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We investigate the dynamics of a non-interacting spin system, undergoing coherent Rabi oscillations,
in the presence of stochastic resetting. We show that resetting generally induces long-range quantum
and classical correlations both in the emergent dissipative dynamics and in the non-equilibrium
stationary state. Moreover, for the case of conditional reset protocols — where the system is
reinitialized to a state dependent on the outcome of a preceding measurement — we show that,
in the thermodynamic limit, the spin system can feature collective behavior which results in a
phenomenology reminiscent of that occurring in non-equilibrium phase transitions. The discussed
reset protocols can be implemented on quantum simulators and quantum devices that permit fast
measurement and readout of macroscopic observables, such as the magnetisation. Our approach does
not require the control of coherent interactions and may therefore highlight a route towards a simple
and robust creation of quantum correlations and collective non-equilibrium states, with potential
applications in quantum enhanced metrology and sensing.

Introduction.— Understanding and exploiting the
interplay between coherent unitary evolution and mea-
surement in quantum systems has been a central topic
since the early days of quantum mechanics [1, 2]. Recent
research in this direction is closely linked to the physics of
open quantum systems [3–6], where interactions among
quantum particles compete with the coupling to the sur-
rounding environment. Modern experiments allow to ex-
ternally control and even artificially engineer open system
dynamics. This can, e.g., be achieved through so-called
feedback protocols [7–12], which rely on the continuous
monitoring of a system followed by some action condi-
tioned on the output of a detector. This procedure can
generate non-equilibrium steady states (NESS) that fea-
ture non-trivial quantum correlations [13–16]. Another
approach that relies on externally imposed interventions
in order to create effectively open system dynamics is
stochastic resetting [17]. In its simplest form it amounts
to resetting a system to its initial state at random times.
This procedure has been originally studied for classical
diffusive systems [18–21], search processes [18, 19, 22–
25] and active systems [26–32], and also here interesting
NESS have been shown to emerge [33–44]. Similar ob-
servations have been made recently in the context of
quantum systems [45–55]. However, it remains an open
question whether resetting can induce non-trivial NESS,
that may display emergent quantum correlations or even
non-equilibrium phase transition behavior.

In this manuscript, we fill this gap by investigating
the interplay between stochastic resetting and many-body
quantum coherent evolution in the simplest — yet surpris-
ingly non-trivial — case of non-interacting spin systems,
see Fig. 1(a). We show that, despite the absence of in-

teractions in the coherent dynamics, resetting induces
quantum correlations as well as a critical (non-analytic)
behavior in the NESS. We demonstrate this by envisaging
three distinct protocols, named henceforth Protocol I, II
and III, in increasing order of complexity [see Fig. 1(b,c)].
Protocol I amounts to the aforementioned simple stochas-
tic resetting of the system to a fixed state, while Protocols
II and III include a measurement step whose outcome
determines to which state the system is reset.

In all three cases we find that resetting induces long-
range correlations, although the system’s reset-free dy-
namics is non-interacting. These correlations, emerging
from the global operations associated with the reset events,
are not exclusively of statistical nature but also have a
quantum origin. Moreover, Protocols II and III induce
stationary collective behavior, which manifests in non-
analyticities in an appropriate order parameter. While
reminiscent of a non-equilibrium phase transition, the phe-
nomenology we observe here is rather different in nature.
Standard phase transitions take place between phases with
short-range correlations and finite susceptibility parame-
ter. Here, instead, due to the reset process, the system
features strong long-range correlations and a divergent
susceptibility throughout the whole phase diagram and
not only at the critical point. The collectively enhanced
response of the system to external parameter variations
may be exploited for high-density quantum sensing, as
discussed, e.g., in Ref. [56–58]. The fact that such prop-
erty emerges even within a simple non-interacting system
readily realizable with neutral atoms highlights a novel
and simple way for creating and exploiting correlated
many-body states on quantum simulators [59–63].

