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Abstract. Coalition Announcement Logic (CAL) studies how a group
of agents can enforce a certain outcome by making a joint announcement,
regardless of any announcements made simultaneously by the opponents.
The logic is useful to model imperfect information games with simulta-
neous moves. We propose a model checking algorithm for CAL and show
that the model checking problem for CAL is PSPACE-complete. We
also also consider a special positive case for which the model checking
problem is in P. We compare these results to those for other logics with
quantification over information change.
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1 Introduction

In the multi-agent logic of knowledge we investigate what agents know about
their factual environment and what they know about knowledge of each other
[13]. (Truthful) Public announcement logic (PAL) is an extension of the multi-
agent logic of knowledge with modalities for public announcements. Such modal-
ities model the event of incorporating trusted information that is similarly ob-
served by all agents [16]. The ‘truthful’ part relates to the trusted aspect of the
information: we assume that the novel information is true.

In [2] the authors propose two generalisations of public announcement logic,
GAL (group announcement logic) and CAL (coalition announcement logic).
These logics allow for quantification over public announcements made by agents
modelled in the system. In particular, the GAL quantifier 〈G〉ϕ (parametrised
by a subset G of the set of all agents A) says ‘there is a truthful announcement
made by the agents in G, after which ϕ (holds)’. Here, the truthful aspect means
that the agents in G only announce what they know: if a in G announces ϕa, this
is interpreted as a public announcement Kaϕa such that a truthful announce-
ment by agents in G is a conjunction of such known announcements. The CAL
quantifier 〈[G]〉ϕ is motivated by game logic [15, 14] and van Benthem’s playa-
bility operator [7]. Here, the modality means ‘there is a truthful announcement
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made by the agents in G such that no matter what the agents not in G simulta-
neously announce, ϕ holds afterwards’. In [2] it is, for example, shown that this
subsumes game logic.

CAL has been far less investigated than other logics of quantified announce-
ments – APAL [5] and GAL – although some combined results have been achieved
[4]. In particular, model checking for CAL has not been studied. Model checking
for CAL has potential practical implications. In CAL, it is possible to express
that a group of agents (for example, a subset of bidders in an auction) can make
an announcement such that no matter what other agents announce simultane-
ously, after this announcement certain knowledge is increased (all agents know
that G have won the bid) but certain ignorance also remaines (for example, the
maximal amount of money G could have offered). Our model-checking algorithm
may be easily modified to return not just ‘true’ but the actual announcement
that G can make to achieve their objective. The algorithm and the proof of
PSPACE-completeness build on those for GAL [1], but the CAL algorithm re-
quires some non-trivial modifications. We show that for the general case, model
checking CAL is in PSPACE, and also describe an efficient (PTIME) special
case.

2 Background

2.1 Introductory Example

Two agents, a and b, want to buy the same item, and whoever offers the greatest
sum, gets it. Agents may have 5, 10, or 15 pounds, and they do not know which
sum the opponent has. Let agent a have 15 pounds, and agent b have 5 pounds.
This situation is presented in Figure 1.

5a5b 5a10b 5a15b

10a5b 10a10b 10a15b

15a5b 15a10b 15a15b

a a

a a

b b b

a a

b b b

Fig. 1. Initial model (M, 15a5b)

In the model (let us call it M), state names denote money distribution. Thus,
10a5b means that agent a has 10 pounds, and agent b has 5 pounds. Labelled
edges connect the states that a corresponding agent cannot distinguish. For
example, in the actual state (boxed), agent a knows that she has 15 pounds, but
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she does not know how much money agent b has. Formally, (M, 15a5b) |= Ka15a∧
¬(Ka5b ∨Ka10b ∨Ka15b). Note that edges represent equivalence relations, and
in the figure we omit transitive and reflexive transitions.

Next, suppose that agents bid in order to buy the item. Once one of the
agents, let us say a, announces her bid, she also wants the other agent to remain
ignorant of the total sum at her disposal. Formally, we can express this goal
as formula ϕ ::= Kb(10a ∨ 15a) ∧ ¬(Kb10a ∨ Kb15a) (for bid 10 by agent a).
Informally, if a commits to pay 10 pounds, agent b knows that a has 10 or more
pounds, but she does not know the exact amount. If agent b does not participate
in announcing (bidding), a can achieve the target formula ϕ by announcing
Ka10a ∨ Ka15a. In other words, agent a commits to pay 10 pounds, which
denotes that she has at least that sum at her disposal. In general, this means
that there is an announcement by a such that after this announcements ϕ holds.
Formally, (M, 15a5b) |= 〈a〉ϕ. The updated model (M, 15a5b)

Ka10a∨Ka15a , which
is, essentially, a restriction of the original model to the states where Ka10a ∨
Ka15a holds, is presented in Figure 2.

