐿𝑖 the characteristic length scale of the flow. Hence we obtain the following estimation of the Kolmogorov 
scale: 

 
𝜂 = (

𝜈3𝐿𝑖

𝑈𝑏
3 )

1/4

 (11) 

For the studied stratified flow, the characteristic length scale of each phase is its height ℎ in the channel. The role of 
the smallest turbulent scales is to convert the TKE into internal energy. When slightly under resolved mesh is used, the role 
of those smallest scales can still be completed by the remaining resolved scales. For under resolved mesh (Δ𝑦 > 20𝜂), 
numerical instabilities are more likely to happen and lead to unphysical results. Typically resolved LES or quasi-DNS uses 
a resolution 2 to 5 times coarser than the Kolmogorov scale (Tiselj et al., 2019). In the liquid phase, Δ𝑦 was taken at 
approximately 𝜂/12 at the walls and 𝜂/8 at the interface, while in the gaseous phase Δ𝑦 was 𝜂 at the top wall and 2𝜂 at 
the interface. In terms of wall units, Δ𝑦+ = 0.3, Δ𝑥+ = 8 and Δ𝑧+ = 6. 

Implementation of the machine learning model 

Neural Network type and architecture 

There are different types of neural networks (NN) for ML methods. In this research, a feedforward neural network 
(FFNN) multilayer perceptron (MLP) is used. The FFNN consist of several layers containing the neurons: an input layer, 
some hidden layers and an output layer. The input layer takes the chosen input features and passes their information forward 
to the next hidden layers of the NN. In those layers, the sum of the output of the neurons of the previous layer and of a bias 
is calculated for each neuron that a layer possesses. The MLP implemented for the purpose of this research has 3 input 
neurons, 2 hidden layers of 256 neurons and 1 output neuron. The ReLU non-linear activation function was used. 
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Model training 

For the training of the ML model, the mean squared error function was used for the loss and 512 epoch were carried 
out. The Adam optimiser algorithm was used for our gradient descent optimisation, with a learning rate of 10−4. The three 
chosen input features of the model are the mean axial velocity 𝑈𝑥 (m.s-1), the phase volume fraction 𝛼 of 0 in the gas and 
1 in the liquid phase, and the specific turbulence dissipation rate 𝜔 (s-1). The one output of the model is the budget of 𝜔, 
that is added to the 𝜔 transport equation in the Wilcox’s RANS 𝑘 − 𝜔 model under the form of the source term 𝑆𝜔. In the 
previously mentioned configuration 1, the training dataset consists of the results of the described qDNS simulation based 
on the Fabre et al. (1987) experiments. In configuration 2, the training dataset consists of the results of several shallow-
water simulations carried out using different mean liquid interface levels ranging from approximately 2 × 10−3 m to 
4 × 10−3 m, different bulk velocities ranging from 3.10 m/s to 5.20 m/s in the gaseous phase and two bulk velocities in 
the liquid phase: 7.72 × 10−3 m and 1.93 × 10−2 m. The training dataset of the ML model was generated by combining 
data from exactly five different qDNS cases, which produced time-averaged field data for 3.2 million mesh cells each. The 
data was then averaged in space and the three inputs and one output (i.e. four features) profiles were extracted and 
interpolated on 1000 points each in every case for the training. In the end, the ML model was trained with a dataset of 
20000 values. The dataset was split randomly such as 80% of its data was used for the training of the model, 20% for the 
validation. The three tests cases cfg.2-1, cfg.2-2, and cfg.2-3 described in table 1 account for the testing dataset. The 
standardisation method was used to scale the data between 0 and 1. It consists in subtracting the mean of a sample to each 
value and then divide the obtained difference by the standard deviation of the same sample of each feature of the training 
dataset. The training reached a prediction accuracy of 88.2%. 

ML-informed RANS 𝒌 − 𝝎 model: setup of test cases 
In configuration 1, the RANS simulation was informed by a ML model trained with the data of the corresponding 

qDNS simulation i.e. using the same geometry and flow regime. The aim was to establish a proof of concept and see if a 
coupling between a ML model trained to provide a correction for the 𝜔 budget and the RANS 𝑘 − 𝜔 model could improve 
results of the standard RANS  𝑘 − 𝜔 model. In this configuration, the RANS mesh was of 26000 hexahedral cells. The 
average 𝑦+ value at the walls and at the interface was 𝑦+ < 1. 

In configuration 2, the three test cases cfg.2-1, cfg.2-2 and cfg.2-3 were carried out using qDNS and were not included 
in the training dataset. The three corresponding RANS simulations were investigated with the aim of assessing the ability 
of a ML model trained with various flow conditions to predict an appropriate 𝜔 source term 𝑆𝜔 for new flow conditions 
i.e. in the conditions of the three test cases. In this configuration, the RANS mesh was of 16000 hexahedral cells. The 
average 𝑦+ value at the walls and at the interface was found 𝑦+ ≪ 1. 