Dynamics and reset states.—We consider a system
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of N spins with Hamiltonian

H = Ω

N∑
i=1

σxi + ∆

N∑
i=1

σzi , (1)

describing, for instance, non-interacting atoms subject to
an external laser field. Here, σx,y,zi are the Pauli matrices
of the i-th spin, Ω is the Rabi frequency and ∆ is the
laser detuning. The two basis states of each spin, |↑〉
and |↓〉, are chosen as the eigenstates of σz and represent
the excited state and the ground state, respectively [see
Fig. 1(a)]. These can be, for example, two hyper-fine
levels of an atom or of an ion.

Before turning to the discussion of the reset protocols,
it is useful to first characterize the dynamical proper-
ties of the system during its coherent evolution. Since
Hamiltonian (1) is the sum of single-body terms, we can
focus on the time evolution of single-body operators. For
example, the local excitation density at site j, defined as
nj = (1 + σzj )/2, evolves as nFj (t) = eiHjtnje

−iHjt with
Hj = Ωσxj + ∆σzj and F indicating evolution under the
Hamiltonian reset-free dynamics. Without loss of gener-
ality, we fix the initial state to be |↑〉N = ⊗Ni=1 |↑〉i. With
this choice one finds 〈nFj (t)〉↑ = 1 − (Ω2/Ω

2
) sin2(Ωt),

where Ω =
√

Ω2 + ∆2 is the effective Rabi frequency and
the arrow in the subscript indicates the initial state.
The reset protocols are depicted in Fig. 1(b,c). All

have in common that the system evolves coherently with
Hamiltonian (1) in between consecutive reset events. In
Protocol I, we employ stochastic resetting, i.e., the system
is reinitialized to the state |↑〉N unconditionally to any
measurement. In Protocols II and III, instead, the reset
state is chosen conditionally on a measurement taken
right before resetting, as pictured in Fig. 1(c). A natural
choice for the quantity to be measured is the excitation
density n =

(
1/N

)∑N
i=1 ni. In particular, in Protocol II,

first proposed in Ref. [51], two reset states are present,
|↑〉N and |↓〉N , which correspond to the two completely
polarized states with excitation density 1 and 0, respec-
tively. The outcome of the measurement determines the
reset state: if the measured excitation density exceeds
a certain threshold, which is fixed to be 1/2, then the
system is reset to |↑〉N , otherwise it is reset to |↓〉N . In
Protocol III, the system is reset to |↑〉N if the measured
density exceeds the threshold. Otherwise, the coherent
dynamics resumes from the state obtained by flipping
all the spins in the post-measurement configuration, as
sketched in Fig. 1(c).
Protocol I: Unconditional reset.— In this simple

case the coherent dynamics of the system is interrupted
at random times at which the system is reset to state
|↑〉N . Resets happen at a constant rate γ. The time τ be-
tween consecutive reset is therefore distributed according
to the Poisson waiting time distribution f(τ) = γe−γτ

(see Supplemental Material [64] for a different waiting

Figure 1. Non-interacting spins subject to resetting. (a)
Non-interacting spin system subject to a (laser) field with Rabi
frequency Ω and detuning ∆. (b) The unitary time evolution
according to Hamiltonian (1) is interspersed by randomly
distributed reset events, which reinitialize the system to a
specific state depending on the adopted reset protocol. In
the figure, t denotes the observation time and tk the time
when the kth reset event takes place. (c) Details of the reset
protocols. In Protocol I, the system is unconditionally reset to
the state |↑〉N . In Protocols II and III, the reset is preceded
by a measurement of the excitation density n, which selects a
product configuration state |n〉, with density n. In Protocol
II, the value of n determines the choice between two fixed
reset states. In Protocol III, when n < 1/2, the reset state
is determined by a spin flip operation applied to the state
obtained from the projective measurement.

time distribution). The survival probability, i.e., the
probability that no reset happens for a time τ , is given
by q(τ) =

∫∞
τ
f(s)ds = e−γτ . This, together with the

reset-free time-evolved density matrix ρF↑ (t), determines
the quantum state of the system ρ↑(t) in the presence
of resetting through the last renewal equation derived in
Ref. [48]:

ρ↑(t) = e−γtρF↑ (t) + γ

∫ t

0

dt′e−γt
′
ρF↑ (t′). (2)

The first term in the above equation corresponds to having
no reset up to time t. The second term accounts for
realizations of the stochastic resetting process where the
last reset has been at a previous time t−t′ and the system
has then evolved without reset events up to time t via the
Hamiltonian (1).