10a5b 10a10b 10a15b

15a5b 15a10b 15a15b

a a

a a

b b b

Fig. 2. Updated model (M, 15a5b)
Ka10a∨Ka15a

Indeed, in the updated model agent b knows that a has at least 10 pounds, but
not the exact sum. The same holds if agent b announces her bid simultaneously
with a in the initial situation. Moreover, a can achieve ϕ no matter what agent
b announces, since b can only truthfully announce Kb5b, i.e. that she has only 5
pounds at her disposal. Formally, (M, 15a5b) |= 〈[a]〉ϕ.

2.2 Syntax and Semantics of CAL

Let A denote a finite set of agents, and P denote a countable set of propositional
variables.

Definition 1. The language of coalition announcement logic LCAL is defined
by the following BNF:

ϕ,ψ ::= p | ¬ϕ | (ϕ ∧ ψ) | Kaϕ | [ψ]ϕ | [〈G〉]ϕ,

where p ∈ P , a ∈ A, G ⊆ A, and all the usual abbreviations of propositional logic
and conventions for deleting parentheses hold. The dual operators are defined as
follows: K̂aϕ ::= ¬Ka¬ϕ, 〈ψ〉ϕ ::= ¬[ψ]¬ϕ, and 〈[G]〉ϕ ::= ¬[〈G〉]¬ϕ. Language
LPAL is the language without the operator [〈G〉]ϕ, and LEL is the pure epistemic
language without the operators [ψ]ϕ and [〈G〉]ϕ.
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Formulas of CAL are interpreted in epistemic models.

Definition 2. An epistemic model is a triple M = (W,∼, V ), where W is a
non-empty set of states, ∼: A → P(W ×W ) assigns an equivalence relation to
each agent, and V : P → P(W ) assigns a set of states to each propositional
variable. M is called finite if W is finite. A pair (M,w) with w ∈W is called a
pointed model. Also, we write M1 ⊆ M2 if W1 ⊆ W2, ∼1 and V1 are results of
restricting ∼2 and V2 to W1, and call M1 a submodel of M2.

Definition 3. For a pointed model (M,w) and ϕ ∈ LEL, an updated model
(M,w)ϕ is a restriction of the original model to the states where ϕ holds and to
corresponding relations. Let JϕKM = {w : (M,w) |= ϕ} where |= is defined below.
Then Wϕ = JϕKM , ∼ϕa=∼a ∩ (JϕKM ×JϕKM ) for all a ∈ A, and V ϕ(p) = V (p)∩
JϕKM . A model which results in subsequent updates of (M,w) with formulas
ϕ1, . . . , ϕn is denoted (M,w)ϕ1,...,ϕn .

Let LGEL denote the set of formulas of the form
∧
a∈GKaϕa, where for every

a ∈ G it holds that ϕa ∈ LEL. In other words, formulas of LGEL are of the type
‘for all agents a from group\coalition G, a knows a corresponding ϕa.’

Definition 4. Let a pointed model (M,w) with M = (W , ∼, V ), a ∈ A, and
formulas ϕ and ψ be given.3

(M,w) |= p iff w ∈ V (p)
(M,w) |= ¬ϕ iff (M,w) 6|= ϕ
(M,w) |= ϕ ∧ ψ iff (M,w) |= ϕ and (M,w) |= ψ
(M,w) |= Kaϕ iff ∀v ∈W : w ∼a v implies (M,v) |= ϕ
(M,w) |= [ϕ]ψ iff (M,w) |= ϕ implies (M,w)ϕ |= ψ

(M,w) |= [〈G〉]ϕ iff ∀ψ∈LGEL ∃χ∈L
A\G
EL : (M,w) |= ψ → 〈ψ ∧ χ〉ϕ

The operator for coalition announcements [〈G〉]ϕ is read as ‘whatever agents from
G announce, there is a simultaneous announcement by agents from A \ G such
that ϕ holds.’