As for the qDNS, the VOF solver interFoam was employed for all the RANS simulations, with the TVD scheme for 
the divergence terms in the transport equations of 𝛼𝑖 and second order linear schemes for the other divergence terms. The 
Euler scheme was used for time derivative discretisation. The same solution algorithms as for the qDNS were employed. 

RESULTS AND DISCUSSION 
As previously mentioned, in configuration 1 the ML model was trained using a single qDNS dataset based on the Fabre 

et al. (1987) experiments as described in the methodology section. The RANS simulation was realised using the same flow 
conditions and coupled with this ML model as a proof of concept. The numerical results obtained from the qDNS and 
RANS using both the standard Wilcox’s and the ML-informed 𝑘 − 𝜔 model were compared with the aforementioned 
experiments using three quantities namely the mean axial velocity 𝑈𝑥, the turbulent kinetic energy 𝑘 and the absolute value 
of the cross component (in the x, y plane) of the Reynolds stress |𝑅𝑢𝑣|. Results of the comparison for configuration 1 are 
shown in figure 5. The TKE and stress were plotted using a logarithmic scale in order to better evaluate the discrepancies 
between the results. It is shown that the qDNS results agree very well with the experiments for all quantities and in both 
phases. Regarding the RANS simulations, it is obvious that the standard Wilcox’s 𝑘 − 𝜔 model performs very poorly. One 
can observe a shift towards the upper part of the channel of the mean velocity that is directly caused by the uncorrected 
overestimation of the interfacial turbulence by the standard model. For the TKE and stress profiles, the standard model 
does not pick up the interface at all (no discontinuity or variation) resulting in values very far from the qDNS and 
experiments. Finally the ML-informed RANS performs very well with results close to the qDNS and experiments for all 
three measured quantities. These results illustrate that an appropriate correction of the budget of the transport of the specific 
turbulence dissipation rate in the RANS 𝑘 − 𝜔 model can provide very good results. 

The next step consists in investigating how well a trained ML model perform with different (but relevant) data from 
the simulated case. Figure 6 shows a comparison between the qDNS, the standard and the new ML-informed RANS 
simulations of the three configuration 2 test cases. This time five quantities were compared: the mean axial velocity, TKE, 
Reynolds stress, specific turbulence dissipation rate 𝜔 and turbulence dissipation 𝜀. Only two of the three test cases are 
compared in figure 6 for clarity: cfg.2-1 and cfg.2-2. Results of cfg.2-3 are shown in figure 8, Appendix A. For the regime 
of the liquid phase being laminar (cf. table 1) results focus on the gaseous phase of the flow. On the one hand, it is observed 
that the standard 𝑘 − 𝜔 model performs rather very badly for the five quantities plotted in figure 6. The same shift of the 
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velocity is observed as well as a shift in the stress profile also towards the upper wall of the channel, as previously observed 
in configuration 1. On the other hand, the ML-informed 𝑘 − 𝜔 model matches the qDNS results very well for the two test 
cases overall, especially for the velocity, for the stress, and evidently for the specific turbulence dissipation rate which is 
directly corrected by the ML model in the equation for the transport of 𝜔. 

 

 
Figure 5: Comparison between qDNS, standard RANS 𝒌 − 𝝎, ML-informed RANS 𝒌 − 𝝎 and Fabre 

et al. (1987) experiments of the mean axial velocity (left), TKE (centre) and shear stress (right) 
 

 

   
Figure 6: Comparison between qDNS, standard and ML-informed RANS 𝒌 − 𝝎 of the mean axial 
velocity (top left), TKE (top right), shear stress (bottom left), specific turbulence dissipation rate 

(bottom centre) and turbulence dissipation (bottom right) in the gaseous phase for cfg2-1 and cfg2-2. 
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The ML-informed turbulence model slightly underestimates the TKE and turbulence dissipation rate in the centre of 
the channel and results are slightly closer to the qDNS for cfg.2-2. This would mean that the trained model might perform 
better for slightly lower speed regimes. Results of cfg.2-3 as shown in figure 8, Appendix A also match the qDNS data 
very well for all quantities using the ML-informed 𝑘 − 𝜔 model, compared to the standard 𝑘 − 𝜔 model. For the most 
turbulent cases, the ML-RANS 𝑘 − 𝜔 model extended the computation time by 28% in comparison with the standard 
RANS 𝑘 − 𝜔 model. 

Overall, the ML-informed RANS simulations performed very well in contrast to standard RANS. Some improvements 
could be made by expanding and/or better balancing the training dataset for the ML model. Diversifying the cases may 
help the ML model to adapt to other different configuration too. Finally the ML model might benefit from additional input 
flow features such as spatial features (distance from the interface, distance from the wall). 