The average excitation density in the state (2) is given
by 〈n(t)〉↑ = Tr[nρ↑(t)] and its stationary value reads

〈n〉↑,ness = lim
t→∞

〈n(t)〉↑ = 1− 2
Ω2

γ2 + 4Ω
2 , (3)

which is shown in Fig. 2(a). This expression smoothly
varies with Ω/∆ contrary to what we will show for Pro-
tocols II and III. Equation (3) is equal to 1, i.e., the
excitation density of the initial state, for Ω = 0 (no cou-
pling between single spin states), γ →∞ (the infinitely
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frequent resets induce a quantum Zeno effect [65, 66]
which freezes the system to its initial state) and ∆→∞
(transitions between the two spins states are highly off-
resonant). Note finally that the limit γ → 0 corresponds
to a stationary state with extremely rare reset events.

Rather surprisingly, although in each realization of the
process the system is in a product state at all times,
the reset mechanism introduces long-range correlations.
This is due to the global character of the resetting pro-
cedure: all the individual spins are reset to the same
single-spin state. This becomes evident when looking
at the stationary two-spin connected correlation function
C↑jk =

[
〈njnk〉↑,ness − 〈nj〉↑,ness 〈nk〉↑,ness

]
, which is equal

to

C↑jk = 4Ω4 5γ2 + 8Ω
2(

γ2 + 4Ω
2
)2 (

γ2 + 16Ω
2
) , (4)

showing that correlations do not depend on the considered
spins. This is reminiscent of what happens in fully con-
nected models (see, e.g., [67] for an example in dissipative
settings). However, in our case, these correlations are
strong in the sense that they do not vanish in the thermo-
dynamic N →∞ limit. As such, contrary to the case of
fully connected models [68], the stationary state of our re-
set process is not clustering, i.e., it does not possess Gaus-
sian fluctuations, as shown by the fact that the suscep-
tibility is diverging: χ = limN→∞ 1/N

∑N
j,k=1 C

↑
jk = ∞.

Note, that the correlations (4) can also be computed from
suitable single-spin trajectory correlations, following, e.g.,
Ref. [69]. This is, however, not possible for Hamiltonians
with interactions among the spins or for the protocols II
and III discussed further below.

In addition to these strong classical density-density cor-
relations, the NESS, in fact, also contains correlations of
quantum origin. This aspect can be shown by computing
the local quantum uncertainty (LQU), defined in Ref. [70],
which is a type of bipartite quantum discord [71, 72]. It
quantifies the extent of the fluctuations of a local mea-
surement due to the non-commutativity between the state
and the measured local observable. The LQU isolates the
fluctuations that are caused only by the coherence of the
state and not by its mixedness. Despite being a fairly
common feature in quantum states [73], quantum discord
is proved to be a useful quantity for metrology and sens-
ing applications [74–76] . Here we compute the LQU for
the stationary two-spin reduced density matrix ρjk [64].
It is given by ljk = 1 − λmax{Wjk}, where λmax{Wjk}
is the largest eigenvalue of the 3 × 3 matrix Wjk with
elements

(
Wjk

)
ab

= Tr[
√
ρjk(σaj ⊗ 1)

√
ρjk(σbj ⊗ 1)], with

a, b = x, y, z. As for the classical correlations, also the
LQU does not depend on the distance between sites. In
Fig. 2(d) we show the connected correlation function (4)
(left axis) together with the quantum discord quantified
via the LQU (right axis) for Protocol I. Both quantities

possess qualitatively the same shape and smoothly vary
with Ω/∆.
Protocol II: Conditional reset to two states.—