An alternative equivalent semantics for [〈G〉]ϕ is conceivable in terms of model
restrictions:

(M,w) |= [〈G〉]ϕ iff ∀ψ∈LGEL ∃χ∈L
A\G
EL :

(M,w) |= ψ implies ((M,w) |= χ and (M,w)ψ∧χ |= ϕ)

The semantics for the ‘diamond’ version of coalition announcement operators
are is follows:

(M,w) |= 〈[G]〉ϕ iff ∃ψ∈LGEL ∀χ∈L
A\G
EL : (M,w) |= ψ ∧ [ψ ∧ χ]ϕ

3 For comparison, semantics for group announcement operator of the logic GAL men-
tioned in the introduction is (M,w) |= [G]ϕ iff ∀ψ∈LGEL : (M,w) |= [ψ]ϕ and
(M,w) |= 〈G〉ϕ iff ∃ψ∈LGEL : (M,w) |= 〈ψ〉ϕ.
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Definition 5. We call formula ϕ valid if and only if for any pointed model
(M,w) it holds that (M,w) |= ϕ. And ϕ is called satisfiable if and only if there
is some (M,w) such that (M,w) |= ϕ.

Note that following [5, 1] we restrict formulas that agents in a group or coali-
tion can announce to formulas of LEL. This allows us to avoid circularity in
Definition 4.

2.3 Bisimulation

The basic notion of similarity in modal logic is bisimulation [8, Section 3].

Definition 6. Let two models M = (W,∼ V ) and M ′ = (W ′,∼′, V ′) be given.
A non-empty binary relation Z ⊆ W ×W ′ is called a bisimulation if and only
if for all w ∈W and w′ ∈W ′ with (w,w′) ∈ Z:

– w and w′ satisfy the same propositional variables;
– for all a ∈ A and all v ∈W : if w ∼a v, then there is a v′ such that w′ ∼a v′

and (v, v′) ∈ Z;
– for all a ∈ A and all v′ ∈W ′: if w′ ∼a v′, then there is a v such that w ∼a v

and (v, v′) ∈ Z.

If there is a bisimulation between models M and M ′ linking states w and w′, we
say that (M,w) and (M ′, w′) are bisimilar.

Note that any union of bisimulations between two models is a bisimulation,
and the union of all bisimulations is a maximal bisimulation.

Definition 7. Let model M be given. The quotient model of M with respect
to some relation R is MR = (WR,∼R, V R), where WR = {[w] | w ∈ W} and
[w] = {v | wRv}, [w] ∼Ra [v] iff ∃w′ ∈ [w], ∃v′ ∈ [v] such that w′ ∼a v′ in M ,
and V R(p) = V (p).

Definition 8. Let model M be given. Bisimulation contraction of M (written
‖M‖) is the quotient model of M with respect to the maximal bisimulation of M
with itself. Such a maximal bisimulation is an equivalence relation.

Informally, bisimulation contraction is the minimal representation of M .

Definition 9. A model M is bisimulation contracted if M is isomorphic to
‖M‖.

Proposition 1. (‖M‖, w) |= ϕ iff (M,w) |= ϕ for all ϕ ∈ LCAL.

Proof. By a straightforward induction on ϕ using the following facts: bisimula-
tion contraction of a model is bisimilar to the model, bismilar models satisfy the
same formulas of LEL, and public announcements preserve bisimulation [11]. ut
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3 Strategies of Groups of Agents on Finite Models

3.1 Distinguishing Formulas

In this section we introduce distinguishing formulas that are satisfied in only
one (up to bisimulation) state in a finite model (see [9] for details). Although
agents know and can possibly announce an infinite number of formulas, using
distinguishing formulas allows us to consider only a finite one. This is done by
associating strategies of agents with corresponding distinguishing formulas. Here
and subsequently, all epistemic models are finite and bisimulation contracted.
Also, without loss of generality, we assume that the set of propositional variables
P is finite.

Definition 10. Let a finite epistemic model M be given. Formula δS,S′ is called
distinguishing for S, S′ ⊆W if S ⊆ JδS,S′KM and S′∩JδS,S′KM = ∅. If a formula
distinguishes state w from all other non-bismilar states in M , we write δw.

