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A B S T R A C T

During the SARS-CoV-2 pandemic, epidemic models have been central to policy-making. Public health
responses have been shaped by model-based projections and inferences, especially related to the impact
of various non-pharmaceutical interventions. Accompanying this has been increased scrutiny over model
performance, model assumptions, and the way that uncertainty is incorporated and presented. Here we consider
a population-level model, focusing on how distributions representing host infectiousness and the infection-
to-death times are modelled, and particularly on the impact of inferred epidemic characteristics if these
distributions are mis-specified. We introduce an 𝑆𝐼𝑅-type model with the infected population structured by
‘infected age’, i.e. the number of days since first being infected, a formulation that enables distributions to be
incorporated that are consistent with clinical data. We show that inference based on simpler models without
infected age, which implicitly mis-specify these distributions, leads to substantial errors in inferred quantities
relevant to policy-making, such as the reproduction number and the impact of interventions. We consider
uncertainty quantification via a Bayesian approach, implementing this for both synthetic and real data focusing
on UK data in the period 15 Feb–14 Jul 2020, and emphasising circumstances where it is misleading to neglect
uncertainty.

This manuscript was submitted as part of a theme issue on ‘‘Modelling COVID-19 and Preparedness for
Future Pandemics’’.
1. Introduction

A simple deterministic discrete time Susceptible–Infected–Removed
(‘SIR’) epidemic model, sometimes termed the ‘general epidemic model’
(Diekmann and Heesterbeek, 2000), is defined as follows. Suppose that
𝑆𝑖 and 𝐼𝑖 are the number of susceptible and infectious individuals,
respectively, on day 𝑖; and that between day 𝑖 and 𝑖 + 1 for some
rate constants 𝜆 and 𝜃, 𝜆𝑆𝑖𝐼𝑖 of the susceptibles become infectious,
and 𝜃𝐼𝑖 of the infectious individuals become ‘removed’ (by death or
recovery, so that they are no longer susceptible nor infectious). Though
very simple, this model embodies important epidemiological principles
and exhibits reasonable dynamics, including exponential growth in the
early stages and decline once the susceptible population is suitably
depleted. The model also connects to key epidemiological parameters
such as the basic reproduction number, 0, defined as expected number
of cases directly generated by one case in a population where all
individuals are susceptible, for this model equal to 𝜆∕𝜃. The 𝑆𝐼𝑅
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model remains widely used for prediction and inference for epidemics,
including SARS-CoV-2 (Britton, 2020; Dehning et al., 2020).

One of this simple model’s limitations, however, is that it does
not distinguish the infectious individuals by how long they have been
infected, termed the infected age. Consequently, it assumes that the
infectiousness of infected individuals is constant, and therefore that the
proportion of individuals lasting a particular number of days between
infection and death follows a geometric distribution. These assumptions
are strongly in conflict with clinical literature (Ferretti et al., 2020;
Ganyani et al., 2020; Harrison et al., 2020; Verity et al., 2020), as we
discuss in the following section. The principal contributions of this pa-
per are to introduce a deterministic epidemic model which is structured
by ‘‘infected age’’, and to use this model as a basis to infer quantities
important to policy-making. Similar models incorporating structure by
infected age have been investigated by Diekmann et al. (2021) and
Hart et al. (2020) in the context of the ‘‘forward’’ problem, i.e. with
vailable online 6 November 2022
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the aim to understand the impact of infected-age structure on model
dynamics. In contrast, our focus here is on the ‘‘inverse’’ problem,
i.e., to understand the impact on quantities inferred from data, and
in particular to highlight circumstances when ignoring infected-age
structure gives misleading conclusions.

Quantities of policy-making relevance and of interest to infer in-
clude: the timing and impact of behavioural changes, especially relating
to non-pharmaceutical interventions (NPIs) such as ‘lockdown’ mea-
sures; the effect of NPIs on epidemiological characteristics such as the
effective reproduction number, 𝑖 (defined later); the timing and size
of the peak in the number of new daily infections; and the number of
individuals that remain susceptible at the end of an epidemic wave.

In Section 2 we describe the data available on the epidemic time-
course and on changes in mobility patterns relating to response to NPIs.
We describe an infected-age-structured model, which is the central
model in the paper, and some simpler models for comparison of the
types sometimes used for inferring characteristics of an epidemic. The
results in Section 3 include an application of the model to compare
competing hypotheses for epidemic decline; a simulation study inves-
tigating the impact of using non-infected-age-structured models for
inference when the data arise from an infected-age-structured model;
and full Bayesian inference focusing on UK data for the SARS-CoV-
2 outbreak in spring 2020, including for the quantities listed in the
preceding paragraph. Section 4 contains a concluding discussion.

2. Data, models and methods

2.1. Data

We draw on epidemiological and clinical data for ancestral SARS-
CoV-2 that was available following the first epidemic wave, as de-
scribed further below.

2.1.1. Deaths associated with SARS-CoV-2
We focus on country-level SARS-CoV-2 mortality data for England

and Wales for the period Feb–July 2020. The total population, denoted
𝑁 in the following models, is 59.1 million (ONS, 2020b). Various
time-course data are available for this period, including the number
of confirmed cases by specimen date, though such data are influenced
by rapid changes to testing capacity (DHSC, 2020) and strategy (Dunn
et al., 2020) that make them challenging to connect to variables in
an epidemic model. For this reason we focus exclusively on data for
SARS-CoV-2-associated deaths collated by date of death for England
and Wales by the UK Office for National Statistics. These deaths data
count registered deaths where COVID-19 was mentioned on the death
certificate (ONS, 2020a), with the first death occurring on 8 Mar
2020. Although death data are available beyond July 2020, we restrict
ourselves to considering inferences that may be made at the conclusion
of the first epidemic wave. The deaths data are plotted later in results
Fig. 3.

2.1.2. Mobility data
The UK government announced on 23 Mar 2020 that a lockdown

would be imposed entailing severe restrictions including that no one
should leave their place of residence except for some specific rea-
sons (UK Government, 2020a). Over the next 5 months this legislation
was revised approximately monthly, sequentially expanding the per-
missible reasons to leave one’s place of residence, whilst introducing
guidance on COVID-secure workplaces (Department for Business, En-
ergy & Industrial Strategy and Department for Digital, Culture, Media
& Sport, 2020) and mandating face coverings in some public spaces (UK
Government, 2020b). Publicly available data indicate the extent to
which public behaviour altered in this period. Google mobility data, for
example, indicate a relative change, with respect to a normal baseline,
in activity in various categories across the UK (Google, 2020), and
provide a proxy for changes in mixing intensity in England & Wales
2

over this period. Fig. 1A shows the mean of ‘workplace’ and ‘transit’
categories computed daily from the UK Google mobility data, which
motivates later modelling of a change in population mixing intensity
with a step function to account for the introduction of NPIs.

2.1.3. Clinical data on individuals’ response to SARS-CoV-2 infection
The models in Section 2.2 involve epidemiological parameters

drawn from the clinical literature that characterise individuals’ infec-
tiousness and mortality. These are summarised in Table 1, including
‘default’ values that are used in the later simulation study, and priors
that are used for the Bayesian inference.

For most hosts infected with SARS-CoV-2, detectable viral load in
the upper respiratory tract peaks at around 5–6 days following expo-
sure (He et al., 2020). For many hosts this approximately aligns with
the delay from exposure to experiencing symptoms (the infection-to-
onset period) (Backer et al., 2020), and thus there is a significant period
of infectiousness prior to symptom onset (He et al., 2020; Ashcroft
et al., 2020). Some hosts remain asymptomatic throughout infection
and experience similar viral load dynamics, besides somewhat faster
viral clearance following peak viral load (Kissler et al., 2020). For the
purposes of developing a transmission model, it is therefore important
to describe a typical host infectiousness profile, 𝛽𝑗 , subject to ∑∞

𝑗=1 𝛽𝑗 = 1,
as depending on the time in days, 𝑗, since infection (rather than with
respect to symptom onset).

The generation time interval, defined as the period from host in-
fection to the generation of progeny infection, has a distribution that
describes such an infectiousness profile (Lehtinen et al., 2021). We use
the inferred gamma-distributed generation time from the Singapore
cluster in Ganyani et al. (2020), with mean 5.2 days and variance
2.96 days, to define a fixed infectiousness profile 𝛽𝑗 when inferring
the impact of lockdown in Section 3.4. Since the models in this paper
are in discrete time, we discretise the gamma distribution by taking
𝛽1 = 𝐹 (3∕2) and 𝛽𝑗 = 𝐹 (𝑗 + 1∕2) − 𝐹 (𝑗 − 1∕2) for 𝑗 ≥ 2, where 𝐹 (⋅) is
he gamma cumulative distribution function. Estimates from other in-
ernational data sets available in 2020 are congruent with the estimate
rom Ganyani et al. (2020) (see, e.g. Sun et al., 2020; Ferretti et al.,
020). Estimates for the generation interval for the UK during 2020
ecame available in 2021: Challen et al. fit parametric distributions
o infector–infectee data for the First Few Hundred cases monitored
y PHE (Challen et al., 2021), while Hart et al. also fit a mechanistic
odel to household infector–infectee data that accounts for the role of

ymptom onset on infectiousness (Hart et al., 2021, 2022). Resulting
oint estimates for the realised mean generation interval (accounting
or behaviour and susceptible depletion Fraser, 2007) range from 3.6–
.9 days. To account for potential variability due to alternate estimates
or the latent period, the role of an infected’s behaviour — in particular
he efficacy and timing of isolation — in influencing the generation
nterval, and the potential for unrepresentative sampling of infector–
nfectee pairs, we draw on the range and reported confidence across
arly estimates to construct priors on the mean and variance of a
amma distributed infectiousness profile (see Table 1).