This protocol exploits two reset states: |↑〉N and |↓〉N . At
each reset event, the local density at each site is measured
and the total excitation density n is computed. The sys-
tem is reinitialized to the reset state |↑〉N if the majority
of the spins is found in the excited state, i.e., n > 1/2.
On the contrary, if n < 1/2, the reset state is chosen
as |↓〉N . For large N , the probability distribution for
measuring a certain value of n after a time t since the last
reset is a Gaussian distribution centered on the average
〈nF (t)〉↑/↓, with variance σ2

n ∝ 1/N [64]. This means
that, at each reset event, the system can in principle
be reinitialized in both reset states, albeit with different
probabilities. This aspect, together with the fact that the
Hamiltonian dynamics of the average density satisfies the
relation 〈nF (t)〉↑ = 1 − 〈nF (t)〉↓, makes the stationary
excitation density exactly equal to 1/2, i.e., the average
between the density of the two reset states [64].
A different phenomenology takes place in the thermo-

dynamic limit N → ∞. In this case, as a consequence
of the law of large numbers applied to the operator n,
the probability distribution to measure a certain value
for n becomes a delta-function peaked around the aver-
age 〈nF (t)〉↑/↓. This self-averaging property makes the
measurement of the excitation density fully deterministic
with outcome equal to its average value. As a conse-
quence, for Ω < ∆, given the initial condition and the
fact that 〈nF (t)〉↑ > 1/2 ∀t, the system can only be reset
to the state |↑〉N and, therefore, the average density in
the process is always larger than 1/2. For Ω > ∆, instead,
both reset states can be reached so that the stationary
excitation density is equal to 1/2 [64]. The stationary
excitation density, acting as an order parameter, then
displays a jump discontinuity at the critical point Ωc = ∆,
as shown in Fig. 2(b). This is a consequence of an abrupt
change in the dynamics: for Ω > ∆ the system can reset
to both states, while for Ω < ∆ the dynamics is effectively
that of Protocol I, with the stationary excitation density
coinciding with Eq. (3) [see also Fig. 2].
As shown in Fig. 2(e) the connected correlation func-

tion and the quantum discord display a behavior that
is qualitatively different to that of Protocol I. They are
both discontinuous at the critical point even though the
discontinuity of the LQU is tiny on the scale of the figure.
Protocol III: Conditional reset to the initial

state.— In the third protocol, the system is reset to
its initial state |↑〉N only if the measured excitation den-
sity exceeds 1/2. If not, the system resumes its dynamics
from the state generated by the projective measurement
after a subsequent flip of all its spins is performed [see
Fig. 1(b,c)]. This means that, if the state after the pro-
jective measurement possesses an excitation density equal
to n′ < 1/2, the reset state will have excitation density
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Figure 2. Collective behavior and quantum correlations induced by reset. First row: stationary excitation density as
a function of Ω/∆ for the three protocols. (a) For Protocol I the order parameter (excitation density) is given by Eq. (3). For
Protocols II (b) and III (c), the order parameter displays a non-analyticity at the critical point Ωc = ∆, which is discontinuous
or continuous, respectively. For protocol III the order parameter behaves as a power law when approaching the critical point
from the right with an exponent close to 0.5. Second row: connected correlation function (in blue, left axis) and quantum
discord (in red, right axis), computed from the two-spin reduced density matrix ρjk, as a function of Ω/∆. In contrast to
Protocol I (d), where both quantities are continuous, Protocol II (e), leads to a discontinuity of both quantities at the critical
point Ωc = ∆. Note, that the discontinuity of the quantum discord is imperceptible on the scale shown. (f) For reset Protocol
III, both the connected correlation function and the quantum discord feature power-law behavior in a right neighborhood of the
critical point. The characteristic exponent is approximately 0.5 for the connected correlation function and 0.2 for the quantum
discord. The dashed parts of the curves in all panels highlight the fact that, when Ω < ∆, the three protocols become equivalent.
All data are obtained analytically, except for panels (c) and (f) where numerical simulations are necessary. The reset rate is
chosen to be γ = ∆/2.