Proposition 2 ([9]). Let a finite epistemic model M be given. Every pointed
model (M,w) is distinguished from all other non-bisimilar pointed models (M, v)
by some distinguishing formula δw ∈ LEL.

Given a finite model (M,w), distinguishing formula δw is constructed recur-
sively as follows:

δk+1
w ::= δ0w ∧

∧
a∈A

(
∧
w∼av

K̂aδ
k
v ∧Ka

∨
w∼av

δkv ),

where 0 ≤ k < |W |, and δ0w is the conjunction of all literals that are true in w,
i.e. δ0w ::=

∧
w∈V (p) p ∧

∧
w 6∈V (p) ¬p.

Having defined distinguishing formulas for states, we can define distinguish-
ing formulas for sets of states:

Definition 11. Let some finite and bisimulation contracted model (M,w), and
a set S of states in M be given. A distinguishing formula for S is

δS ::=
∨
w∈S

δw.

3.2 Strategies

In this section we introduce strategies, and connect them to possible announce-
ments using distinguishing formulas.

Definition 12. Let M/a = {[w1]a, . . . , [wn]a} be the set of a-equivalence classes
in M . A strategy Xa for an agent a in a finite model (M,w) is a union of
equivalence classes of a including [w]a. The set of all available strategies of a
is S(a,w) = {[w]a ∪ Xa : Xa ⊆

⋃
M/a}. Group strategy XG is defined as⋂

a∈GXa for all a ∈ G. The set of available strategies for a group of agents G is
S(G,w) = {

⋂
a∈GXa : Xa ∈ S(a,w)}.
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Note, that for any (M,w) and G ⊆ A, S(G,w) is not empty, since the trivial
strategy that includes all the states of the current model is available to all agents.

Proposition 3. In a finite model (M,w), for any G ⊆ A, S(G,w) is finite.

Proof. Due to the fact that in a finite model there is a finite number of equiva-
lence classes for each agent. ut

Thus, in Figure 1 of Section 2.1 there are three a-equivalence classes: {15a5b,
15a10b, 15a15b}, {10a5b, 10a10b, 10a15b}, and {5a5b, 5a10b, 5a15b}. Let us des-
ignate them by the first element of a corresponding set, i.e. 15a5b, 10a5b, and
5a5b. The set of all available strategies of agent a in (M, 15a5b) is {15a5b, 15a5b∪
10a5b, 15a5b∪5a5b, 15a5b∪10a5b∪5a5b}. Similarly, the set of all available strate-
gies of agent b in (M, 15a5b): {15a5b, 15a5b ∪ 15a10b, 15a5b ∪ 15a15b, 15a5b ∪
15a10b ∪ 15a15b}. Finally, there is a group strategy for agents a and b that con-
tains only two states – 15a5b and 10a5b. This strategy is an intersection of a’s
15a5b∪10a5b and b’s 15a5b, that is {15a5b, 15a10b, 15a15b, 10a5b, 10a10b, 10a15b}∩
{15a5b, 10a5b, 5a5b}.

Now we tie together announcements and strategies. Each of infinitely many
possible announcements in a finite model corresponds to a set of states where
it is true (a strategy). In a finite bisimulation contracted model, each strategy
is definable by a distinguishing formula, hence it corresponds to an announce-
ment. This allows us to consider finitely many strategies instead of consider-
ing infinitely many possible announcements: there are only finitely many non-
equivalent announcements for each finite model, and each of them is equivalent
to a distinguishing formula of some strategy.

Given a finite and bisimulation contracted model (M,w) and strategy XG,
a distinguishing formula δXG

for XG can be obtained from Definition 11 as∨
w∈XG

δw.

Next, we show that agents know their strategies and thus can make corre-
sponding announcements.

Proposition 4. Let agent a have strategy Xa in some finite bisimulation con-
tracted (M,w). Then (M,w) |= KaδXa

. Also, let XG ::= Xa ∩ . . . ∩ Xb be a
strategy, then (M,w) |= KaδXa

∧ . . . ∧KbδXb
, where a, . . . , b ∈ G.