We refer to 𝛽𝑗 as the infectiousness profile rather than the genera-
ion time distribution, as the latter has a small correction due to any
verlap in the distributions for time from infection to death and infec-
iousness by infected-age due to the non-zero hazard of death while
nfectious (see Section 2.2.5). Fig. 1B shows the ‘default’ infectiousness
rofile.

To infer the epidemic dynamics based on the death data, it is key
o characterise accurately the infection-to-death distribution. We denote
he probability mass function of the infection-to-death distribution
y 𝜁 = {𝜁𝑗 ∶ 𝑗 ≥ 1, 𝜁𝑗 ≥ 0,

∑∞
𝑗=1 𝜁𝑗 = 1}, such that 𝜁𝑗 is the

roportion of individuals that die 𝑗 days after infection, conditional on
ltimately dying from SARS-CoV-2. The infection-to-death distribution
s the convolution of infection-to-onset and onset-to-death distributions,
or which separately there are data.
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Fig. 1. (A) Google mobility data and the parameterisation for a step function, defined in (3), for 𝛼𝑗 , which describes changes in population mixing intensity. The data points
are given by the mean of workplace and transit activity levels for the UK, with Saturday and Sunday removed (the four outliers being bank holidays). The blue step is given
by Eq. (3) and contains two parameters which control the timing and severity of the drop in viral transmission due to lockdown measures: 𝑡∗ and 𝛼𝑏, respectively. Plots (B) and
(C) respectively show the infectiousness profile, over a 15 day period, and the infection-to-death distribution, shown over a 50 day period; these correspond to the distributions
and default parameters listed in Table 1.
The infection-to-onset period is estimated from cases with well
constrained exposure history (e.g. Backer et al., 2020). For consistency
with our choice of infectiousness profile, we adopt the infection-to-
onset period used by Ganyani et al. (2020) when inferring the gener-
ation interval distribution above, namely a gamma distribution with
mean 5.2 days and standard deviation 2.8 days. For onset to death,
early data from Hubei, China, corrected for epidemic growth, suggested
an average time 18 days and standard deviation 8.4 days (Verity et al.,
2020). A report published by the UK government provides distributions
for the time from symptom onset to death for over 22,000 patients
hospitalised in the UK during the first epidemic wave (up to August
1st 2020), by age range and sex (Harrison et al., 2020). The aggregate
distribution is described by a gamma distribution with mean 14 days
(std. dev. 9.8 days), and is stable when re-weighting the age- and sex-
dependent distributions to match those of reported deaths in England
and Wales over the same period (ONS, 2020a), giving some confidence
that this distribution is representative for the population we are mod-
elling over the period of study. Similar estimates for the death delay
are reported by Sherratt et al. (2021) based on confidential UK data.

We model the infection-to-death distribution as a negative binomial
distribution, chosen for an appropriate shape, computing point esti-
mates for its parameters by matching moments to the convolution of
the Ganyani et al. (2020) infection-to-onset and Harrison et al. (2020)
onset-to-death distributions described above. This leads to the param-
eters shown in Table 1 and the distribution plotted in Fig. 1C. There
remains uncertainty, however, in the infection-to-death distribution
owing to uncertainty in the infection-to-onset period (see Backer et al.,
2020), the censoring effect of unknown symptom onset dates in the
hospitalisation data (Harrison et al., 2020), and regional variability
(about which we lack data) that may influence the effective average
time to death profiles (e.g. Hawryluk et al., 2020). We hence charac-
terise uncertainty in the infection-to-death distribution via priors on the
mean and dispersion parameters. We choose priors, shown in Table 1,
such that infection-to-death distributions with high prior probability
are consistent with the distributions estimated by Harrison et al. (2020)
and Verity et al. (2020) time-to-death distributions.

A further key parameter for inferring epidemic dynamics from
death data is the infection fatality rate (IFR), 𝛿, which is the risk of
death for an infected host, neglecting other host covariates. Seropreva-
lence of antibody to SARS-CoV-2 — together with evidence regarding
the preservation of measurable antibody (Huang and Garcia-Carreras,
2020) — provides an estimate of the integrated exposure history to
SARS-CoV-2, and enables estimation of the 𝛿. In the results sections
we explore the impact of different assumptions about 𝛿: in Section 3.1
we let 𝛿 be a free parameter; in Section 3.2 we fix its value to the cen-
tral population-weighted estimate for England from (O’Driscoll et al.,
2020); and then in Sections 3.3 and 3.4 we try to characterise knowl-
edge about 𝛿 with a judicious prior (Table 1) that reflects uncertainty
3

Table 1
Summary of key epidemiological parameters drawn from clinical literature, as described
in Section 2.1.3, including default values used later to generate synthetic data
(Section 3.2), and priors used in the Bayesian inference (Section 3.4). The default
values correspond with the plots of the infectiousness profile and infection-to-death
distribution shown in Fig. 1B and C. The gamma distribution priors are parameterised
as 𝛤 (scale, shape), and the normal priors as  (mean, std dev).

Quantity Distn Param Symbol Default Prior

Infectiousness 𝛤 Mean 𝛽𝜇 5.2 𝛤 (16, 1∕3)
profile, {𝛽𝑗} Variance 𝛽𝜎2 2.96 𝛤 (2, 2.2)

Infection-to-death NB Mean 𝜁𝜇 18.69  (20,3)
distribution, {𝜁𝑗} Dispersion 𝜁𝜙 0.0546  (0.03,0.025)

Infection fatality rate – – 𝛿 0.00724  (0.00724, 0.001)

and bias that may arise for various reasons, such as non-representative
serological surveys, non-uniform prevalence in different risk groups
(e.g. in care homes versus the surrounding community) and waning
antibody levels (O’Driscoll et al., 2020).

2.2. Epidemic models

In the following we present several simple deterministic epidemic
models. The first, called 𝑆𝐼𝑡𝐷, is the central one in this paper and
introduced with the goal of being as simple as possible whilst retain-
ing structure by infected age. The subsequent 𝑆𝐼𝑅𝐷𝛥𝐷, 𝑆𝐼𝑈𝑅𝐷 and
𝑆𝐸2𝐼2𝑈2𝑅𝐷 models are simple models that are not directly structured
by infected age. Fig. 2 shows schematics of the various models.

2.2.1. A model structured by infected age: 𝑆𝐼𝑡𝐷
We denote by 𝐼𝑖,𝑗 the number of individuals who on day 𝑖 became

infected 𝑗 > 0 days ago; and the total number of infected individuals
on day 𝑖 is thus 𝐼𝑖 =

∑∞
𝑗=1 𝐼𝑖,𝑗 . In this model, between day 𝑖 and 𝑖+1 the

number of new infections is 𝐼𝑖+1,1 = 𝑆𝑖
∑∞

𝑗=1 𝜆𝑖𝑗𝐼𝑖,𝑗 , for suitable 𝜆𝑖𝑗 that
in general depends on time 𝑖 (to reflect changing transmission owing to
changes in population mixing intensity, e.g., due to NPIs) and infected
age 𝑗 (to reflect non-constant infectiousness of those infected); and the
number of new deaths amongst individuals with infected age 𝑗 is ℎ𝑗𝐼𝑖,𝑗 ,
for suitable ℎ𝑗 . The general infected-age-structured model is therefore

𝑆𝑖+1 = 𝑆𝑖 − 𝐼𝑖+1,1, (1a)

𝐼𝑖+1,1 = 𝑆𝑖

∞
∑

𝑗=1
𝜆𝑖𝑗𝐼𝑖,𝑗 , (1b)

𝐼𝑖+1,𝑗+1 = 𝐼𝑖,𝑗 − ℎ𝑗𝐼𝑖,𝑗 , (1c)

𝐷𝑖+1 = 𝐷𝑖 +
∞
∑

𝑗=1
ℎ𝑗𝐼𝑖,𝑗 , (1d)

for 𝑖 ∈ {0, 1, 2, 3…} and 𝑗 ∈ {1, 2, 3,…}.
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Fig. 2. Compartmental structure for models (A) SItD, (B) 𝑆𝐼𝑅𝐷/𝑆𝐼𝑅𝐷𝛥𝐷 , (C) 𝑆𝐼𝑈𝑅𝐷, and (D) 𝑆𝐸2𝐼2𝑈 2𝑅𝐷, as defined in Section 2.2. In (B) the 𝐷𝛥𝐷 compartment indicates
deaths that will occur after an additional fixed delay 𝛥𝐷. The 𝑆𝐼𝑅𝐷 model is the special case of the 𝑆𝐼𝑅𝐷𝛥𝐷 model with 𝛥𝐷 = 0. Model (D) includes two compartments for each
of the exposed (𝐸1 , 𝐸2), infectious (𝐼1 , 𝐼2), and non-infectious (𝑈1 , 𝑈2) states.
In this model, in contrast to some common epidemic models in-
cluding the non-infected-age-structured ones described later in this
section, the 𝐼 denotes individuals who have been ‘‘infected’’ but are not
necessarily ‘‘infectious’’, since individuals of infected age 𝑗 contribute
to infecting susceptibles if and only if 𝜆𝑖𝑗 > 0. This removes the need
for an 𝐸 variable for ‘‘exposed but pre-infectious’’ individuals, or an 𝑅
variable for ‘‘recovered’’ individuals.