CONCLUSIONS 
In this paper, a novel approach for RANS modelling of two-phase co-current shearing flows was studied. This approach 

was developed as an alternative to the Egorov’s turbulence damping method (Egorov et al., 2004) that is mesh dependent 
and lack of guidelines for its use, which makes it case dependent as well. It was showed that a budget correction for the 
transport of 𝜔 in the RANS 𝑘 − 𝜔 turbulence model can be predicted by a simple FFNN machine learning model trained 
with appropriate qDNS data. By only taking 3 inputs for the NN, the model was able to achieve good prediction of the 
source term to add into the 𝜔 transport equation. A proof of concept was firstly carried out in the configuration of a deep 
water channel flow using the predictions of a ML model trained on the same flow conditions as the tested case. In this first 
use of the ML model to inform the budget of the transport specific turbulence dissipation rate, very good agreement was 
found between the corrected RANS and the qDNS and experimental measurements for the three compared quantities i.e. 
the mean axial velocity, the turbulent kinetic energy and Reynolds stress. This method was then used to apply appropriate 
corrections for new cases in a shallow water channel configuration, and using a ML model trained with a variety of qDNS 
simulations at a range of different flow conditions. The ML-informed RANS 𝑘 − 𝜔 model performed much better than the 
standard RANS 𝑘 − 𝜔 model with results very close to the qDNS for the three test cases. The mean axial velocity, turbulent 
kinetic energy, Reynolds stress, specific turbulence dissipation rate and turbulent dissipation profiles were compared. 
However, some small discrepancies were found in the centre of the gaseous phase in those test cases, where the ML-
informed RANS slightly underestimated the TKE and turbulence dissipation rate. Those differences were found to be 
reduced for the lower speed case. 

The promising results of the approach presented in this paper encourage further studies using machine learning as a 
tool to inform the interfacial turbulence in two-phase shearing flow simulations. Using a much larger dataset containing 
many cases with various flow conditions, the machine learning model would benefit from a higher quantity and more 
balanced training. The structure of the neural network could also be revised by changing the number of input features, 
hidden layers and neurons for example. Adding space related inputs to the model may increase the prediction accuracy. 
Further research could also investigate other open channel configurations. 

NOMENCLATURE  

 

Abbreviations 
CFD 
DNS 
HPC 
LES 
ML 
MLP 
NN 
PISO 
qDNS 
RANS 
SIMPLE 
TD 
TKE 
URANS 
VOF 

Computational Fluid Dynamics 
Direct Numerical Simulation 
High Performance Computing 
Large Eddy Simulation 
Machine Learning 
Multilayer Perceptron 
Neural Network 
Pressure-Implicit with Operators Splitting  
Quasi DNS simulation 
Reynolds Averaged Navier-Stokes equations 
Semi-Implicit Method for Pressure Linked Equations 
Turbulence Damping 
Turbulent Kinetic Energy 
Unsteady RANS 
Volume of Fluid 
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Symbols      Greek letters 
A 

𝐴 
A’ 
B 
CD 
FD 
FS 
H 
h 
k 
𝑅𝑥𝑥  
𝑅𝑢𝑢 
Re  
u 
𝑢𝑐𝑜𝑚𝑝 

Vectorial field of the quantity A 
Time average of A𝑥𝑥 
Fluctuation of A𝑥𝑥 
Turbulence damping parameter 
Drag coefficient 𝑥𝑥 
Drag force 𝑥𝑥 
Surface tension 𝑥𝑥 
Channel height 𝑥𝑥 
Approximate interface height 
Turbulent kinetic energy 
Autocorrelation function 𝑥𝑥 
Reynolds stress tensor 𝑥𝑥 
Reynolds number 
Velocity 
Compression velocity 

- 
-𝑥𝑥 
- 
- 
- 
N 
N 
m 
m 
m2.s-2 𝑥𝑥 
-  𝑥𝑥 
m2.s-2 𝑥𝑥 
- 𝑥𝑥 
m2.s-1 

m2.s-1 

α 
𝜀 
µ 
µt 
𝜐 
σ 
𝜔 
Ω 
𝜌 

Phase volume fraction 
Turbulence dissipation 
Dynamic viscosity 
Turbulent dynamic viscosity 𝑥𝑥 
Kinematic viscosity 
Superficial tension 
Specific turbulence dissipation rate 
Vorticity 
Fluid density 

- 
m2.s-3 
kg.m-1.s-1 

kg.m-1.s-1 
m2.s-1 

N.m-1 
s-1 
s-1 𝑥𝑥 
kg.m-3 
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APPENDIX A – ADDITIONAL FIGURES 

 
Figure 7: Autocorrelations of the x, y and z-components of the fluctuation velocity of 

the gas in the flow direction (top) and in cross-flow direction (bottom) in configuration 1. 
 

 
Figure 8: Comparison between qDNS, standard and ML-informed RANS 𝒌 − 𝝎 of the mean axial 
velocity (top left), TKE (top right), shear stress (bottom left), specific turbulence dissipation rate 

(bottom centre) and turbulence dissipation (bottom right) in the gaseous phase for cfg2-3. 
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