Proof. We show just the first part of the proposition, since the second part fol-
lows easily. By the definition of a strategy, Xa = [w1]a ∪ . . . ∪ [wn]a for some
[w1]a, . . . , [wn]a ∈ M/a. For every equivalence class [wi]a there is a correspond-
ing distinguishing formula δ[wi]a . Since for all v ∈ [wi]a, (M,v) |= δ[wi]a (by
Proposition 2), we have that (M, v) |= Kaδ[wi]a . The same holds for other equiv-
alence classes of a including the one with w, and we have (M,w) |= KaδXa

. ut

The following proposition (which follows from Propositions 2 and 4) states
that given a strategy, corresponding public announcement yields exactly the
model with states specified by the strategy.
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Proposition 5. Given a finite bisimulation contracted model M = (W,∼, V )
and a strategy Xa, WKaδXa = Xa. More generally, WKaδXa∧...∧KbδXb = XG,
where a, . . . , b ∈ G.

So, we have tied together announcements and strategies via distinguishing
formulas. From now on, we may abuse notation and write MXG , meaning that
MXG is an update of model M by a joint announcement of agents G that cor-
responds to strategy XG.

Now, let us reformulate semantics for group and coalition announcement
operators in terms of strategies.

Proposition 6. For a finite bisimulation contracted model (M,w) we have that

(M,w) |= 〈[G]〉ϕ iff ∃XG ∈ S(G,w) ∀XA\G ∈ S(A \G,w) : (M,w)XG∩XA\G |= ϕ.

Proof. By Propositions 4 and 5, each strategy corresponds to an announcement.
Each true announcement is a formula of the form Kaψa∧ . . .∧Kbψb where ψa is
a formula which is true in every state of some union of a-equivalence classes and
corresponds to a strategy. Similarly for announcements by groups. Hence we can
substitute quantification over formulas with quantification over strategies in the
truth definitions. ut

Definition 13. Let some finite bisimulation contracted model (M,w) and G
be given. A maximally informative announcement is a formula ψ ∈ LGEL such

that w ∈ Wψ and for all ψ′ ∈ LGEL such that w ∈ Wψ′
it holds that Wψ ⊆

Wψ′
. For finite models such an announcement always exists [3]. We will call the

corresponding strategy XG the strongest strategy on a given model.

Intuitively, the strongest strategy is the smallest available strategy. Note
that on a bisimulation contracted model, the strongest strategy of agents G is
XG = [w]a ∩ . . . ∩ [w]b for a, . . . , b ∈ G, that is agents’ strategies consist of the
single equivalence classes that include the current state.

4 Model Checking for CAL

Employing strategies allows for a rather simple model checking algorithm for
CAL. We switch from quantification over infinite number of epistemic formulas,
to quantification over a finite set of strategies (Section 4.1). Moreover, we show
that if the target formula is a positive PAL formula, then model checking is even
more effective (Section 4.2).

4.1 General Case

First, let us define the model checking problem.
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Definition 14. Let some model (M,w) and some formula ϕ be given. The
model checking problem is the problem to determine whether ϕ is satisfied in
(M,w).

Algorithm 1 takes a finite model M , a state w of the model, and some ϕ0 ∈
LCAL as an input, and returns true if ϕ0 is satisfiable in the model, and false
otherwise.

Algorithm 1: mc(M,w,ϕ0)

1: case ϕ0:
2: p : if w ∈ V (p) then return true else return false;
3: ¬ϕ : if mc(M,w,ϕ) then return false else return false;
4: ϕ ∧ ψ : if mc(M,w,ϕ) and mc(M,w,ψ) then return true else return false;
5: Kaϕ :

check = true
for all v’s s.t. w ∼a v

if ¬mc(M, v, ϕ) then check = false
return check

6: [ψ]ϕ : compute the ψ-submodel Mψ of M
if w ∈Wψ then return mc(Mψ, w, ϕ) else return true;

7: 〈[G]〉ϕ: compute (‖M‖, w) and sets of strategies S(G,w) and S(A \G,w)
for all XG ∈ S(G,w)

check = true
for all XA\G ∈ S(A \G,w)

if ¬mc(‖M‖XG∩XA\G , w, ϕ) then check = false
if check then return true

return false.

Now, we show correctness of the algorithm.

Proposition 7. Let (M,w) and ϕ ∈ LCAL be given. Algorithm mc(M,w,ϕ)
returns true iff (M,w) |= ϕ.