The degrees of freedom in the model need to be controlled via some
further modelling choices for the {𝜆𝑖𝑗} and {ℎ𝑗}. We will write

𝜆𝑖𝑗 = 𝑁−1𝜌𝛼𝑖𝛽𝑗 . (2)

Here, the infectiousness profile 𝛽𝑗 , defined in Section 2.1.3, is a prob-
ability mass function where ∑∞

𝑗=1 𝛽𝑗 = 1, and 𝛼𝑖 models the population
mixing intensity relative to pre-epidemic social behaviour and is subject
to the constraint 𝛼0 = 1. In practice 𝛼 is a composite parameter
capturing contact rates, social distancing (including mask wearing) and
mobility. A simple model for the impact of introducing NPIs is to
enable a sharp reduction in 𝛼𝑖 at some change-point time 𝑡∗. Enabling a
continuous 𝑡∗ helps in Markov Chain Monte Carlo procedures described
later, hence we model 𝛼𝑖 to transition from 1 to a new baseline 𝛼𝑏 at
change-point time 𝑡∗ via

𝛼𝑖 = 1𝑖<⌊𝑡∗⌋ + 𝛼𝑏1𝑖≥⌈𝑡∗⌉ +
(

(𝑡∗ − ⌊𝑡∗⌋) + 𝛼𝑏(⌈𝑡∗⌉ − 𝑡∗)
)

1𝑖=⌊𝑡∗⌋ (3)

in which ⌊⋅⌋, ⌈⋅⌉ and 1(⋅) respectively denote the standard floor, ceiling
and indicator functions. An example of {𝛼𝑖} is shown in Fig. 1A.

In view of the constraints on {𝛼𝑖} and {𝛽𝑗}, we include 𝜌 > 0 in (2)
as a scale factor for the infectious pressure. Parameter 𝑁 = 𝑆𝑖 + 𝐼𝑖 +𝐷𝑖
is the population size, which in this model is constant, because births
and non-SARS-CoV-2 death are negligible on the time scales of interest
and are thus neglected.

In the language of survival analysis, the {ℎ𝑗 ∶ 𝑗 ≥ 1} is the hazard
rate function for the death of infecteds, such that ℎ𝑗 is the probability
that an individual having survived 𝑗 − 1 days post-infection will die
on day 𝑗. In terms of the infection-to-death distribution, {𝜁𝑗}, and its
corresponding cumulative distribution function, 𝑃 𝜁 = {𝑃 𝜁

𝑗 =
∑𝑗

𝑖=0 𝜁𝑖 ∶
𝑗 ≥ 0},

ℎ𝑗 =
𝛿𝜁𝑗

1 − 𝛿𝑃 𝜁
𝑗−1

, (4)

where 𝛿 is the infection fatality rate. Derivation of this expression is in
Appendix A.
4

2.2.2. 𝑆𝐼𝑅𝐷 And 𝑆𝐼𝑅𝐷𝛥𝐷 models
A simple and commonly used model (e.g. Britton, 2020; Lourenço

et al., 2020) that does not maintain structure by infected age is as
follows.

𝑆𝑖+1 = 𝑆𝑖 − 𝜆𝑖𝑆𝑖𝐼𝑖, (5a)

𝐼𝑖+1 = 𝐼𝑖 + 𝜆𝑖𝑆𝑖𝐼𝑖 − 𝜃𝐼𝑖, (5b)

𝑅𝑖+1 = 𝑅𝑖 + (1 − 𝛿)𝜃𝐼𝑖, (5c)

𝐷𝑖+1 = 𝐷𝑖 + 𝛿𝜃𝐼𝑖. (5d)

In this model (and those below), the number of new daily infecteds is
𝐼𝑖+1,1 = 𝜆𝑖𝑆𝑖𝐼𝑖, where

𝜆𝑖 = 𝑁−1𝜌𝛼𝑖, (6)

and 𝑁 = 𝑆𝑖 + 𝐼𝑖 + 𝑅𝑖 + 𝐷𝑖. There is a close parallel to (1) but with
key differences: infectiousness of infected individuals is constant with
respect to infected age (𝛽𝑗 is taken to equal 1), and the hazard of
removal from being infected is also constant (ℎ𝑗 is taken to equal some
constant 𝜃). This model includes an 𝑅 variable, because the assumption
of constant infectiousness of 𝐼 individuals necessitates a way other than
death for an infected individual to cease being infectious. By analogy
to (1), the constant hazard implies that the duration in infected state is
geometrically distributed.

The 𝑆𝐼𝑅𝐷𝛥𝐷 model is a generalisation of the 𝑆𝐼𝑅𝐷 model that
replaces Eq. (5d) with

𝐷𝑖+𝛥𝐷+1 = 𝐷𝑖+𝛥𝐷 + 𝛿𝜃𝐼𝑖, (7)

which introduces a non-negative integer ‘‘delay-to-death’’ parameter,
𝛥𝐷. Introducing a fixed delay in this way is a common modelling strat-
egy to make infection-to-recovery and infection-to-death distributions
distinct (e.g. Lourenço et al., 2020) and the latter non-exponential.
The basic 𝑆𝐼𝑅𝐷 model is the special case with delay 𝛥𝐷 = 0. A
generalisation of (7), in which 𝛥𝐷 is not necessarily an integer, is

𝐷𝑖+⌊𝛥𝐷⌋+1 = 𝐷𝑖+⌊𝛥𝐷⌋

+ (1 − 𝛥𝐷 + ⌊𝛥𝐷⌋)𝛿𝜃𝐼𝑖 + (𝛥𝐷 − ⌊𝛥𝐷⌋)𝛿𝜃𝐼𝑖−1.

For example, if 𝛥𝐷 = 7.2 then 80% of the deaths will have a delay of 7
days and 20% will have a delay of 8 days.
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2.2.3. An 𝑆𝐼𝑈𝑅𝐷 model
A different strategy besides incorporating a delay is to incorporate

additional model states (see e.g. Royal Society SET-C, 2020). A model
variation in this spirit is to incorporate a non-infectious state 𝑈 that
ollows infection but precedes recovery or death, i.e.,

𝑆𝑖+1 = 𝑆𝑖 − 𝜆𝑖𝑆𝑖𝐼𝑖, (8a)

𝐼𝑖+1 = 𝐼𝑖 + 𝜆𝑖𝑆𝑖𝐼𝑖 − 𝜃𝐼𝑖, (8b)

𝑈𝑖+1 = 𝑈𝑖 + 𝜃𝐼𝑖 − 𝜉𝑈𝑖, (8c)

𝑅𝑖+1 = 𝑅𝑖 + (1 − 𝛿)𝜉𝑈𝑖, (8d)

𝐷𝑖+1 = 𝐷𝑖 + 𝛿𝜉𝑈𝑖, (8e)

in which 𝜉 is a rate constant.

2.2.4. An 𝑆𝐸2𝐼2𝑈2𝑅𝐷 model
The same strategy can be extended by including more states, for

example an exposed (infected but not yet infectious) state, and by
representing states using multiple compartments. Such an approach can
enable the model dynamics to mimic the delay to peak infectiousness,
and the delay between infection and death, and hence indirectly models
infected ages (Hurtado and Kirosingh, 2019). The following model,
chosen because it closely matches the approach of Kucharski et al.
(2020), uses two compartments for each of the 𝐸, 𝐼 and 𝑈 states.

𝑆𝑖+1 = 𝑆𝑖 − 𝜆𝑖𝑆𝑖(𝐼
(1)
𝑖 + 𝐼 (2)𝑖 ), (9a)

𝐸(1)
𝑖+1 = 𝐸(1)

𝑖 + 𝜆𝑖𝑆𝑖(𝐼
(1)
𝑖 + 𝐼 (2)𝑖 ) − 2𝜂𝐸(1)

𝑖 , (9b)

𝐸(2)
𝑖+1 = 𝐸(2)

𝑖 + 2𝜂𝐸(1)
𝑖 − 2𝜂𝐸(2)

𝑖 , (9c)

𝐼 (1)𝑖+1 = 𝐼 (1)𝑖 + 2𝜂𝐸(2)
𝑖 − 2𝜃𝐼 (1)𝑖 , (9d)

𝐼 (2)𝑖+1 = 𝐼 (2)𝑖 + 2𝜃𝐼 (1)𝑖 − 2𝜃𝐼 (2)𝑖 , (9e)

𝑈 (1)
𝑖+1 = 𝑈 (1)

𝑖 + 2𝜃𝐼 (2)𝑖 − 2𝜉𝑈 (1)
𝑖 , (9f)

𝑈 (2)
𝑖+1 = 𝑈 (2)

𝑖 + 2𝜉𝑈 (1)
𝑖 − 2𝜉𝑈 (2)

𝑖 , (9g)

𝑅𝑖+1 = 𝑅𝑖 + 2(1 − 𝛿)𝜉𝑈 (2)
𝑖 , (9h)

𝐷𝑖+1 = 𝐷𝑖 + 2𝛿𝜉𝑈 (2)
𝑖 , (9i)

in which 𝜂 is a rate constant.