1 − n′ > 1/2. This protocol is still conditioned on the
measured excitation density, but, in contrast to Protocol
II, any state with n > 1/2 can be considered as a reset
state according to the parameter regime. The resulting
non-equilibrium phase diagram, see Fig. 2(c), exhibits
a continuous non-analytic behavior at the critical point
Ωc = ∆.

We note that, without the additional spin-flip operation,
the stationary behavior of the density would be discon-
tinuous also for this protocol. Indeed, when Ω > ∆, each
realization of the reset process would spend on average
half of the time in configurations with n smaller than 1/2
and half of the time in configurations with n larger than
1/2. The stationary state, obtained by averaging over
trajectories, would therefore be very different from the
one attained when Ω < ∆, where trajectories maintain a
positive magnetization, n > 1/2, throughout the whole
reset process. This substantial dissimilarity between the
two regimes would result in a jump discontinuity of the
order parameter at Ωc. On the contrary, with the intro-
duction of the spin-flip operation, the order parameter is
continuous, but still non-analytic, since its first derivative
has a jump discontinuity at Ωc. This can be understood
by noticing that, in this case, for Ω >∼ ∆ each trajectory
of the reset process spends only an infinitesimal time in
states with n < 1/2, since after a reset the system restarts

the dynamics from a state with n > 1/2.
In the vicinity of Ωc, the order parameter displays a

power-law behaviour ∼ (Ω − Ωc)
β , for Ω → Ω+

c , with
a static exponent β ≈ 0.5. This seems to indicate the
emergence of a second-order phase transition in the NESS.
However, looking at the behavior of the correlation func-
tion reveals a rather unexpected phenomenology. Indeed,
in second-order phase transitions, upon approaching the
critical point, the correlation length of the system in-
creases giving rise to a power-law divergence of the sus-
ceptibility at criticality. Here, instead, as mentioned
already when discussing Protocol I, the system features
strong long-range correlations which determine a diver-
gence of the susceptibility parameter χ for any value of
Ω/∆ and not only at criticality. Despite this divergence,
we can still analyse the two-spin correlation function C↑jk.
This quantity, displayed in Fig. 2(f), interestingly also
obeys a power-law behaviour ∼ (Ω − Ωc)

β close to the
critical point, with the same static exponent β of the
order parameter. Also the quantum discord, as measured
by the LQU, follows a power law with exponent δ ≈ 0.2.
Conclusions and outlook.— We have shown that

combining a non-interacting quantum dynamics with an
externally imposed reset process can lead to surprisingly
rich non-equilibrium stationary states. Even the simplest
possible protocol results in a state with non-trivial classi-
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cal and quantum correlations. More involved protocols
lead to the emergence of a phase-transition behavior in an
initially non-interacting system, which may be relevant
for the implementation of quantum sensing and metrology
applications [56, 77–79]. The non-analyticities character-
izing such collective behavior emerge since the reset state
is completely determined, in the thermodynamic limit, by
the average value of the density as a consequence of the
law of large numbers. For any finite system, fluctuations
in the measurement outcomes inhibit the emergence of
the observed non-analyticities. We have shown how this
occurs in the case of a non-interacting unitary dynamics.
However, one would observe a similar phenomenology
in the case of Hamiltonian dynamics with short-range
interactions, for which the time-evolution only builds up
exponentially decaying correlations which do not inval-
idate the convergence of the operator n to its average
value, in the large N limit. Conceptually, this mechanism
underlying collective behavior may appear simpler than
the creation of strong coherent interactions. However,
one requires the ability to rapidly read out and initialize
the spin ensemble [80]. For the results discussed in Fig. 2
we have assumed a reset rate γ = ∆/2, which in some
settings may be impractical (it could be on the order
of MHz for cold atoms). However, our findings do not
change qualitatively for smaller values of the reset rate.
The key quantity is indeed the ratio Ω/∆, while the value
of γ simply provides the timescale for the approach to
stationarity.
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