Proof. By a straightforward induction on the complexity of ϕ. We use Proposi-
tion 6 to prove the case for 〈[G]〉:
⇒: Suppose mc(M,w, 〈[G]〉ϕ) returns true. By line 7 this means that for some
strategy XG and all strategies XA\G, mc(‖M‖XG∩XA\G , w, ϕ) returns true. By

the induction hypothesis, (‖M‖, w)XG∩XA\G |= ϕ for some XG and all XA\G,
and (‖M‖, w) |= 〈[G]〉ϕ by the semantics.
⇐: Let (‖M‖, w) |= 〈[G]〉ϕ, which means that there is some strategy XG such

that for all XA\G, (‖M‖, w)XG∩XA\G |= ϕ. By the induction hypothesis, the

latter holds iff for some XG and for all XA\G, mc(‖M‖XG∩XA\G , w, ϕ) returns
true. By line 7, we have that mc(‖M‖, w, 〈[G]〉ϕ) returns true.

Proposition 8. Model checking for CAL is PSPACE-complete.
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Proof. All the cases of the model checking algorithm apart from the case for 〈[G]〉
require polynomial time (and polynomial space as a consequence). The case for
〈[G]〉 iterates over exponentially many strategies. However each iteration can be
computed using only polynomial amount of space to represent (‖M‖, w) (which
contains at most the same number of states as the input model M) and the
result of the update (which is a submodel of (‖M‖, w)) and make a recursive
call to check whether ϕ holds in the update. By reusing space for each iteration,
we can compute the case for 〈[G]〉 using only polynomial amount of space.

Hardness can be obtained by a slight modification of the proof of PSPACE-
hardness of the model-checking problem for GAL in [1]. The proof encodes satis-
fiability of a quantified boolean formula as a problem whether a particular GAL
formula is true in a model corresponding to the QBF formula. Since the encoding
uses only two agents: an omniscient g and a universal i, we can replace [g] and
〈g〉 with [〈g〉] and 〈[g]〉 (since i’s only strategy is equivalent to >) and obtain a
CAL encoding. ut

4.2 Positive Case

In this section, we demonstrate the following result: if in a given formula of LCAL
subformulas within scopes of coalition announcement operators are positive PAL
formulas, then complexity of model checking is polynomial. Allowing coalition
announcement modalities to bind positive formulas only is a natural restriction
because any positive formula that is distributed knowledge among the agents in
G can be made common knowledge by a group or coalition announcement by
G. Formally, (M,w) |= DGϕ implies (M,w) |= 〈[G]〉CGϕ, where DG stands for
distributed knowledge which is interpreted by the intersection of all ∼a relations,
and CG stands for common knowledge which is interpreted by the transitive and
reflexive closure of the union of all ∼a relations. See [10, 12], and also [?] where
this is called resolving distributed knowledge. In other words, positive epistemic
formulas can always be moved from the distributed knowledge to the common
knowledge of the agents by cooperative communication. Negative formulas do
not have this property. For example, it can be distributive knowledge of agents
a and b that p and ¬Kbp: Da,b(p ∧ ¬Kbp). However it is impossible to achieve
common knowledge of this formula: CG(p∧¬Kbp) is inconsistent, since it implies
both Kbp and ¬Kbp. Going back to the example in section 2.1, it is distributed
knowledge of a and b that Ka15a and Kb5b. Both formulas are positive and can
be made common knowledge if a and b honestly report the amount of money
they have. However it is also distributed knowledge that ¬Ka5b and ¬Kb15a.
The conjunction

Ka15a ∧Kb5b ∧ ¬Ka5b ∧ ¬Kb15a

is distributed knowledge, but cannot be made common knowledge for the same
reason as above.

Definition 15. The language LPAL+ of the positive fragment of public an-
nouncement logic PAL is defined by the following BNF:
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ϕ,ψ ::= p | ¬p | (ϕ ∧ ψ) | (ϕ ∨ ψ) | Kaϕ | [¬ψ]ϕ,

where p ∈ P and a ∈ A.

Definition 16. Formula ϕ is preserved under submodels if for any models M1

and M2, M2 ⊆M1 and (M1, w) |= ϕ implies (M2, w) |= ϕ.

A known result that we use in this section states that formulas of LPAL+ are
preserved under submodels [12]. We also need the following special fact:

Proposition 9. 〈[G]〉ϕ↔ [〈A \G〉]ϕ is valid for positive ϕ on finite bisimulation
contracted models.