2.2.5. Connection to epidemiological parameters
The foregoing models connect directly to some key epidemiological

parameters. A parameter important for characterising whether the epi-
demic is growing or declining is the time-varying reproduction number,
𝑖, of which there are multiple variations. We adopt for 𝑖 in this paper
the instantaneous reproduction number (Fraser, 2007), which is the
average number of secondary infecteds generated by a single infected
assuming there are no population level changes in susceptibility or mix-
ing behaviour during their infection. We adopt the ‘survival function’
approach to calculating 𝑖; performing the sum over infected age 𝑗
of the number of new infecteds generated by a host at infected age
𝑗 weighted by the proportion of hosts still infectious at infected age
𝑗 (Heffernan et al., 2005). For the 𝑆𝐼𝑡𝐷 model:

𝑖 = 𝑆𝑖

∞
∑

𝑗=1
𝜆𝑖,𝑗𝐺𝑗 = (𝑆𝑖∕𝑁)𝛼𝑖𝜌

∞
∑

𝑗=1
𝛽𝑗𝐺𝑗 . (10)

where 𝐺𝑗 is the survival function of an infected individual associated
with the hazard ℎ𝑗 of removal from the 𝐼 , defined as the probability
of not having been removed by day 𝑗 after infection, which equals
𝐺𝑗 = 1− 𝛿𝑃 𝜁

𝑗−1. The product 𝛽𝑗𝐺𝑗 is the proportion of the 𝑖 secondary
infections that are generated at an infected age 𝑗, and therefore when
normalised is the (discretised) generation time distribution.

For the 𝑆𝐼𝑅𝐷, 𝑆𝐼𝑅𝐷𝛥𝐷, 𝑆𝐼𝑈𝑅𝐷 and 𝑆𝐸2𝐼2𝑈2𝑅𝐷 models, we
compute 𝑖 from the same definition, noting that infecteds must transit
5

through 𝐼 before reaching 𝐷 (𝐺𝑗 = 1). Given residence in an infectious 𝑃
state, the number of new infecteds generated per infected (𝜆𝑖𝑆𝑖) is inde-
pendent of infected-age. The infectiousness profile is 𝛽𝑗 = 𝐴𝑗∕

∑

(𝐴𝑗 ), in
which 𝐴𝑗 is the proportion of infecteds in an infectious state at infected-
age 𝑗, which can be derived by considering the disease progression
defined in Eqs. (5), (8) or (9) as a Markov process (Appendix B). Hence
𝛽𝑗 depends on the number of 𝐸 and 𝐼 states as well as the parameters
governing the total time in the latent (𝜂) and infected classes (𝜃).
However, by construction, the average residence time in an infectious
state is 𝜃−1 for each of these models (Appendix B). Hence

𝑖 = 𝜆𝑖𝑆𝑖

∞
∑

𝑗=1
𝐴𝑗 = 𝜆𝑖𝑆𝑖𝜃

−1 = 𝑆𝑖𝑁
−1𝜌𝛼𝑖𝜃

−1. (11)

Estimates of 𝑖 can be used to infer the benefit of mitigating
measures such as NPIs for reducing transmission. Of strategic interest
is to infer argmin𝑖{𝑖 < 1}, as this indicates the time 𝑖 when NPIs were
sufficient to put the epidemic into decline. Also related and important
is the peak daily incidence, max𝑖{𝑆𝑖 − 𝑆𝑖+1}, in which for each model
𝑆𝑖−𝑆𝑖+1 is the number of new infecteds on day 𝑖. The basic reproduction
number, written 0, is the special case for infection seeded into a fully
susceptible population (𝑆𝑖 ≈ 𝑁) and prior to any mitigation (𝛼𝑖 = 1).

By design, the 𝑆𝐼𝑡𝐷 model explicitly incorporates the infectiousness
profile, {𝛽𝑗}, and the infection-to-death distribution {𝜁𝑗}, such that
these can be chosen according to clinical data. For the other models
in which these are not explicit, it is helpful to understand what are the
implied {𝛽𝑗} and {𝜁𝑗}. Calculation of these is in Appendix B.

2.2.6. Model initial conditions
In this paper, 𝑖 indexes the number of days since 15 Feb 2020, which

is day 𝑖 = 0. We assume initially zero deaths, 𝐷0 = 0, and zero recov-
ereds, 𝑅0 = 0 (for models including 𝑅) and 𝑆0 = 𝑁 − 𝐼0 for parameter
𝐼0 which is to be inferred. For the infected-age-structured model, it
is necessary to specify how the 𝐼0 initial infecteds are distributed by
infected age {𝐼0,𝑗}. When the epidemic is growing exponentially the
distribution of infecteds by infected age converges to an equilibrium
distribution (see Appendix C), thus we assume convergence to this
equilibrium distribution in the dynamics prior to day 𝑖 = 0, and for the
numerical calculations in this paper we use the equilibrium distribution
as the initial condition at 𝑖 = 0.

2.3. Observation model

The epidemic models above are deterministic. It is common to
account for variability in the observed number of daily deaths, 𝐷obs

𝑖 ,
on day 𝑖, in mechanistic models of infectious disease transmission via
a negative binomial observation model (e.g. Mathews et al., 2007;
Cauchemez and Ferguson, 2008). The negative binomial model admits
overdispersion, which is often present in count data on cases or deaths
from an infectious disease owing to spatial and demographic hetero-
geneities, or other unmodelled processes (Held et al., 2019). We adopt
the negative binomial model, assuming that

𝐷obs
𝑖 ∼ NB(𝐷𝑖, 𝜙), (12)

independently for each 𝑖, where NB(𝜇, 𝜙) denotes the negative binomial
distribution with mean 𝜇 and dispersion parameter 𝜙 defined such that
the variance equals 𝜇 + 𝜙𝜇2 (Robinson and Smyth, 2008).

2.4. Inference methods

We denote by 𝛩∗ the free parameters that appear in the respective
dynamical models, such that 𝐷𝑖 = 𝐷𝑖(𝛩∗), and by 𝛩 = (𝛩∗, 𝜙) the
ector of all the parameters including in the observation model (12).
he data  = {𝐷obs

𝑖 } are the daily deaths indexed by time 𝑖. We denote
y 𝑃 (|𝛩) the likelihood function for 𝛩 under observation model (12).
hen adopting a Bayesian approach and specifying a prior distribution
(𝛩) on 𝛩, the posterior distribution for 𝛩 is then
(𝛩|) ∝ 𝑃 (|𝛩)𝑃 (𝛩). (13)
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Fig. 3. A comparison of the maximum likelihood parameter set SItD model predictions for cases in which 𝜌, 𝐼0, the infection fatality rate, 𝛿, and NB 𝜙 are inferred and infectivity
is constant (herd immunity), which is a special case of the model in which step function parameters 𝑡∗ and 𝛼𝑏 are also inferred (2 extra parameters; non-herd immunity). Inferred
parameters are shown in the table to the right, together with emerging epidemiological quantities of interest below. The argmin𝑖{𝑖 < 1} values of 54 vs. 33 translate to 9th April
vs. 19th March 2020, respectively.
In the results sections below, where we compute point estimates of 𝛩
we do so using the maximum a posteriori (MAP) estimator

𝛩̂MAP = argmax𝛩𝑃 (𝛩|), (14)

then the inferred dynamics, and the epidemiological parameters in-
ferred from them (defined in Section 2.2.5), are based on solutions of
the respective epidemic model with 𝛩∗ = 𝛩̂∗

MAP. The MAP estimator
corresponds to the widely used maximum-likelihood estimator (MLE)
𝛩̂MLE = argmax𝛩𝑃 (|𝛩) if the priors are uninformative, or more
generally if 𝑃 (𝛩) is constant on a domain that contains 𝛩̂MLE and
zero elsewhere. Elsewhere we target the full posterior distribution (13)
by sampling from it using Markov chain Monte Carlo (MCMC). We
used an adaptive Metropolis–Hastings MCMC algorithm (Haario et al.,
2001) which involves, after a warm-up phase, adapting the covariance
matrix of a multi-variate Gaussian proposal distribution according to
the covariance of the accepted samples. Convergence to the stationary
distribution is hastened with an initial maximisation of the posterior
density with respect to 𝛩 using a covariance matrix adaptation evo-
lution strategy (CMA-ES) (Hansen et al., 2003). These methods were
implemented using the PINTS python package (Clerx et al., 2019).

For priors on 𝛩, those arising from the clinical data are detailed in
Table 1 and Section 2.1.3, in addition to which we specify: 𝜌 ∼ 𝑈 (1, 10)
and 𝐼0 ∼ 𝑈 (1, 5 × 107) consistent with wide range of possible values
for 0 and number of initial infecteds; 𝑡∗ ∼  (31, 𝜎 = 3), where
𝑖 = 31 corresponds to where the Google mobility data, shown in Fig. 1A,
first suggest a substantial reduction in mobility; and 𝛼𝑏 ∼ 𝑈 (0, 1) and
𝜙 ∼ 𝑈 (0, 1) such that both are uniform on their possible ranges of
values. For the 𝑆𝐼𝑅-type models, transition rates in Eqs. (5), (8) and (9)
have upper limits such that, for example, no more than the entirety of a
compartment can transition out in a single time step. Consequently, we
take 𝜃 ∼ 𝑈 (0, 1) for the 𝑆𝐼𝑅𝐷, 𝑆𝐼𝑅𝐷𝛥𝐷 & 𝑆𝐼𝑈𝑅𝐷 models, 𝜉 ∼ 𝑈 (0, 1)
for the 𝑆𝐼𝑈𝑅𝐷 model and 𝜃, 𝜂, 𝜉 ∼ 𝑈 (0, 0.5) for the 𝑆𝐸2𝐼2𝑈2𝑅𝐷 model.
Due to the additional scaling by 1∕𝜃 in the relationship between 𝑖
and 𝜌 for SIR-type models (equation (11)) plausible values for 𝜌 are
contracted and we use 𝜌 ∼ 𝑈 (0, 3).

3. Results

3.1. A change in mixing intensity, and not ‘herd immunity’, is necessary to
explain the epidemic dynamics

A theory after decline from the initial epidemic peak was that the
epidemic dynamics were affected little by NPIs and could be explained
by ‘herd immunity’ (Lourenço et al., 2020), that is, that 𝑖 in (10)
had reduced to below 1 because the number of remaining susceptibles,
𝑆𝑖, had sufficiently decreased to curtail the growth. The theory that
depletion of susceptibles is adequate to explain the dynamics can be
6

tested by fitting both models to the data; the ‘herd immunity’ theory
corresponds to a special case of the general model that has a step
change in 𝛼𝑖 but with the restriction of having constant 𝛼𝑖 = 1, achieved
in the model by setting 𝛼𝑏 = 1. This supposes no effect from NPIs,
and thus that the decline in the epidemic must be on account of the
depletion of susceptibles. In this restricted model the parameter 𝑡∗ is
redundant, therefore the restricted model has two fewer parameters
than the unrestricted model. To consider this, we use the 𝑆𝐼𝑡𝐷 model,
with the infectiousness profile and infection-to-death distribution pa-
rameters fixed to the values shown in Table 1, and noninformative
priors on 𝜌, 𝐼0, 𝑡∗, 𝛼𝑏, 𝛿, and 𝜙, then fit the model to the England and
Wales deaths data described in Section 2.1.1. We then do likewise for
the restricted model, with the extra restriction that 𝛼𝑏 = 1 and with 𝑡∗

removed.
The fitted models are shown in Fig. 3, from which it is clear that the

full model matches well to the data but the restricted model matches
very poorly. The difference in the value of the maximised values of the
log-posterior, log𝑃 (𝛩|), for the two models is 260, which for models
differing, as here, by two degrees of freedom is overwhelming evidence
that the restricted model is inadequate.

Some values of epidemiological parameters in the fitted restricted
model also seem implausible; for example, the fitted 𝐼0 is greater
than 1 million people, and the IFR is ∼4 times smaller than the best
estimate from O’Driscoll et al. (2020) — see Fig. 3 for all of the inferred
parameter values.

The values of the maximised likelihoods, and visual inspection of
the fits, make clear that a change in transmission dynamics over time,
via 𝛼𝑖 in the model, is necessary to explain the epidemic dynamics
during the first outbreak. In other words, it was never plausible that
‘herd immunity’ was responsible for the end of the first outbreak,
as confirmed by the subsequent resurgence of infections in autumn
of 2020. We hence continue to use the step-change model of mixing
intensity (3) in the following sections.

3.2. Inference for epidemiological parameters is unreliable if based on non
infected-age structured models

To investigate the impact of model error on the values and uncer-
tainties of inferred parameters — and in particular whether simpler
epidemic models such as 𝑆𝐼𝑅𝐷, 𝑆𝐼𝑅𝐷𝛥D, 𝑆𝐼𝑈𝑅𝐷 and 𝑆𝐸2𝐼2𝑈2𝑅𝐷
can be used to infer accurately the epidemiological parameters —
we generate synthetic data from the time-structured 𝑆𝐼t𝐷 model (
Section 2.1.1) and observation model (12), with the model parameters
as specified in Table 2, then fit the various models to compare the
inferred parameter values with the true ones. We include the data-
generating 𝑆𝐼t𝐷 in the set of models being fitted, primarily to check
that the model parameters are indeed identifiable from the deaths data,

but emphasise its advantage in being the data-generating model; the
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Table 2
Details of the simulation study described in Section 3.2, including parameter values, in addition to those in Table 1, used to create synthetic data from the 𝑆𝐼𝑡𝐷 model; and
MAP estimates of the model parameters and derived epidemiological parameters from fitting the various models to the synthetic data. The (–) indicate parameters not relevant
to the particular model. The derived parameters are: the basic reproduction number 0; the minimum value of , min𝑖{𝑖}; the index of the day at which 𝑖 first decreases
below 1, argmin𝑖{𝑖 < 1}; the maximum number of new infections on any day, max𝑖{𝑆𝑖 −𝑆𝑖+1}; the mean, 𝛽𝜇 , of the infectiousness profile; and the mean of the infection-to-death
distribution, 𝜁𝜇 . The (A) and (B) tables differ in that (B) involves extra parameters being fixed when the models are fitted, as described in Section 3.2.

(A)

Model parameters Synthetic data Estimates

𝑆𝐼𝑡𝐷 𝑆𝐼𝑅𝐷 𝑆𝐼𝑅𝐷𝛥𝐷 𝑆𝐼𝑈𝑅𝐷 𝑆𝐸2𝐼2𝑈 2𝑅𝐷

𝜂 free 𝜂 = 1∕5.2

𝐼0 860.0 787.2 33.4 3523.3 52.0 2148.2 2617.2
𝜌 3.203 3.2534 0.6207 0.5986 1.2473 1.7519 0.9132
𝑡∗ 31.57 31.42 45.49 24.25 40.31 30.83 31.51
𝛼𝑏 0.2814 0.2771 0.6266 0.6232 0.7913 0.0443 0.0637
𝜃 – – 0.3879 0.3737 0.9911 0.1325 0.0937
𝜂 – – – – – 0.1107 –
𝜉 – – – – 0.0413 0.0911 0.0939
𝛥𝐷 – – – 21.6614 – – –
𝜙 0.002 0.0014 0.0061 0.0054 0.002 0.0015 0.0015

Derived parameters

0 3.2 3.25 1.6 1.6 1.26 13.23 9.75
min𝑖{𝑖} 0.79 0.79 0.88 0.88 0.87 0.52 0.54
argmin𝑖{𝑖 < 1} 32 32 46 25 41 31 32
max𝑖{𝑆𝑖 − 𝑆𝑖+1}, (×1000) 295.8 304.9 197.3 213.1 423.5 624.4 670.1
𝛽𝜇 5.2 5.2 2.58 2.68 1.01 14.7 13.20
𝜁𝜇 18.69 18.69 3.58 24.68 26.21 28.57 27.53

(B)

Model parameters Synthetic data Estimates

𝑆𝐼𝑡𝐷 𝑆𝐼𝑅𝐷 𝑆𝐼𝑅𝐷𝛥𝐷 𝑆𝐼𝑈𝑅𝐷 𝑆𝐸2𝐼2𝑈 2𝑅𝐷

𝐼0 860.0 787.179 68.469 1028.5878 125.5279 555.5233
𝜌 3.203 3.2534 0.424 0.418 0.4573 1.0403
𝑡∗ 31.57 31.4183 46.6492 34.4785 39.6067 34.5997
𝛼𝑏 0.2814 0.2771 0.409 0.4142 0.3576 0.289
𝜙 0.002 0.0014 0.0102 0.01 0.0041 0.0023

Fixed parameters

𝜃 – – 1/5.2 1/5.2 1/5.2 1/2.974653
𝜂 – – – – – 1/2.974653
𝜉 – – – – 1/12.49 1/11.744308
𝛥𝐷 – – – 12.49 – –

Derived parameters

0 3.2 3.25 2.2 2.17 2.38 3.09
min𝑖{𝑖} 0.79 0.79 0.79 0.79 0.75 0.79
argmin𝑖{𝑖 < 1} 32.0 32.0 47.0 35.0 40.0 35.0
max𝑖{𝑆𝑖 − 𝑆𝑖+1}, (×1000) 295.8 304.9 322.9 332.3 407.6 296.8
results in this section are hence not suited to advocating for 𝑆𝐼t𝐷
over the other models, but rather for understanding how precisely
understood mis-specifications of the other models lead to errors in
epidemiological quantities inferred from them.

When fitting the models, we fix the IFR, 𝛿, to the default value
from Table 1 and treat the other parameters as free. Hence the free
parameters include those that determine the implied infectiousness
profile and the infection-to-death distributions. The data-generating
and fitted parameters values are summarised in Table 2A, and results
are plotted in Fig. 4.

Fig. 4A shows that each fitted model matches broadly well the
deaths data. The 𝑆𝐼𝑅𝐷 and 𝑆𝐼𝑅𝐷𝛥D models provide similar and
relatively reasonable fits to the synthetic death data, but the peak daily
deaths in these model fits occurs almost one week before the true peak.