Proof. The left-to-right direction is generally valid and we omit the proof. Sup-
pose that (M,w) |= [〈A\G〉]ϕ. By Proposition 6, we have that for all XA\G, there

is some XG such that (M,w)XA\G∩XG |= ϕ. This implies that (M,w)>A\G∩XG |=
ϕ for the trivial strategy>A\G and someXG. The latter is equivalent to (M,w)XG |=
ϕ. Since ϕ is positive (and hence preserved under submodels), (M,w)X

′
G |= ϕ,

where X ′G is the strongest strategy of G. The latter implies (again, due to the
fact that ϕ is positive) that for all updates of the form X ′G ∩XA\G (since they

generate a submodel of (M,w)X
′
G), we also have (M,w)X

′
G∩XA\G |= ϕ. And this

is (M,w) |= 〈[G]〉ϕ by Proposition 6. ut

Now we are ready to deal with model checking for the positive case.

Proposition 10. Let ϕ ∈ LCAL be a formula such that all its subformulas
ψ that are within scopes of 〈[G]〉 belong to fragment LPAL+ . Then the model
checking problem for CAL is in P.

Proof. For this particular case we modify Algorithm 1 by inserting the following
instead of the case on line 7.

〈[G]〉ϕ: compute (||M||, w) and (||M||XG , w), where XG corresponds to the
strongest strategy of G,

if mc(||M||XG , w, ϕ) then return true else return false.

For all subformulas of ϕ0, the algorithm calls are in P. Consider the modified
call for 〈[G]〉ϕ. It requires constructing a single update model given a specified
strategy, which is a simple case of restricting the input model to the set of states
in the strategy. This can be done in polynomial time. Then we call the algorithm
on the updated model for ϕ, which by assumption requires polynomial time. ut

Now, let us show that the algorithm is correct.

Proposition 11. Let (M,w) and ϕ ∈ LPAL+ be given. The modified algorithm
mc(M,w,ϕ) returns true iff (M,w) |= ϕ.
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Proof. By induction on ϕ. We show case 〈[G]〉ϕ:
⇒: Suppose thatmc(M,w, 〈[G]〉ϕ) returns true. This means thatmc(‖M‖XG , w, ϕ)

returns true, where XG is the strongest strategy of G. By the induction hypoth-
esis, we have that (‖M‖, w)XG |= ϕ. Since ϕ is positive, for all stronger updates
XG ∩ XA\G it holds that (‖M‖, w)XG∩XA\G |= ϕ, which is (‖M‖, w) |= 〈[G]〉ϕ
by Proposition 6. Finally, the latter model is bisimilar to (M,w) and hence
(M,w) |= 〈[G]〉ϕ.
⇐: Let (M,w) |= 〈[G]〉ϕ. By Proposition 6 this means that there is some XG

such that for all XA\G: (M,w)XG∩XA\G |= ϕ. Set of all XA\G’s also includes the

trivial strategy >A\G, and we have (M,w)XG∩>A\G |= ϕ, which is equivalent
to (M,w)XG |= ϕ. Since ϕ is positive and hence preserved under submodels,
(M,w)X

′
G |= ϕ, where X ′G is the strongest strategy of G. By the induction

hypothesis, we have that mc(‖M‖X′
G , w, ϕ) returns true. And by line 7 of the

modified algorithm, we conclude that mc(‖M‖, w, 〈[G]〉ϕ) returns true. ut

The case of [〈G〉]ϕ is resolved by translating the formula into 〈[A\G]〉ϕ, which
is allowed by Proposition 9.

5 Concluding Remarks

We have shown that the model checking problem for CAL is PSPACE-complete,
just like the one for GAL [1] and APAL [5]. However, in a special case when
formulas within scopes of coalition modalities are positive PAL formulas, the
model checking problem is in P. The same result would apply to GAL and
APAL; in fact, in those cases the formulas in the scope of group and arbitrary
announcement modalities can belong to a larger positive fragment (the positive
fragment of GAL and of APAL, respectively, rather than of PAL). The latter is
due to the fact that GAL and APAL operators are purely universal, while CAL
operators combine universal and existential quantification, and CAL does not
appear to have a non-trivial positive fragment extending that of PAL.

There are several interesting open questions. For example, the relative ex-
pressivity of GAL and CAL is still an open question. It is also not known what
is the model checking complexity for coalition logics with more powerful actions
like private announcements [6].
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