Each of the simpler models — 𝑆𝐼𝑅𝐷, 𝑆𝐼𝑅𝐷𝛥𝐷, 𝑆𝐼𝑈𝑅𝐷 — sub-
stantially underestimate 0 compared to the true value, in each case at
least by a factor of 1.6, but estimates from 𝑆𝐸𝐼2𝐼2𝑈2𝑅𝐷 are vastly too
large and with very high posterior variance; see Fig. 4B. The latter also
had the largest number of free parameters, so we also considered the
case with 𝜂 fixed to the value 1∕5.2, which is an appropriate choice for
this parameter in the sense that it fixes the model’s onset-to-infection
interval to match with the mean we assumed when setting the default
infection-to-death distribution (see Section 2.1.3). Even with this pa-
rameter value fixed, there is little improvement in the inferred values
7

for 0. During the epidemic decline after introduction of NPIs, the mis-
specification of the model is less impactful on the inferred values for 𝑖,
but the inferred time, 𝑡∗, at which NPIs are inferred to impact mixing
intensity is highly variable between models: for example it is inferred
around 14 days too late for the 𝑆𝐼𝑅𝐷 model, 7 days early for 𝑆𝐼𝑅𝐷𝛥D
and 9 days late for 𝑆𝐼𝑈𝑅𝐷 (Table 2). Compared to the data-generating
model, the inferred peak of new infections, max𝑖𝐼𝑖,1, and the inferred
timing of this peak, argmax𝑖𝐼𝑖,1, are also very inaccurate. For 𝑆𝐼𝑅𝐷
and 𝑆𝐼𝑅𝐷𝛥D models the peak is approximately 36% too low and the
timing is respectively 14 days late and 2 days early. For the SIURD
model the inferred peak is approximately 43% too high and 9 days too
late. Because here we are fixing the IFR and are fitting to death data,
all model versions return approximately the same remnant susceptible
pool (𝑆𝑖=end∕𝑁 ≈ 0.88) by design. This means that from Eq. (10)
if mixing intensity returns to pre-epidemic levels following the first
wave (𝛼𝑖 = 1), and all other parameters are fixed, then 𝑖 ≈ 0.880.
This provides an upper bound on the median 𝑖 for a subsequent
unmitigated outbreak equal to 2.8 in this simulated example. Because
the simple SIR-like models underestimate 0, they also substantially
underestimate 𝑖 for a subsequent unmitigated outbreak, suggesting an
upper bound of the median 𝑖 ≈ 1.4 (𝑆𝐼𝑅𝐷, 𝑆𝐼𝑅𝐷𝛥𝐷) or 1.1 (𝑆𝐼𝑈𝑅𝐷)
which are highly misleading. In contrast, estimates of the median
unmitigated 𝑖 for the 𝑆𝐸𝐼2𝐼2𝑈2𝑅𝐷 models are vastly inflated. In the
context of influencing policy-making, the errors arising from the simple
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Fig. 4. (A) Synthetic data from the 𝑆𝐼𝑡𝐷 model generated using parameters in Tables 1A and 2, and dynamics of fitted 𝑆𝐼𝑡𝐷, 𝑆𝐼𝑅𝐷, 𝑆𝐼𝑅𝐷𝛥𝐷 , 𝑆𝐼𝑈𝑅𝐷 and 𝑆𝐸2𝐼2𝑈 2𝑅𝐷 models,
corresponding to MAP estimates of parameters per Table 2A. (B) Violin plots of the posterior marginals for derived epidemiological parameters under the different models, with
dashes representing (min, mean, max) and the vertical blue line showing the true values. (C) Infectiousness profiles and infection-to-death distributions for the fitted models.
SIR-like models are unacceptably large. Fig. 4c shows that the implied
infectiousness profile and infection-to-death distributions for the fitted
models were all quite different to the true ones.

In the preceding investigation with synthetic data, the data-
generating 𝑆𝐼𝑡𝐷 model was at an advantage over the other models
through having its infectiousness profile and infection-to-death distri-
bution specified correctly, and without free parameters related to these
that needed estimating. To what extent did the other models perform
8

poorly on account of their extra parameters, rather than their model
mis-specification? To investigate, we fixed the values of those parame-
ters to ‘‘optimal’’ values in the sense that the moments of their implied
infectiousness profile and infection-to-death distribution matched as
closely as possible to the true ones, and with the consequence that the
number of free parameters is then the same for each model, including
for the data-generating 𝑆𝐼𝑡𝐷 model. The parameters are summarised
in Table 2B and explained as follows.



Journal of Theoretical Biology 558 (2023) 111337D.G. Whittaker et al.
Fig. 5. (A) Synthetic data from the 𝑆𝐼𝑡𝐷 model (Section 2.2.1) generated using parameters in Tables 1 and 2; and dynamics of fitted 𝑆𝐼𝑡𝐷, 𝑆𝐼𝑅𝐷, 𝑆𝐼𝑅𝐷𝛥𝐷 , 𝑆𝐼𝑈𝑅𝐷 and
𝑆𝐸2𝐼2𝑈 2𝑅𝐷 models for the parameters indicated in Table 2B; this version has additional fixed parameters, whose values are chosen a priori such that for each model the
infectiousness profile and infection-to-death distribution, shown in (C), matches as closely as possible to the data-generating ones. (B) Violin plots of the derived epidemiological
parameters uncertainties for each model and the synthetic data true values (blue dotted lines).
To match the mean of the infectiousness profile to the true one
(recalling that the relationship between this profile and the model
parameters for the various models is explained in Appendix B), for
𝑆𝐼𝑅𝐷, 𝑆𝐼𝑅𝐷𝛥𝐷 and 𝑆𝐼𝑈𝑅𝐷 models we take the infectivity rate
𝜃 = 1∕5.2 where, per Table 1, 5.2 days is the mean of the assumed
infectiousness profile. For the infection-to-death distribution, matching
to the mean of 18.69 days for 𝑆𝐼𝑅𝐷 entails taking 𝛥 = 18.69 −
9

𝛥𝐷 𝐷
1 − 5.2 = 12.49 and for 𝑆𝐼𝑈𝑅𝐷 taking 𝜉 = 1∕12.49 respectively.
For the 𝑆𝐸2𝐼2𝑈2𝑅𝐷 model there are many choices for 𝜂 and 𝜃 that
yield an implied infectiousness profile (Appendix B) with appropriate
mean, however in general the variance is higher than that for the
clinical infectiousness profile (Section 2.1.3). We therefore fix 𝜂 = 𝜃,
which minimises the variance in the implied infectiousness profile.
We then select fixed values for 𝜃 and 𝜉 to match the means of the
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clinical infectiousness and time-to-death profiles to those of the implied
profiles.

The results of this second fitting, with extra fixed parameters, are
shown in and the results are shown in Table 2B and Fig. 5. For
𝑆𝐸2𝐼2𝑈2𝑅𝐷 in particular the results are much improved. Fig. 5B shows
that the derived epidemiological parameters are much more reliably
inferred, although 0 is still slightly underestimated and argmin𝑖{𝑖 <
1} overestimated. The better performance is because the inclusion of
the 𝐸 state in this model, with the duplicated compartments for 𝐸, 𝐼
and 𝑈 , enables the fitted infectiousness profile and infection-to-death
distribution to match reasonably closely to the true ones, as shown in
Fig. 5C. For each of the other models this is not the case, there is a much
larger mismatch, as shown in Fig. 5C, and a consequence is that the
values of inferred epidemiological parameters, particularly 0, remain
highly unreliable.

In summary, a model such as 𝑆𝐸2𝐼2𝑈2𝑅𝐷 could plausibly lead
to reasonable inference for epidemiological parameters, provided the
number of pre-infectious, infectious and post-infectious compartments
is judiciously chosen such that the implied infectiousness profile and
infection-to-death distribution can match suitably closely the clinical
data; though if, as in this paper, inference is based on deaths data
(Section 2.1.3) then it appears important that the parameters of such a
model are estimated a priori from the clinical data.

The results in Table 2 & Figs. 4 and 5 are generated from a single
synthetic data set; however, the results are representative of the large
number repetitions performed. Corresponding results from fitting these
models to the real data are in the Supplementary Material (see Table
S1 and Figures S1 & S2). For the real data we have no true parameters
with which to compare the inferred parameters for the various models,
but we do observe analogous disagreement in the inferred parame-
ters, which we attribute to mis-specification of the infectiousness and
infection-to-death distributions in the simpler SIR models.

3.3. Bayesian inference leads to small posterior uncertainty when condition-
ing on the infectiousness profile and infection-to-death distribution

In this section, we adopt a Bayesian approach to characterise the
uncertainty in the inferred parameters and predictions. We fixed the
infectiousness profile and infection-to-death distribution to their de-
fault values from Table 1. The priors for the other parameters are as
specified in Section 2.4, and results for fitting the 𝑆𝐼𝑡𝐷 model are
shown in Fig. 6. Fig. 6A shows bi- and uni-variate marginal posterior
distributions for the model parameters; these suggest relatively small
posterior variance, and small posterior covariance except between 𝜌
and 𝛼𝑏; and 𝐼0 and 𝛼𝑏. Fig. 6B shows a good match between the deaths
data and the model dynamics based on the maximum a-posteriori
(MAP) model parameter values. Fig. 6C shows corresponding inferred
new infections, which peak in mid-March, owing to the inferred sharp
change in 𝛼𝑖, then decline.

Posterior distributions for derived epidemiological parameters are
shown in Fig. 6E. The posterior for 0 is concentrated in the region
∼3 to 3.5; min𝑖{𝑖} is concentrated around 0.795; almost all the
posterior mass for argmin𝑖{𝑖 < 1} is on 𝑖 = 32, which is 18th March;
and for max𝑖{𝐼𝑖,1} there is somewhat more posterior uncertainty, with
values between ∼220,000–400,000 plausible, and the posterior mode
at ∼280,000.

The change in 𝛼𝑖 matches quite closely to the Google mobility data,
both in the timing, 𝑡∗, and the extent of the drop, 𝛼𝑏, as shown in
Fig. 6D. These numbers are consistent with a reduction in mixing
throughout March (before the official lockdown was mandated) due
to voluntary changes in mixing intensity, perhaps driven by media
coverage and government announcements prior to lockdown. In other
words, the results suggest the Google mobility data may accurately
reflect the timing and drop in population mixing around the period a
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lockdown was mandated.
Our inferred values of 0 are slightly higher than estimates based
on an exponential growth model fitted to the death data (2.6 (2.4–
2.9), Lonergan and Chalmers (2020)), but consistent with other esti-
mates for the UK (Royal Society SET-C, 2020). Estimates of 𝑖 after
lockdown are consistent with those from exponential decay models
fitted to death data (Lonergan and Chalmers, 2020), and real-time esti-
mates based on reported cases in the period April–June 2020 (see Royal
Society SET-C (2020) and references therein) or surveyed contact rates
in late March 2020 (Jarvis et al., 2020).

3.4. Incorporating uncertainty in the infectiousness profile and infection-to-
death distribution leads to misleading conclusions owing to model error

Here we repeat the analysis of the previous section, except this
time incorporating uncertainty on the four parameters — 𝛽𝜇 , 𝛽𝜎2 , 𝜁𝜇 ,
𝜁𝜙 — describing the infectiousness and infection-to-death distributions.
The priors on these parameters are as described in Section 2.1.3 and
summarised in Table 1. Results analogous to Fig. 6 are shown in Fig. 7.
These results show that posterior variances are somewhat larger but not
substantially so, although MAP estimates are considerably different.

The MAP parameter gives visually a similarly good fit between
model and observed data (Fig. 7B), predicting daily new infections to
peak in early- to mid-March, after which a sharp drop in new infections
is observed (Fig. 7C). The inferred mixing intensity in this case still
agrees reasonably with the UK Google mobility data (Fig. 7D), but is
predicted to drop earlier and further than was inferred in Section 3.3,
when the values of those four parameters were instead conditioned
upon.

The posteriors for derived parameters show 0 is distributed largely
between 5 and 7 and peaking at ∼ 6; min𝑖{𝑖} is concentrated around
0.72, argmin𝑖{𝑖 < 1} is some time between 11th and 17th March, with
posterior peaking on 14th March, and max𝑖{𝐼𝑖,1} somewhere between
∼250,000–500,000, peaking at ∼350,000 (Fig. 7E). These posterior
distributions are somewhat in conflict with some informative priors
(the influence of the priors can be seen in Supplementary Figure
S3). For example, the peak infectiousness occurs ∼ 3 days later than
estimated by Ganyani et al. (2020), and an 0 of around 6 is higher
than most very early estimates of 0 (Park et al., 2020). However, re-
production numbers of around 6 have been reported for other European
countries (Billah et al., 2020).

A possible explanation for the discrepancy in results between this
section and Section 3.3, and with estimates from clinical data such
as Ganyani et al. (2020), is that it is a consequence of model error.
To investigate this, we repeated the Bayesian inference of the present
section and of Section 3.3 for the synthetic data shown in Fig. 4. Doing
so leads to posterior distributions that are consistent with the data-
generating parameters, and consistent with each other, with larger
variance under the approach of this section in which there is prior
uncertainty on the four additional parameters. Results for these cases
are in the Supplementary Material (Supplementary Figures S4 and S5).
In other words, the results of the Bayesian inference are as we might
expect when the data arise from the assumed model, supporting the
possibility that the unexpected results for the real data are on account
of model error.

If so, what are the possible sources of model error? The negative
binomial observation model heavily penalises discrepancies between
modelled and observed deaths when the number of daily deaths is
small, especially when the over-dispersion parameter, 𝜙 is small. The
MAP estimate of 𝜙 is indeed small — around 10−3 — especially so
with the extra four degrees of freedom considered in this section,
which enable the deterministic part of the model to explain more
of the variability in the data. A consequence is that the inference is
dominated by the model having to match well the data in the period
when the number of daily deaths is small but growing rapidly. This
is the period when the deterministic component of the model, which

assumes a homogeneously mixing population and neglects stochastic
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Fig. 6. Results from the Bayesian inference described in Section 3.3. (A) Uni- and bivariate marginal posterior distributions for the model parameters. (B) Daily death data,
with superimposed lines showing modelled deaths from 1000 posterior samples (transparent) and MAP parameter values (solid). (C) Inferred daily new infections based on MAP
parameter values. (D) Posterior MAP estimate of 𝑖, with inset showing correspondence between inferred 𝛼 and average of workplace and transit Google mobility data. (E) Posterior
distributions for derived epidemiological parameters.
effects in the epidemic process, describes the dynamics least well. In
summary: enabling the extra four degrees of freedom in this section
appears to lead to an overfitted model, which leads to underestima-
tion of the overdispersion parameter (and variance). The posterior
consequently has low variance, but with inference dominated by the
dynamics in a period when the model is likely to be least accurate, and
the low-variance posterior is located in a region of parameter space that
suggests model error is making the results unreliable.

The Supplementary Material contains results of some further explo-
ration of this issue, including where we have fixed 𝜙 at two larger
values, 0.01 and 0.1, (Supplementary Figures S6 and S7), which inflates
posterior variance and shifts the MAP estimates to more plausible
values, e.g. 4.5 for 0; and a case with the Negative Binomial observa-
tion model replaced by a Gaussian model (Supplementary Figure S8),
11
such that the inference is not dominated by the early period with low
prevalence, and for this case again the MAP estimates of parameters
are more in accordance with other sources and with the results of
Section 3.3.

4. Summary and discussion

We have explored various simple epidemic models, particularly
investigating the importance of accurately characterising the infec-
tiousness profile and the infection-to-death time distribution. These
distributions are well characterised in the clinical literature and easy
to incorporate into an SIR-type model structured by infected age. The
results show that it is essential to incorporate them in models used
for inferring the underlying epidemic dynamics from death data. Basic
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Fig. 7. Results from the Bayesian inference described in Section 3.4. The interpretation of (A–E) are as for Fig. 6. These results are analogous to those in Fig. 6, except here the
analysis involved placing priors on — rather than conditioning on — the parameters 𝛽𝜇 , 𝛽𝜎2 , 𝜁𝜇 , 𝜁𝜙 of the infectiousness profile and infection-to-death distribution.
SIR models implicitly mis-specify the infectiousness and infection-to-
death distributions and lead to highly misleading inferences about the
impact of NPIs, the time and magnitude of peak infections, and the
basic reproduction number.

In the particular context of the spring 2020 SARS-CoV-2 outbreak in
England and Wales, we used the infected-age-structured model, 𝑆𝐼𝑡𝐷,
to compare the hypothesis that the epidemic decline was on account
of NPIs versus the hypothesis, which was entertained at the time, that
the decline was owing to ‘herd immunity’. When using distributions for
the infectious profile and infection-to-death distribution that are drawn
from clinical literature, but fitting all the other model parameters, we
found very strong evidence in favour of efficacious NPIs, rather than
herd immunity, as the explanation for the epidemic decline (Fig. 3).
This conclusion was in spite of accommodating the possibility of an
implausibly low IFR, 𝛿, and high initial number infected, 𝐼0, both of
which are to the benefit of the herd immunity hypothesis. This indicates
that the death data, combined with infectiousness profile and infection-
to-death distributions available from clinical data, enable dismissing of
the ‘herd immunity’ hypothesis, without needing to know the IFR very
accurately.
12
The limitations of very basic SIR-type models in mis-specifying the
infectiousness profile and the infection-to-death has been pointed out
by Keeling and Rohani (2008) and Wearing et al. (2005). Our work
extends this to consider the impact of mis-specification when the model
is used to infer epidemiological parameters and dynamics from data,
and particularly when there is an abrupt change in population mixing
intensity. Our findings show major errors in the inferred dynamics —
for example, the timing of changes in population mixing can be wrong
by weeks — using basic SIR-type models, suggesting that untangling
the impact of NPIs adopted in quick succession (e.g. Dehning et al.,
2020) may be especially error-prone if using a simple SIR-like model.
Models such as 𝑆𝐸2𝐼2𝑈2𝑅𝐷 that incorporate multiple infected states
(in this case pre-infectious, infectious, post-infectious) and multiple
sub-compartments per state can potentially perform well if the number
of states, the number of sub-compartments, and the values of rate
parameters are suitably chosen (see also Hurtado and Kirosingh, 2019;
İşlier et al., 2020), but in our view this entails more complexity and no
advantage compared using the 𝑆𝐼𝑡𝐷 model.

Some models for SARS-CoV-2 transmission were calibrated using
multiple data streams, particularly in the UK where data on cases, hos-
pitalisations, prevalence and seroprevalence were also available (Royal
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Society SET-C, 2020). Doing so diminishes the influence of the deaths
data, and hence diminishes the influence of how the infection-to-death
distribution is specified, on the inferred quantities. However, other data
streams bring their own modelling challenges — for example, how to
connect the underlying epidemic model to data on cases when testing
capacity is severely limited but rapidly growing — and entail added
complexity that we have sought to avoid by basing inference upon the
deaths data.

Our estimates for 0 are significantly larger when we take a fully
Bayesian approach and fit parameters describing the infectiousness pro-
file and infection-to-death distribution. Much of the variation between
early estimates from case data has been attributed to assumptions for
the generation time distribution (Park et al., 2020), which is closely
linked to the infectiousness profile. The need to quantify uncertainty
in estimates of 0 for use in policy-making has been highlighted, for
example by Royal Society SET-C (2020). Uncertainty analysis of a spa-
tial agent-based model suggests that parameters that largely determine
the infectiousness profile (exposure to onset delays, onset to isolation
delays) remain significant sources of overall uncertainty (Edeling et al.,
2021). We found that incorporating uncertainty by placing priors with
relatively large variance on the four parameters characterising the
infectiousness profile and infection-to-death distribution — as opposed
to conditioning on them — yielded low-variance posteriors concen-
trated in implausible regions of parameter space, contrary to our initial
expectation that the additional prior uncertainty would largely just
inflate the posterior variance. We understand this to be the impact
of model error, with the negative binomial observation model leading
to inference being dominated by a period in which the deterministic
dynamics are least reliable. A tendency of deterministic models to yield
overconfident and error-prone estimates of 𝑖 from early incidence
data has also been documented (King et al., 2015).

We have argued in favour of an SI𝑡D model structured by infected
age over a basic SIR model, especially when the goal is inference
from death data, but this model is itself only a coarse population-
level model with many limitations. The model assumes homogeneous
mixing, and neglects stochastic effects which might be appreciable
when prevalence is low. To keep the model simple, we accommodated
only a step change in the population mixing intensity, 𝛼𝑖. For the
observation model for deaths, we assumed a negative binomial model
and conditional independence between different days, which are strong
parametric assumptions upon which the inference can be sensitive. We
did not attempt to model subtleties such as time-dependence in the IFR
due to, for e.g., changes in hospital fatality depending on case loads
within hospitals (Docherty et al., 2020), or the time-dependence of
generation intervals (Hart et al., 2022). Hence there are many possible
sources of model error. In the context of inference with this model,
we have found that affording too much freedom through high prior
variance on parameters enables overfitting of the deterministic part and
amplifies the impact of model error. Erring on the side of choosing
priors with high variance is therefore not necessarily a conservative
strategy, at least when model error is non-negligible.
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Appendix A. Expression for hazards, 𝒉𝒋, in the 𝑺𝑰𝒕𝑫 model in
terms of infection-to-death distribution

Denote by 𝑇 the number of days between infection and subsequent
eath due to infection. The goal is to determine hazards, ℎ𝑗 in (1),

such that the proportion with 𝑇 = 1, 𝑇 = 2, etc., is consistent with
a prescribed infection-to-death distribution {𝜁𝑗}. Denoting by 𝑝(𝑇 = 𝑗)
he proportion of infected individuals who die at precisely time 𝑗 after

infection then we require ℎ𝑗 such that 𝑝(𝑇 = 𝑗) = 𝛿𝜁𝑗 .
The hazard, ℎ𝑗 , is the proportion who, having survived up until 𝑗,

then die on day 𝑗, hence ℎ𝑗 = 𝑝(𝑇 = 𝑗|𝑇 ≥ 𝑗). By standard axioms we
ave

𝑗 = 𝑝(𝑇 = 𝑗|𝑇 ≥ 𝑗) =
𝑝(𝑇 = 𝑗 ∩ 𝑇 ≥ 𝑗)

𝑝(𝑇 ≥ 𝑗)
=

𝑝(𝑇 = 𝑗)
𝑝(𝑇 ≥ 𝑗)

=
𝛿𝜁𝑗

1 − 𝛿𝑃 𝜁
𝑗−1

,

which is expression (4). In the limit 𝑗 → ∞, then ℎ𝑗 → 0 such that the
proportion of infected individuals that ultimately die as a consequent
of infection equals the prescribed IFR, 𝛿.

Appendix B. Infectiousness profiles and time-to-death distribu-
tions for 𝑺𝑰𝑹𝑫, 𝑺𝑰𝑹𝑫𝜟𝑫 and 𝑺𝑬𝟐𝑰𝟐𝑼 𝟐𝑹𝑫 models

For our models without a latent state defined by Eqs. (5) & (8), the
proportion of newly infected hosts remaining in an infectious state (𝐼)
at infected-age 𝑗 is simply those who are not removed by the previous
time-step 𝐴𝑗 = (1 − 𝜃)𝑗−1, and 𝛽𝑗 = 𝜃(1 − 𝜃)𝑗−1. The probability mass
function for death (as before conditioning on death as the outcome of
the infection) can be calculated by summing over the probabilities of
Markov chains that arrive in 𝐷 at infected-age 𝑗. For the 𝑆𝐼𝑅𝐷 model:

𝜁𝑗 = 𝜃

⎧

⎪

⎨

⎪

0, 𝑗 ≤ 1
1, 𝑗 = 2

𝑗−2

⎩

(1 − 𝜃) , 𝑗 ≥ 3.

https://github.com/DGWhittaker/nottingham_covid_modelling
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The distribution of arrival times in 𝐷 is shifted for the 𝑆𝐼𝑅𝐷𝛥𝐷 model,

𝜁𝑗 = 𝜃

⎧

⎪

⎨

⎪

⎩

0, 𝑗 ≤ 𝛥𝐷 + 1
1, 𝑗 = 𝛥𝐷 + 2
(1 − 𝜃)𝑗−2, 𝑗 ≥ 𝛥𝐷 + 3.

For the 𝑆𝐼𝑈𝑅𝐷 model:

𝜁𝑗 = 𝜃𝜉

⎧

⎪

⎨

⎪

⎩

0, 𝑗 ≤ 2
1, 𝑗 = 3
𝛴𝑗−3
𝑘=0(1 − 𝜃)𝑘(1 − 𝜉)𝑗−3−𝑘, 𝑗 ≥ 4.

For the slightly more complicated 𝑆𝐸212𝑈2𝑅𝐷 model described
in Eq. (9) we construct a matrix describing the Markov transitions
following infection (Diekmann et al., 2021)

𝑇 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 − 2𝜂 2𝜂 0 0 0 0 0 0
0 1 − 2𝜂 2𝜂 0 0 0 0 0
0 0 1 − 2𝜃 2𝜃 0 0 0 0
0 0 0 1 − 2𝜃 2𝜃 0 0 0
0 0 0 0 1 − 2𝜉 2𝜉 0 0
0 0 0 0 0 1 − 2𝜉 2𝜉(1 − 𝛿) 2𝛿𝜉
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where 𝑇𝑛,𝑘 is the proportion transitioning from state 𝑛 to state 𝑘.
Describing a newly infected individual in 𝐸1 by a state vector 𝑖0 =
(1, 0, 0, 0, 0, 0, 0, 0), the proportion of new infections in 𝐼1 at infected-
age 𝑗 is 𝑓 𝐼1

𝑗 = 𝛴8
𝑘=1𝑖0(𝑇

𝑗−1)𝑘,3 = (𝑇 𝑗−1)1,3, where 𝑇 𝑗 indicates the 𝑗th
power of 𝑇 . Similarly 𝑓 𝐼2

𝑗 = (𝑇 𝑗−1)1,4. Hence 𝐴𝑗 = (𝑇 𝑗−1)1,3 + (𝑇 𝑗−1)1,4.
If 𝑓

′𝐼𝑖
𝑗′ denotes the proportion of infections in 𝐼𝑖 at time-step 𝑗′ after

rriving in 𝐼𝑖, then ∑

(𝑓 𝐼𝑖
𝑗 ) =

∑

(𝑓
′𝐼𝑖
𝑗′ ) =

∑∞
𝑗′=1(1 − 2𝜃)𝑗′−1 = 1∕(2𝜃), and

thus 𝛽𝑗 = 𝜃((𝑇 𝑗−1)1,3 + (𝑇 𝑗−1)1,4). The proportion of deaths occurring at
nfected-age 𝑗 is 𝜁𝑗 =

1
𝛿 ((𝑇

𝑗−1)1,8 − (𝑇 𝑗−2)1,8).

Appendix C. Pseudo-steady distribution of infecteds by infected
age

During a phase of epidemic growth with 𝑆𝑖 ≈ 𝑁 and 𝜆𝑖𝑗 = 𝜆𝑗
constant with respect to 𝑖, the distribution of 𝐼s by infected age reaches
a dynamic equilibrium,
(𝐼𝑖,1,… , 𝐼𝑖,𝑝)
∑𝑝

𝑗=1 𝐼𝑖,𝑗
=

(𝐼𝑖+1,1,… , 𝐼𝑖+1,𝑝)
∑𝑝

𝑗=1 𝐼𝑖+1,𝑗
,

nd the number of infecteds grows exponentially,
𝑝

𝑗=1
𝐼𝑖+1,𝑗 = 𝑐

𝑝
∑

𝑗=1
𝐼𝑖,𝑗 for some 𝑐 > 1.

ogether these imply 𝐼𝑖+1,𝑗 = 𝑐𝐼𝑖,𝑗 . Then under model (1), we get,

𝑐𝐼𝑖,1 = 𝑁−1𝑆𝑖
∑

𝑗
𝜆𝑗𝐼𝑖,𝑗 ,

𝐼𝑖,𝑗+𝑖 = 𝐼𝑖,𝑗 (1 − 𝜁𝑗 ),

nd the solution of these equations for {𝐼𝑖,𝑗}, after eliminating 𝑐, is the
quilibrium distribution.

ppendix D. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.jtbi.2022.111337. The following is the
upplementary Material related to our article.
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